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Abstract: We study the Cauchy problem for a system of equations corresponding to a singular limit of ra-
diative hydrodynamics, namely, the 3D radiative compressible Euler system coupled to an electromagnetic
field. Assuming smallness hypotheses for the data, we prove that the problem admits a unique global smooth
solution and study its asymptotics.
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1 Introduction

In [3], after the studies of Lowrie, Morel and Hittinger [15], and Buet and Després [5], we considered a singular
limit for a compressible inviscid radiative flow, where the motion of the fluid is given by the Euler system for
the evolution of the density p = p(t, x), the velocity field il = ii(t, x) and the absolute temperature 9 = 9(t, x),
and where radiation is described in the limit by an extra temperature T, = T,(t, x). All of these quantities are
functions of the time ¢ and the Eulerian spatial coordinate x € R3.

In [3] we proved that the associated Cauchy problem admits a unique global smooth solution, provided
that the data are small enough perturbations of a constant state.

In [4] we coupled the previous model to the electromagnetic field through the so-called magnetohydro-
dynamic (MHD) approximation, in presence of thermal and radiative dissipation. Hereafter, we consider the
perfect non-isentropic Euler-Maxwell system and we also consider a radiative coupling through a pure con-
vective transport equation for the radiation (without dissipation). Then we deal with a pure hyperbolic system
with partial relaxation (damping on velocity).

More specifically the system of equations to be studied for the unknowns (g, i, 9, E,, ]§, E") reads

0¢0 + divy(pit) = 0, (1.1)
0¢(oit) + divy(pil ® it) + Vx(p + py) = —o(E + i x B) — v, (1.2)
0+(0E) + divy((E + p)il) + il - Vypy = —04(a9* — E;) — oF - 1, (1.3)
O¢E, + divy(E,il) + p, divy il = —04(E, — a9"), (1.4)
B +curl, E=0, (1.5)
o+E - curly B = oil, (1.6)
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(1.7)
o, (1.8)

divy B =0,
div, E=p -
where g is the density, i the velocity, 9 the temperature of matter, E = %lﬁl2 + e(p, 9) is the total mechanical
energy, E, is the radiative energy related to the temperature of radiation T, by E, = a Tﬁ‘, and p, is the radiative
pressure given by p, = %a Té = %E r» with a > 0. Finally, E is the electric field and B is the magnetic induction.

We assume that the pressure p(p, 9) and the internal energy e(p, 9) are positive smooth functions of their
arguments, with

Cy:= >0, >0,

09 00
and we also suppose for simplicity that v = % (where 7 > 0 is a momentum-relaxation time) and y, 0, and a
are positive constants.

A simplification appears if one observes that, provided that equations (1.7) and (1.8) are satisfied at t = O,
they are satisfied for any time ¢ > 0, and consequently they can be discarded from the analysis below.

Notice that the reduced system (1.1)—(1.4) is the non-equilibrium regime of radiation hydrodynamics,
introduced by Lowrie, Morel and Hittinger [15] and, more recently, by Buet and Després [5], and studied
mathematically by Blanc, Ducomet and NecCasova [3]. Extending this last analysis, our goal in this work is to
prove global existence of solutions for system (1.1)—(1.8) when the data are sufficiently close to an equilib-
rium state, and study their large time behavior.

For the sake of completeness, we mention that related non-isentropic Euler—-Maxwell systems have been
the subject of a number of studies in the recent past. Let us quote the recent works [9, 10, 12, 14, 18, 21].

In the following, we show that the ideas used by Ueda, Wang and Kawashima in [19, 20] in the isen-
tropic case can be extended to the (radiative) non-isentropic system (1.1)—(1.6). To this end, we follow the
following plan. In Section 2 we present the main results and then, in Section 3, we prove the well-posedness
of system (1.1)-(1.6). Finally, in Section 4, we prove the large time asymptotics of the solution.

2 Main results

We are going to prove that system (1.1)—(1.8) has a global smooth solution close to any equilibrium state.
Namely, we have the following theorem.

