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Semi-Linearized Proximal Alternating Minimization for a Discrete

Mumford–Shah Model

Marion Foare, Nelly Pustelnik, and Laurent Condat ∗

April 30, 2018

Abstract

The Mumford–Shah model is a standard model in image segmentation and many approxi-
mations have been proposed in order to approximate it. The major interest of this functional
is to be able to perform jointly image restoration and contour detection. In this work, we
propose a general formulation of the discrete counterpart of the Mumford–Shah functional,
adapted to nonsmooth penalizations, fitting the assumptions required by the Proximal Alter-
nating Linearized Minimization (PALM), with convergence guarantees. A second contribution
aims to relax some assumptions on the involved functionals and derive a novel Semi-Linearized
Proximal Alternated Minimization (SL-PAM) algorithm, with proved convergence. We com-
pare the performances of the algorithm with several nonsmooth penalizations, for Gaussian and
Poisson denoising, image restoration and RGB-color denoising. We compare the results with
state-of-the-art convex relaxations of the Mumford–Shah functional, and a discrete version of
the Ambrosio–Tortorelli functional. We show that the SL-PAM algorithm is faster than the
original PALM algorithm, and leads to competitive denoising, restoration and segmentation
results.

Keywords – Segmentation, restoration, inverse problems, nonsmooth optimization, noncon-
vex optimization, proximal algorithms, PALM, Mumford–Shah.

1 Introduction

The topic of inverse problems is of major interest for a large panel of applications going from
microscopy (see e.g. [2, 3]) or tomography (see [4, 5, 6, 7] and the reference therein) to atmospheric
science and oceanography [8]. The pioneering regularization approaches to solve inverse problems
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Part of this work has been presented in [1]. In this extended paper, the added contributions are 1) a general discrete
Mumford-Shah model, 2) the convergence proof of the algorithm proposed in [1] and more experimental results.
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can be traced back to the works by Tikhonov [9] and by Geman and Geman [10]. The major
challenge of this topic consists in designing jointly a cost function and an algorithm (to estimate its
minimum) in order to obtain a solution that is the closest to the original unknown one. The recent
development of proximal algorithms [11, 12] led to significant advances, thanks to the possibility
to efficiently deal with large-size data and nonsmooth objective functions (e.g., nonlocal total-
variation constraints, analysis-synthesis formulation, Kullback-Leibler divergence) [13].

In this work, we focus on image restoration and we denote the multicomponent image to recover
by u = (um)1≤m≤M ∈ RNM , where each column of u is the vectorized representation of the m-th
component. The degradation model we consider takes the form:

(∀m ∈ {1, . . . ,M}) zm = Dα(Amum), (1)

where Am ∈ RL×N models a linear degradation (e.g. a blur, a compressed sensing matrix, a
wrapping matrix) and Dα : RL → RL denotes a random degradation that can be white Gaussian
noise, leading to an additive model, or Poisson noise. The objective of this work is to estimate
jointly the restored image û and its contours, denoted by ê in the following, from the degraded
data z.

One of the standard (variational) approach to solving such an ill-posed inverse problem consists
in dealing with a regularization of the problem, by minimizing a sum of functionals. The variational
formulation of this problem, when white Gaussian noise is involved, reads:

û = argmin
u

1

2σ2
‖Au− z‖22 + ρ(u), (2)

where ρ is a “well-chosen” regularizing functional, which allows us to denoise, while preserving
the discontinuities. Hence, it generally involves the gradient of the estimate. A classical choice
is ρ(u) = ‖Du‖0, where D models the finite difference operator and ‖ · ‖0 is the pseudo-norm
`0, which is known as the L2-Potts model [14], or ρ(u) = TV(u), the Total Variation model [15],
which is convex. However, these models are restricted to piecewise constant estimates, and do not
integrate contour detection in the variational formulation, which is performed as post-processing
step. The main limitation of such a two-step procedure for contour detection is the difficulty of
appropriately selecting the thresholding rule used for edge detection.

Mumford and Shah proposed to consider a more general regularizing term, depending on both
the gradient of the estimate and the set of discontinuities [16]. The latter becomes an unknown
in the problem. Since the Mumford–Shah (MS) formalism is generally formulated in a continuous
setting, we denote by Ω ⊂ R2 the image domain. The MS model aims at estimating both û ∈
W1,2(Ω)1, a piecewise smooth approximation of an image z ∈ L∞(Ω), and the set of discontinuities
K ⊂ Ω, such that the pair (û,K) is an optimal solution of:

minimize
u,K

1

2

∫
Ω

(u− z)2dxdy + β

∫
Ω\K
|∇u|2dxdy + λ|K|, (3)

where the first term acts as a data fidelity term and forces the approximation u to be close to z,
the second term penalizes strong variations except at the locations K of the strong edges, and |K|

1W1,2(Ω) =
{
u ∈ L2(Ω) : ∂u ∈ L2(Ω)

}
where ∂ denotes the weak derivative operator.
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denotes the total length of the arcs forming K, thus the minimization of this functional implies that
|K| is small at a solution. Finally, β > 0 and λ > 0 denote regularization parameters controlling
the smoothness and the length of K respectively.

Following discretization ideas proposed in the original paper of Mumford and Shah [16], we
assume that u and z are functions on a lattice instead of functions on a two-dimensional region,
and we denote them by u and z, respectively (referring to (1)). K models the path made up of
lines between all pairs of adjacent lattice points where u has sharp transitions, as illustrated in
Figure 1. In a discrete setting, K is thus replaced by the variable e ∈ R|E|, which denotes the edges
between nodes (e.g. if the set of edges are limited to the horizontal and vertical edges between two
pixels, then |E| = 2N −N1−N2, where N = N1×N2 is the size of the grid), and whose value is 1
when a contour change is detected, and 0 otherwise. A discrete counterpart of (3) can be written:

minimize
u∈RNM ,e∈R|E|

1

2
‖u− z‖22 + β‖(1− e)�Du‖2 + λR(e), (4)

where D ∈ R|E|×N models a finite difference operator and R denotes a penalization term, that
favors sparse solutions, which is a discrete translation of “short |K|”. Note that there is no need
to add additional constraints on e, since both (1− e) and R(e) should force it to stay between 0
and 1.

Related works. One of the most popular convex relaxation of the MS functional is the Total
Variation (TV) functional [15, 17], which favors piecewise constant results, while preserving the
discontinuities. Its `0 counterpart is studied in [18, 19], leading to the L2-Potts formulation (`0-
penalization on Du). In the same spirit, but for the original piecewise smooth case, Strekalovskiy
et al. proposed in [20] to replace βS + λR by a single function depending on Du, defined by
RMS(Du) = min{β|Du|2, λ}. Similar ideas have been derived in [21]. The authors proposed two
convex relaxations of the MS functional designed for discrete domain with continuous labels [21].
Nonetheless, this relaxation is not able to detect the contours. As emphasized by the authors,
proper convergence may be difficult to achieve for some parameterization, and these two methods
are not able to detect the contours. For these reasons, we don’t consider it in further compar-
isons. The Chan–Vese model can also be considered as a relaxation of the MS model, whose main
limitation is due to a prior label number, and a piecewise constant estimate [22, 23].

Recently, Li et al. [24] proposed a nonlocal TV model, similar to the AT functional, where the
gradient is computed in a weighted neighborhood. Convergence is proved, but the contours are
obtained by post-processing the estimated image. The approach of Strekalovskiy et al. [20] relies
on a truncated quadratic penalization of the gradient of the estimate. They derive a heuristic
algorithm, based on a convex relaxation of the functional they propose, and extract the contours
by thresholding. The first author and her collaborators [25, 26] proposed a new formulation of the
AT functional in the framework of Discrete Calculus. They obtain true 1-dimensional contours.
But since they still have to deal with the ε parameter, their algorithm is particularly slow.

Contributions and outline. In order to jointly identify the edges and to restore the image,
our contributions are 1) to define a theoretical framework making the bridge between a discrete
version of the Mumford–Shah model, called D-MS, and the objective function handled by the
Proximal Alternating Linearized Minimization (PALM) algorithm [27], 2) to provide a new algo-
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Figure 1: Continuous versus discrete formulations of the MS model (4). In the discrete setting,
when D = [D>h , D

>
v ]> models the concatenation of the horizontal and vertical difference operators,

the values of Dhu (resp. Dvu) live on the horizontal (resp. vertical) midgrid, and so does e. K
and {ê = 1} are delineated in red.

rithmic scheme, called Semi-Linearized Proximal Alternating Minimization (SL-PAM), aiming to
combine one step of PAM [28] with one step of PALM [27], allowing to relax condition of a stepsize
parameter, and having convergence guarantees. The convergence proof is derived. The efficiency
of the proposed algorithmic scheme is illustrated on several restoration examples: Gaussian de-
noising, Poisson denoising, color denoising and image restoration. Comparisons to state-of-the-art
approaches are performed on the color denoising example.