Theorem 2.14. Let (p, 0, 9, E,, B, 0) be a constant state, with 0 >0, 9>0andE, > 0, and compatibility condi-
tion E, = a9 , and suppose that d > 3. There exists € > 0 such that for any initial state (0o, to, 90, E?, Bo, 750)
satisfying

divy Bo =00 -0, divxBo=0, (0o-0, ﬁo,go—g,Ero—E_nEo—E,Eo) e HY
and .
"(QO) ﬁo; '90) E(r)y BOy EO) - (E’ 0) 9) ETy B) O)HHd <é¢g,

there exists a unique global solution (p, it, 9, E;, B, E) to (1.1)-(1.8) such that
(0-0,1,9-9,E —E, B~ B, E) € C(10, +00); HY) n C'g([0, +c0); HA ™).

In addition, this solution satisfies the following energy inequality:

t
lte-2,,9-9,E ~E, B-B,E)(t)] + j(||(g ~0,8, 9~ 9, Er — E)(1)||a + IVxBOI2s + IE@I0) dT
0

_ 5 = 3 B o2
< C||(co -2, 0,9 -9, E? - Ey, Bo - B, Eo)| 14 2.1)
for some constant C > 0 which does not depend on t.
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The large time behavior of the solution is described as follows.

Theorem 2.2. Let d > 3. The unique global solution (p, ii, 9, Er, B, E) to (1.1)-(1.8), defined in Theorem 2.1,

5 = — o5 o

(-2, 9-9,E - Er, E)(t)| yyuseo = O ast — co.
Moreover, if d > 4, then
(B = B)YOllyasee — 0 ast — oo,

Remark 2.3. Note that, due to lack of dissipation by viscous, thermal and radiative fluxes, the Kawashima-
Shizuta stability criterion (see [17] and [1]) is not satisfied for the system under study, and the techniques of
[13] relying on the existence of a compensating matrix do not apply. However, we will check that radiative
sources play the role of relaxation terms for the temperature and radiative energy and this will lead to global
existence for the system.

3 Global existence

3.1 A priori estimates

Multiplying (1.2) by i, (1.5) by B, (1.6) by E and adding the result to equations (1.3) and (1.4), we get the
total energy conservation law

1 . 1 - 5 . R L o= =
at(iglulz +oe+E + E(IBI2 + IEIZ)) +divy((0E + E,)it + (p + py)ii + Ex B) = 0. (3.1)

Introducing the entropy s of the fluid by the Gibbs law 9ds = de + pd(%) and denoting by S; := %aT? the
radiative entropy, equation (1.4) is rewritten as

0+Sy + divy (S, 1) = _UaE,—TraS“. (3.2)
The internal energy equation is
o¢(pe) + divy(peit) + p divy it — volii|* = —04(ad* - E,),
and by dividing it by 9, we get the entropy equation for matter
3:(0) + divy(osi) - L—‘;|a|2 - —oa#. (3.3)
So adding (3.3) and (3.2), we obtain
d:(0s +Sy) + divy((s + S)il) = ‘;‘;“ (9= T+ TN + T2 + glul. (3.4)

By subtracting (3.4) from (3.1) and using the conservation of mass, we get

1 - —_ — A —_— 1 =2 = =3
at(zmuﬁ +H;(0, 9) - (@ - ©)9.Hy(@. 9) ~ H5(@, 9) + H,5(T;) + S(B~BP” + IE1%))
ao,

= divy((QE + E,)il + (p + py)il + (os + S,)it) -EST 9-T)* I+ T,) (9 +T?) - §|a|2.
r

By introducing the Helmholtz functions
Hg(o,9) :=0(e-9s) and H,g(T)) :=E, - 95,

we check that the quantities Hg(g, 9) - (¢ — 0)9,Hg(0, 9) - Hy(o, 9)and H y9(Tr) - Hryg(T,) are non-negative
and strictly coercive functions reaching zero minima at the equilibrium state (g, 9, E,)).
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Lemma 3.1. Let g and 9 = T, be given positive constants. Let O, and O, be the sets defined by
O‘={(93)€]R2'§<Q<2§§<3<2§} O-z{T e]R'Z<T<27}
1- ’ . > s > 5 2 - r . P r r(e

Then there exist positive constants C1,,(0, 9) and C 3,4(7,) such that
Ci(le -2l +19-91?) < Hg(e, 9) - (0 - 0)9,Hg(@, 9) - Hy(@, 9) < Ca(lo -2* +19-91°) (3.5
forall (p, 9) € O1, and
C5IT, - Ty* < H,5(T;) - H, 5(Ty) < C4lTy - T,|?
forall T, € O,.