Our general D-MS model is defined in Section 2. PALM formulated to solve D-MS is defined in
Section 3.1 as well as additional assumptions under the D-MS objective function allowing to ensure
convergence. The proposed SL-PAM is derived in Section 3.2. Experiments and comparisons are
provided in Section 4.

2 Generalized Discrete Mumford–Shah model

The Discrete-MS (D-MS) model proposed in this work is expressed as follows.

Problem 1. Let z ∈ RLM and A ∈ RLM×NM . Let L(A·, z) : RNM → (−∞,+∞], be a fidelity term
to the data z, and R : R|E| → (−∞,+∞], be a regularizer term which enforces sparsity and acts as
a length term, both being proper and lower semicontinuous functions. Let S : R|E| ×RNM → R, be
the coupling term, which penalizes strong variations, except at edges, be a C1 function and such
that ∇S is Lipschitz continuous on bounded subsets of R|E|×RNM . The general D-MS-like problem
we aim to solve reads:

minimize
u∈RNM ,e∈R|E|

Ψ(u, e) := L(Au, z) + βS
(
e,u

)
+ λR(e). (5)

The specificities of this problem compared to the state-of-the-art formulation are :

• the generalization of the data-term, allowing to deal with linear degradation and not re-
stricted to the Euclidean norm. For instance, L(Au, z) =

∑
m ‖Amum − zm‖2 suited to

data corrupted by both a linear degradation and white Gaussian noise [29, 30, 31]. A choice
L(u, z) =

∑
m ‖um − zm‖1 fits data degraded with impulse noise [31], while the choice of the

Kullback-Leibler divergence L(u, z) =
∑

m DKL(um, zm) is employed for data corrupted by
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Poisson noise [32, 33].

• the possibility to deal with a large panel of regularization terms R. One of the most popular
choice of R encountered in the literature is RAT (e) = ε‖De‖22 + 1

4ε‖e‖
2
2 , with ε > 0 and

D being a difference operator, proposed by Ambrosio and Tortorelli [34, 35]. Such a contour
penalization makes (4) Γ-converge to the MS functional as ε tends to 0. As a matter of fact,
large values of ε lead to thick contours but help to detect the set of discontinuities. Then, as
ε tends to 0, the penalization of ‖e‖22 increases and enforces e to become sparser and sparser,
and thus contours becoming thinner and thinner. Numerically, however, it is not possible for
ε to be arbitrarily small since it controls the thickness of the contours.

• the flexibility in the coupling term S. Since the MS functional is originally designed with
a L2-penalization of the gradient of u, a common choice for the coupling term is S

(
e,u

)
=∑

m ‖(1−e)�Dum‖22 [35, 36], where D is defined as in (4). However, in [37], Shah proposed to
replace the L2-norm with a coupling term involving the L1-norm such as S

(
e,u

)
=
∑

m ‖(1−
e) � (1 − e) � Dum‖1, combined with the AT regularizer. Alicandro et al. [38] proved the
Γ-convergence of this particular functional to a variant of the MS functional, involving the
Cantor part of Du. Experiments show that this TV-like coupling term is more robust to image
gradients, but eliminates high-frequency content. More recently, Li et al. [24] suggested to

set ep = {e(q)
p }q∈B, where B is a box centered at the pixel p, as weights of the dissimilarity

D
(q)
p um = um,p − um,p+q. The regularization functional is thus a nonlocal TV of the form

S(e,u) =
∑

m

∑
p∈E

√
Σq∈Be

p
q(D

(q)
p um)2. In this approach, the contours are not obtained

from e but by thresholding u, leading to less accurate estimation.

We can remark that, when dealing with multivariate images, contours can be defined either
as similar edges through all the components, or as distinct edges, leading to a path K that may
be different for all the components. In order to facilitate the understanding and the reading, we
formulate Problem 1 in the context of similar edges. But Problem 1, as well as the following
results, can be similarly derived for distinct edges considering e ∈ R|E|×M . When M = 1, both
formalisms are equivalent.

3 Algorithms

In order to solve Problem 1, we propose two algorithmic strategies. The first one relies on the
PALM algorithm [27], and requires additional assumptions on the function involved in order to
ensure convergence guarantees. The second is an alternative to PALM, that we called SL-PAM,
allowing to relax some of the assumptions made on the coupling term.
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3.1 PALM for D-MS

The following Algorithm 1, which is an instance of the generic algorithm PALM [27], is tailored to
solving Problem 1:

Algorithm 1 (PALM) for solving D-MS (5)

Set u[0] ∈ RNM and e[0] ∈ R|E|.
For k ∈ N

Set γ > 1 and ck = γν(e[k]).

u[k+1] ∈ prox 1
ck
L(A·,z)