Proof. The first assertion is proved in [8], and we only sketch the proof for convenience. According to the
decomposition
0 — Hy(0,9) - (e - 009, H5(@, 9) - H(@, 9) = F(0) + (@),
where
F(0) = Hye, 9) - (0 - 0)9,H5(@, 9) - H5(@,9) and  S(e) = Hgle, 9) - Hy(e, 9),

one checks that ¥ is strictly convex and reaches a zero minimum at g, while § is strictly decreasing for 9 < 9
and strictly increasing for 9 > 9, according to the standard thermodynamic stability properties, see [8]. Com-
puting the derivatives of Hg leads directly to estimate (3.5).

The second assertion follows from the properties of

4=\  azh
3
x> 500 ~ Hy5(Ty) = ax’(x - 39) + 35 0

Using the previous entropy properties, we have the following energy estimate.

Proposition 3.2. Let the assumptions of Theorem 2.1 be satisfied with

Consider a solution (p, i, 9, E;, B,E) of system (1.1)—(1.3) on [0, t], for some t > 0. Then, for a constant Co > O,
one gets

t
V() - VIg, + Jllﬁ(T)Ilfsz < CollVo = VI, (3.6)
0

Proof. We define B 3
rl(ts X) = Hg(gs ’9) - (Q - E)aQHg(Es '9) - Hg(a’ '9) + H,)@(Tr),

multiply (3.4) by 9, and subtract the result to (3.1). By integrating over [0, t] x R3, we find

t —
1 1. = 1. 9 1 1. = 1 -
j SOl +n(t,x) + 1B~ B2 + JIER dx + j j Svia? < j S00litol?(6)+ 1(0, ) + 5 1Bo — BE + 1o d.
R3 0 R3 R3
Applying Lemma 3.1 yields (3.6). O

By defining, for any d > 3, the auxiliary quantities
E(t) := sup (e - @, &t, B~ B, E)(D)| 10>
o<r<t

up (V= V)0l

=S
o<r<t

E(t) :

t
0= [le-2.4.9-8.E - E)|}udr
0
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and
t

D(t) := j(ne 0, 1,99, By~ En)()| 0 + IE@Zs +10xBOIZ2 ) dr,
0

we can bound the spatial derivatives as follows.

Proposition 3.3. Assume that the hypotheses of Theorem 2.1 are satisfied. Then, for Co > 0, we have
t
10X V()2 es + juaxa(r)ni,d-l dt < Coll0x Vol + Co(E(6)D(t)* + F(OI(t)D(t)).
0

Proof. By rewriting system (1.1)—(1.6) in the form

0o +uU-Vyo +pdivy il =0,

1
atﬁ+(ﬁ-Vx)ﬁ+&ng+ —V,9 + VXE,+E+u><B+ Vil = -1 % (
0 0 3ap

oo
|
ol

0¢d + (- =29 (q9" - E,),
| REAY oC (a8 =B

A 3.7)
OE, + (il - Vy)Ey + §Er divy it = —04(E, — a9%),

atfa + curly E=o0,

| 0¢E - curl, B - pil = (0 - D)1,
and applying 0¢ to this system, we get
0:(050) + (i - V) %o + o divy 05t = F¥,

vaafE, +0lE + ol ><B+v6€* = —of[u x (B —E)] + F¢,

3(9%H) + (it - V)Lt + %vxafg . vaafs "

Ipg
Cv

0¢(359) + (i - V) L9 + E))|+FE,

divy 0L = —a"[
0¢(0%E,) + (il - Vx)OLE, + §E, divy 0%t = ~0%[0a(E, — ad9%)] + F5,
0¢(0%B) + curl, o°E = 0,
0(0%E) - curly 0B - posit = o5[(e - 0)i],
where

FE = —[0%, 1 - Vit - [0%, o divy]il,

- p Py 1
FS = 0%, - Vi - [a‘-’ Q" ]g - [a‘;, : ]3 [a‘-’ QVX]E,,
FE o= —[0%, 11V, ]9 - [a‘f 9y leX]
oCy

Fe = —[0f, 11 Vy]E, - [ax, SEr divx]ii.

Then, by taking the scalar product of each of the previous equations, respectively, by

. C o -
Peseo, ota, o9 ook, OB and O,
and adding the resulting equations, we get
0,€¢ + divy F¢ + v(d4i1)? = RE + 8¢, (3.8)
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where
= J0%a7 + Y20t + O 0592 4 L @B + SO ¢ S O5B,

2 2 4a E,
éff::(%aﬁmzaﬁwiaﬁ}sr)aﬁm S (@ + pQ(a 0)? + (af.9)2 —(a B,

yf:l[p—g](aﬁ@)h 5] @892+ 3] 1y ](af;E» +—chvx( i)(0%o)

2 2l 4apE,
1
4= dlvx 3(0%H)% + = dlvx< )(aff))2 4= lex( . QEru)(a"E,)z
+vx< )a"ga"* (—)a,’;saﬁa+vx<3a )af;E,aﬁa

p Cy o
+Q—§a£QF€ +0%u F€+?688F€+6€ErF"+Qa€ aﬁu,

_,

= o - of[u x OLE, 0%[04(E, — a9")] + 0°E 0% (0 - 0)il].

_ tq e[ Oa 4 ]
_B)] asa[cv(as E)) 49Er

By integrating (3.8) on space, one gets

3 J €€ dx + [0%Tl2, < j(m +18)) dx.

R3 R3

Integrating now with respect to ¢t and summing on ¢, with |¢| < d, yields

H d

IIaxV(t)IIfqdfl + Jllaxﬁ(f)llflm dr < CollaxVollfqdfl +Co Z J(|iR€| +18°)) dx.

0 |€|:1IR3

By observing that
|00l < Cloxel, 10¢9] < C(l0xol + [0xI] +|0xE;||A9]) and |0¢E,| < C(|oxel + |0xI| + [0xE/l),
and using the commutator estimates (see the Moser-type calculus inequalities in [16])
I(FE, FS, FS, Fo)l2 < |ox(0 - 0, &, 9 - 9, Er — Ey)|| 0 |0%(0 - 0, &, 9 - 8, Er — E)| 1,

we see that

IR < C(I9xelze + [10xitllzeo + 19xIlzeo + I0xErllz)| 0% (0 — @, i1, 9 - 9, Ey — Ey)| 7

Then integrating with respect to time gives

o<t<t

t t
JIRE(T)I dt < C sup {[0x@llre + [0xilllLes + [0xIN e + [0xErllLeo} Jl|af}(9 ~0,1,9-9,E - E)|. dr
0 0

< CE(t)D%(¢)

for any |¢| < d. Similarly, we estimate

2
I8¢ < CIOLEIZ, |04 x (B - B)]|% + CIOLOI, a"[ Er)] LZ

+ CIOSENN2, |04 [0a(Er — ad™)] |7 + Cllaf}EIILz l941(e - 2)d]7.-

Then we get

18] < CIB - Bl [10%0 il7, + Cl(e -2, &, 9- 9, Er - E)| o |05(0 - 0, 11, 9 - r)"Lz 10%(B, E)llL
9-

9.E
+ C(I0x0llLe + 19xiillzeo + 0xIlze + 10xErll)|0%(0 - @ 9,E; - E)|f-
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Then integrating with respect to time yields

t t
j|sf(r)| dr < C sup ||(B - B)(1)| 1 jna,’;a(r)uiz dt + C sup [05(B, E)(1) 12
o o<t<t o o<rt<t
t
x Jll(e ~0,8,9-9,Er - E;)(1)|| ;|| 05(0 — 0, 84, 9 - 9, Ey — E;)(D)llp2 dt
0

t
+ C sup {[0x@llLe + [9xillLee + 10xINre + [0xErllLeo (T)} J||af}(0 ~0,1,9-9,E - E)|. dr
0

o<r<t
< C(E(t)Dz(t) + F()I(t)D(t))

forany |¢| < d. O

The above results, together with (3.6), allow us to derive the following energy bound.