(
u[k] − 1

ck
∇uS

(
e[k],u[k]

))
Set δ > 1 and dk = δε(u[k+1]).

e[k+1] ∈ prox 1
dk
λR

(
e[k] − 1

dk
∇eS

(
e[k],u[k+1]

))
It consists in updating alternately the image u[k] and the edges e[k] by means of proximity

operator steps, defined as,

(∀x ∈ RN ) proxf (x) = argmin
y∈RN

1

2
‖y − x‖22 + f(y), (6)

where f : RN → (−∞,+∞] denotes a proper and lower semi-continuous function. Algorithm 1
converges under some assumptions listed in the following proposition:

Proposition 1. The sequence (u[k], e[k])k∈N generated by Algorithm 1 converges to a critical point
of Problem 1 if

i) the updating steps of u[k+1] and e[k+1] have closed form expressions;

ii) the sequence (u[k], e[k])k∈N generated by Algorithm 1 is bounded;

iii) L(A·, z), R and Ψ(·, ·) are bounded below;

iv) Ψ is a Kurdyka- Lojasiewicz function [27, Definition 2.3];

v) ∇uS and ∇eS are globally Lipschitz continuous with moduli ν
(
e
)

and ε
(
u
)

respectively, and

for all k ∈ N, ν
(
e[k]
)

and ε
(
u[k]
)

are bounded by strictly positive constants.

Proof. The form of Problem 1 and the assumptions in Proposition 1 fit the requirements for
convergence of the PALM algorithm described in [27, Assumptions A-B, Theorem 3.1].

From the practical point of view, the major challenge regarding the assumptions in Proposi-
tion 1 is to ensure that L (resp. R) has a closed form expression for the associated proximity
operator. A large number of functions having a closed form expression of their proximal maps is
listed in [12, 39, 40] going from `p-norm to gamma divergences. The main difficulty is due to the
linear operator A. Indeed, the proximity operator of a function composed with a linear operator
has a closed form expression if
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• L(·, z) = ‖ · −z‖22 and A∗A is invertible [39], leading to (∀γ > 0)(∀u ∈ RNM ),

γL(A·, z)u = (I + γA∗A)−1(u + γA∗z); (7)

• A models a frame (or a semi-orthogonal) linear operator [13], i.e. A∗A = µI with µ > 0, taking
the form (∀γ > 0)(∀u ∈ RNM ),

proxγL(A·,z)(u) = u + µ−1A∗(proxγµL (Au)−Au). (8)

Moreover, assumption ii) in Proposition 1 holds in several scenarios, such as when the functions
L(A., z) and R have bounded level sets. The reader could refer to [28, Remark 5] and [27, Remark
3.4] for more details about this boundedness assumption.

3.2 Proposed SL-PAM

We propose an alternative to PALM, where the update u[k+1] exploits the linearization and where
the update e[k+1] relies on the proximity operator of the function βS(·,u[k+1])+λR. The resulting
Semi-Linearized PAM (SL-PAM) is described in Algorithm 2, that does not require ε(u[k]) to be
bounded and allows us to choose larger dk.

Algorithm 2 (SL-PAM) algorithm for solving D-MS (5)

Set u[0] ∈ RNM and e[0] ∈ R|E|.
For k ∈ N

Set γ > 1 and ck = γν(e[k]).

u[k+1] ∈ prox 1
ck
L(A·,z)

(
u[k] − 1

ck
∇uS

(
e[k],u[k]

))
Set dk > 0.

e[k+1] ∈ prox 1
dk

(
λR+βS(·,u[k+1])

) (e[k]
)

The convergence of Algorithm 2 is ensured under Assumption 1.

Assumption 1. i) The updating steps of u[k+1] and e[k+1] have closed form expressions;

ii) Ψ is a Kurdyka- Lojasiewicz function;

iii) L(A·, z), R and Ψ are bounded below;

iv) ∇uS is globally Lipschitz continuous with moduli ν(e[k]) k ∈ N and there exists ν−, ν+ > 0
such that ν− ≤ ν(e[k]) ≤ ν+;

v) (dk)k∈N is a positive sequence such that the stepsizes dk belong to (d−, d+), for some positive
d− ≤ d+.

Proposition 2. Under Assumption 1, and let assume that the sequence {x[k]}k∈N = {(u[k], e[k])}k∈N
generated by Algorithm 2 is bounded. Then

i) Σ∞k=1‖x[k+1] − x[k]‖ <∞;
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ii) {x[k]}k∈N converges to a critical point (u∗, e∗) of Ψ.