Corollary 3.4. Assume that the assumptions of Proposition 3.2 are satisfied. Then

t
IV = V) (Ol + Jllﬁ(f)llf,d dt < CI(V = V)()l34 + C(E(®)D(8)* + F(HI(HD(D)). (3.9)
0

Our goal is now to derive bounds for the integrals in the right- and left-hand sides of equation (3.9). For this
purpose we adapt the results of Ueda, Wang and Kawashima [20].

Lemma 3.5. Under the assumptions of Theorem 2.1, and supposing that d > 3, we have the following estimate
forany € > 0:

t
|Ue-2.9-9.E - BNl + 1B ) dr
0
t
<e Iuaxf%(r)uf{d,z dt + Ce{lVo = V7ot + E()D(t)* + F(OI(t)D(0)}. (3.10)
0

Proof. We linearize the principal part of system (1.1)—(1.3) as follows:

ot +odivy il = g1, (3.11)
O¢ll + a1 Vyo + a3 Vx8+E3VXE,+E+ﬁx§+ Vil = g5, (3.12)
0¢9 + by divy il + b, (9-9) = g3, (3.13)
O¢E, + ¢y divy il + C3(E, — Ey) = g4, (3.14)
9¢B + curl, E =0, (3.15)
o:E - curl, B - pil = g3, (3.16)
with coefficients
Po )] 1 _ _ =
:'92_: ,'9:_) 7'9=_y j = j ,97
a(e,9) 0 az(e, 9) 0 as(e, 9) 30 aj = aj(p, 9)
9pg adq ..y <2 — ao, _ =
= — E = E = — 3 = 2
bl(Q’ '9) QCV’ bZ(Q’ ’9’ r) QCV('9 +8 )('9+19)1 b3(01 81 r) QCV’ b} b](g9 8)’

4 —2 - _ _ =
ci(e,9,Ey) = §Er: c2(0,9,E) = aog(9* +9)I+9), c¢3(0,9,E) =04, T =@ 9),
and sources

81 := _{ﬁ - Vy0 + (0 — 0) divy ﬁ},
g2 1= —{(@- V.U + (@1 - @)Vx0 + (@2 - TV + (a5 - @)Viky + 1 x (B - B)},
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g3 = ~{(@- V)9 + (b1 ~ b1)dive il + (b ~ )9 - 9) + b3(E, - Ep},

—
pt)

g4 = —{(@- VOE, + (€1 - c1)dive it + ©2(9 - 9) + (c3 - C3)(E, - Ep)}
and
gs = (e -0)u.
By multiplying (3.11) by —a; divy i, (3.12) by a1 Vx + a2 V49 + a3 Vi E, + E, 3.13) by —a> div, i1 + 9- 9,
(3.14) by —as divy &t + E, - E;, (3.15) by 1, (3.16) by & and summing up, we get
ay(Vxots — p¢ divy &) + @ (Vy 9ty — 9¢ divy ) + a3 (VxE, il — (Ey)¢ divy @)
+ Etly + Bl + {%[(3 - 92+ (E, - E,)z]}t +(a1Vxo + a2Vx9 + asVyE, + 75)2
+ (a1 Vo + @y Vi + a3 ViE, + E)(il x B+ vil) + b2 (9 - 9)% + ¢3(E, — Ey)?
+b1(9 - 9)divy it + C1(Ey — Ey) divy il + (@3C2 — @2b,)(9 — 9) divy il
+ (@yb3 - a3C3)(Ey — Ey) divy it — it curly B - pit? - (divy )*[a@; + @ + a3] = GY, (3.17)

where

GV := —a1g1 divy il + [@1Vx0 + @2 Vxd + @3ViE, + Elgy — [@y + 9 - 9] divy lig3 — [a3 + E, — E,] divy figy + gsil.

By rearranging the left-hand side of (3.17), we get

{H}, +div, F§ + DY = MY + GY, (3.18)
where
H? = —[a1(0-0) + @2(9 - 9) + a3(E, — E,)| divy &t + E - i L9-92+@E -E)
1=-lai(e-0)+@(9-9) +a3(E, - E,)]divy i + E- lh + 2[( )"+ (Ey - E»)*],
F = [a1(e - @) + @29 - 9) + a3 (E, - E)]ily - 2[a1(0 - 0) + @2(9 - ) + a3(E, - E,)]E
+ (@3C - daby + b1)(9 - 9)ii + (@23 - a3C3 + C1)(E; - Ep)i,
DY = @1 IVxol? + @3IVx I + @3IVAE | + [E1? + 2a1(0 - 8)% + b2(9 - 9)% + C3(Er - Ey)?,
MO = —{Zalanxg Vi + 21T3V50 - ViEy + 28>a3Vx9 - ViEy + 2d2(0 - 0)(9 - 9)
+2a5(0 - 0)(Ey — Ey) + (@1 Vx0 + @2 Vx9 + a3 VyE, + E)(il x B + vit) - i1 curl, B - pii?
- (diVX ﬁ)z[ﬁl +az +H3] — (5362 — 5252 +31)VX.9 U - (6233 — 5363 +61)VXEr . fl}
Integrating (3.18) over space and using Young’s inequality yields

d > _
T J HY dx + C(llell7, + IVx9l7. + IVxE/l7 + IEI7. + llo - 2ll7.)

R3
< eloxBI, + Ce(ltly +19 - 913 + IEr = Erl ) + j|G§’| dx.
R3
In fact, in the same way one obtains estimates for the derivatives of V. Namely, applying 0% to sys-
tem (3.11)-(3.16), we get
{HE}, +divy FS + Df = M§ + GY, (3.19)

where

HE = —[@,0%(0 - B) + @059 - 9) + @30%(E, — Ey)] divy 050 + 0% - 0%it + =[(029)% + (3°E,)?],

N[~

F{ = [@10%(0 - 0) + 32059 - 9) + @305 (Ey - En)]ily
+(a3Cy — ayby + b1)059 0%il + (@, bs — a3C3 + C1)0%E, d%i
—2[@108(0 - D) + @20%(9 - 9) + @30%(E, — Ep)]0%E + 0%t x 04(B - B),
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Dt = a1|V,0l01? + @105V, 917 + @5105VE, | + [0SEI? + 21 (380 - 0))% + b2(059)% + C3(0LE,)?,
M = —{zalazvxaﬁg V049 + 2a1a3V, 050 - VOLE, + 2a,a3V,059 - Vi OCE, + 2a,0%(0 - 2)04(9 - 9)
+2a,05(0 - 0)OL(E, — Ey) + (@1 V4050 + @2V, 059 + a3V 0%E, + 0E) (0% x B+vo )
— (@3Cy — ayby + b1)V,059 - 0%i1 — (@, b3 — A3C3 + C1)VXOLE, - 0%i
~curl, 842 0%(B - B) - 5(0%i1)? - (divy 0%)2(@1 + > +ag]},
G¢ = —a10%g: divy 0511 + [@1 V00 + @2V, 059 + a3V, OLE, + 05E]0le,
—@,0%g3 divy 051t — a30%g, divy 0411 + 0%g5 051 + 0683059 + 08405 E,.

Integrating (3.19) over space and time yields

t
j HE(t) dx - j HY(0)dx + C j(uvxa,‘;gniz + IV OLSI2, + IV CE, 2, + 10CEI2, ) dr
0

R3 R3

t
CJ(uaf;(e — 0%, + 1059 = N2, + 105(E, - EDIIZ,) dr
0

t t t
_ejuai(B—E)uiz dr+cgj(||a‘f 12, + 1049 - D)%, + 104(E, - EDIZ) dr+”|G’;|dxdr. (3.20)
0 0 0 R3

By observing that
| J H{(t) Xm < C(lo%(e _§)||iz + ||a£(9—§)lliz + 105 (Er - r)"Lz + 0% IIHl)
R3

and summing (3.20)on £for 1 < £ < d - 1, we get

t
[(1e-2.9-3. 5~ BNl + IE @I dr
0

t

t _
< CA(V =T + & [1BOIE dr + CL(EOD (@) + FOIOD(®) + Z j j IG¢ (1)l dx d,
0 I=1 0 R

where we used Corollary 3.4.
Let us estimate the last integral in (3.20). We have

(1048102 < Cl(e -2, &, 9 -9, Ey — Ey)| ;1052 (0, @)lI12,
l0¢galz2 < Cll(e - @, t, 9 - 9, Er — Ey)|| ;05 2 (0, )12
+ CIIB - Bl 0%l 2 + CIOS(E - B)llz2 il oo

| 10%gslee < Cl(e -2 1, 9 = 8, Er — Ep)| 105" (@, W2 (.21)

+Cl(e -2, 1,9 -9, Er — Ey)|| 1 10572(9, ENll12,
lo%galliz < Cl(e -2, 1, 9 - 9, Ey - Er)| 1o 105 (0, )12

+Cl(e -2, 1,9~ 9, Er — Ey)|| 1 10572(9, ENllz2,
[ 0%gsll2 < C|[(e - 2., 9 - 9, Er - Ey)|| 0 10%(0, D)]I12

for1 < |¢| <d-1.Then

t
J IIGZ (D)l dx dt < Cloy 210581l + C(I9F ol + 195 9z + 195 Evlzz + 195 EllL2 ) 10582 .2
0 R

+ Cllog 2110583l 2 + Cllog tilz2 1058l + Clogiilz210%gsll Lz
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10 — X.Blancetal., Global existence of a radiative Euler system coupled to an electromagnetic field DE GRUYTER

Plugging bounds (3.21) into the last inequality gives

d-1 &
Y J J|G§(r)| dx dt < CE(t)D*(t),
lel=13 ps

which completes the proof of Lemma 3.5. O

Finally, we check from [20, Lemma 4.4] that the following result for the Maxwell’s system holds true for our
system with a similar proof.

Lemma 3.6. Under the assumptions of Theorem 2.1, and supposing that d > 3, for any € > 0, the following
estimate (here, we set V = (p, i1, 9, E,, B, E)T) holds:

t t
juaxl?(r)u},s,z dt < ClVo - V%, +C jnaxE‘(rn@H dr + C(E(OD() + FOIOD(L)). (3.22)
0 0

Proof. By applying o¢ to (1.5) and (1.6), multiplying, respectively, by — curl, 0¢B and curl, 0¢E, and adding
the resulting equations, we get
—(3%E - curly 95B), + |curl, 0B|* — divy(94E x 05By) = MY + GY,
where
MS = —potii - curl, 04B + |curl, 04E|?
and
G4 = -0%((0 - @)it) - curly 0%B.
Integrating in space gives

d

- J O°E - curl, 0%B dx + Cllcurl, 02BI2, < llcurly OLEIZ, + 052, + J|G§| dx.

R3 R3

By integrating on time and summing for 1 < |¢| < d — 2, we have

t t
[ 10:BIE, dt < UV = VOl + CUV =)0V + € 10,1
0 0

{ d-2
v 1. devc Y [I65mIdxdr
0

1€1=0 5

t
< CII(V = V)(0)||ga-s + C j||aXE|§,,,_z dt + C(E(t)D(t)* + F()I(t)D(t)),
0

where we used the bound
1

obtained in the same way as in the proof of Lemma 3.5. The proof of Lemma 3.6 is completed. O

t
J Jng(T)l dx dt < CE(t)D*(t),
0

1]R3

We are now in position to conclude with the proofs of Theorems 2.1 and 2.2.

3.2 Proof of Theorem 2.1

We first point out that local existence for the hyperbolic system (1.1)-(1.6) may be proved using standard
fixed-point methods. We refer to [16] for the proof.
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Now, by plugging (3.22) into (3.10) with £ small enough, we get
t
j(ll(e ~0,9-9,Er — Ep)|[ja + IE(@)300) dT < C{IVo - ViIZy + E@OD(6)? + FOIOD(D)}.  (3.23)
0

Putting this last estimate into (3.22) yields
t
juaxé(r)ugs,z dt < C| Vo - V|2, + C(E(t)D(t)* + F(t)I(t)D(t)). (3.24)
0
Then, from (3.10), (3.23) and (3.24), we get
t
IV =V)Ol2, + [(u(g ~0,9-9,Er - E)(D|5a + IE@I20s + 10xB(@)12,) dT
0
< C|Vo - V7, + C(E()D(8)* + F()I(t)D(t))

or, equivalently,
F(t)* + D(t)* < C| Vo - V17, + C(E()D(8)* + F()I(t)D(t)).

Now, by observing that, provided d > 3, one has [|(V - V)(t)|z« < E(t) < CF(t), and, provided d > 2, one has
I(t) < CD(t) for some positive constant C, we see that

F(t)* + D(t)* < C|Vo - VIIZ, + CF(t)D(t).

In order to prove global existence, we argue by contradiction, and assume that T, > 0 is the maximum time
existence. Then we necessarily have
linTl N(t) = +00,

t—T.
where N(t) is defined by
N(t) := (F(t)* + D(t)*)/2.
Thus, we are left to prove that N is bounded. For this purpose, we use the argument used in [3]. After the
previous calculation, we have

N(t)* < C(IVo - V2, + N(t)®) forall T € [0, Tc]. (3.25)
Hence, setting |V — V| gd = €, We have
N(t)?
N <©

By studying the variation of ¢p(N) = N?/(e? + N3), we see that ¢'(0) = 0, and that ¢ is increasing on the in-
terval [0, (2€2)1/3] and decreasing on the interval [(2€2)1/3, +c0). Hence,

maxcl) _ ¢((2€2)1/3) _ %(%)2/3.

Hence, we can choose ¢ small enough to have ¢(N) < C for all N € [0, N*], where N* > 0, and we see that
N < N*, which contradicts (3.25).

4 Large time behavior

We have the following analogue of Proposition 3.2 for time derivatives.

Corollary 4.1. Letthe assumptions of Theorem 2.1 be satisfied, and consider the solution V := (p, i, 9, E,, B,E)
of system (1.1)—(1.3) on [0, t], for some t > 0. Then, for a constant Cq > 0, one gets

t
[CAZG] j(uat@, i, 9, E)T) s + 106(B, E)Y(T)I}az) AT < Coll Vo = V7. (4.1)
0
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Proof. By using system (3.7), we see that
19 Vllga-1 < CIV = Vg,
19¢(0, L, 9, Ellgar < |0x(0s it 9, Er, B, E)|yar + C|l(0> &, 9, Er, B, E)|| s

and
0¢(B, E)llgra-2 < 10x(B, E)llga-2 + Cllitl ga-1.

Then, for d > 3, using the uniform estimate ||V - V"ild < C of Theorem 2.1, we get estimate (4.1). O

4.1 Proof of Theorem 2.2

By using Corollary 4.1, we get

(o)

(o]
d a1 9 T = a ol -
J|E"(Q -o,u, J - '9’ EY - Er)(t)"HﬂF1 dt<2 Jll(@ -0, u, 9 - '9, Er - Er)(t)an—l ||at(9’ u, '9’ Er)(t)"del dt
0 0
o0
< J’”(Q - E’ ﬁ’ 9- ‘9, EY - E)’)(t)uildfl + ”at(g’ ﬁ’ '9’ Ei’)(t)"ild—l dt
0
< ColVo —VH,%W
This implies that
te |(e-2,1,9-9,E —E)®)|ar € L*(0, 00)
and
d 0.1 9 o 1
t— E"(Q -o,u, '9 - Sy Er - Er)(t)llHd—l el (Oa OO),
and then

[(e-o,1,9 - 9,E, - E,)(l‘)"Hd_1 — 0 whent — oo.
Now, by applying the Gagliardo—Nirenberg inequality and (2.1), we get
le-2,%9-9,Er —E})(O)] oo < (@~ 0 & 9~ 9, Er — Er)(O)]| a2 1020, T, 9, EN(O)I L

Hd=2 Ha-2*
So
l(e-o,1u,9- 9,E, - E)(l‘)qu_Loo — 0 whent — oo.
Similarly,
t > |E@®)34. € L'(0,00) and t— %ME(t)uHH € L'(0, o),
and then
IE()]lwa-1.0 — O when t — co.
Finally,

t > [0xB(0)245 € L'(0,00) and ¢+ %naxé(ouw € L(0, 00).
Then, arguing as before,
I(B = B)(Ollwe-seo < I(B = BYOI st 102BOL -
So

I(B = B)llyyaseo — O when t — oo,

which completes the proof.
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