The proof relies on the general proof recipe given in [27], divided into three main steps: (i)
sufficient decrease property, (ii) subgradient lower bound for the iterate gap, and (iii) Kurdyka-
 Lojasiewicz property. These three steps are detailed thereafter, where we set x[k] = (u[k], e[k]).

3.2.1 Sufficient decrease property

The objective is to find ρ1 > 0 such that

(∀k ∈ N)
ρ1

2
‖x[k+1] − x[k]‖2 ≤ Ψ(x[k])−Ψ(x[k+1]). (9)

This results relies on the following Lemma.

Lemma 1. Let {x[k]}k∈N be a sequence generated by Algorithm 2. Then

i) the sequence {Ψ(x[k])}k∈N is nonincreasing, and in particular

(∀k ∈ N)
ρ1

2
‖x[k+1] − x[k]‖2 ≤ Ψ(x[k])−Ψ(x[k+1]),

where ρ1 = min{(γ − 1)ν−, d−};

ii) Σ∞k=0‖x[k+1] − x[k]‖2 <∞ and lim
k→∞
‖x[k+1] − x[k]‖ = 0.

The proof is given in Appendix 6.1.

3.2.2 A subgradient lower bound for the iterates gap

This step relies on Lemma 2.

Lemma 2. Assume that the sequence {x[k]}k∈N generated by Algorithm 2 is bounded. Define

Aku := ck−1(u[k−1] − u[k]) +∇uS
(
e[k],u[k]

)
−∇uS

(
e[k−1],u[k−1]

)
, (10)

Ake := dk−1(e[k−1] − e[k]). (11)

Then (Aku, A
k
e) ∈ ∂Ψ(u[k], e[k]) and there exists M > 0 such that

‖(Aku, Ake)‖ ≤ ‖Aku‖+ ‖Ake‖ ≤ 2(M + ρ2)‖x[k−1] − x[k]‖ (12)

where ρ2 = γkν
+ + d+.

The proof is given in Appendix 6.2.
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3.2.3 Kurdyka- Lojasiewicz property

This step relies on the assumption that Ψ is a Kurdyka- Lojasiewicz (KL) function, and proves
that the minimizing sequence {x[k]}k∈N is a Cauchy sequence. According to [27, Theorem 5.1],
if Ψ: RNM → R is a proper, lower semi-continuous (l.s.c.), and semi-algebraic function, then it
satisfies the KL property at any point of domΨ. The proof of this step is the same as for [27,
Lemma 3.6].

3.3 Additional comments on Assumption 1-i)

The conditions to obtain a closed form expression for the update of u[k+1] are similar to the ones
detailed in Section 3.1. The tedious part concerns the update of e[k+1] for which a closed form
expression is provided in Proposition 3 for specific choices of S and R.

Proposition 3. Let D : R|E|×N . For every (u, e) ∈ RNM × R|E|, we assume that

S(e,u) = ‖(1− e)�Du‖22, (13)

and that R is a separable function such that

(∀e=(ei)1≤i≤|E|) R(e) =

|E|∑
i=1

σi(ei), (14)

where σi :R|E|→ (−∞; +∞], and whose proximity operator has a closed form expression. At the

iteration k ∈ N, with dk > 0, β > 0 and λ > 0, the updating step on e[k+1] in Algorithm 2 is
equivalent to, for all i ∈ {1, ..., |E|},

e
[k+1]
i ∈ prox λσi

2β(Du[k+1])2
i
+dk

β(Du[k+1]
)2
i

+
dke

[k]
i

2

β
(
Du[k+1]

)2
i

+ dk
2

. (15)

The proof is given in Appendix 6.4.

4 Experiments

Based on the results derived in the previous section, it is now possible to provide efficient algorith-
mic schemes in order to deal with D-MS, with the possibility of having R modeling a nonsmooth
penalization. To the best of our knowledge, this has never been proposed before.

4.1 Specific choice of D-MS

In our experiments we suggest to choose

S(e,u) = ‖(1− e)�Du‖22, (16)

9



which is C1 and has Lipschitz continuous gradients. The regularization term is chosen as

R(e) =

|E|∑
i=1

max
{
|ei|p,

|ei|q

4ε

}
, (17)

where ε > 0, whose particular cases are:

• the `0-pseudo norm when p = 0 and ε→∞;

• the `1-norm when p = 1 and ε→∞;

• the quadratic `1 penalization, p = 1, q = 2 and 0 < ε < 1, derived in [1], which aims to model
the quadratic behavior of 1

4ε‖.‖
2
2 for small ε and enforce sparsity.

This function is bounded below, proper, l.s.c., separable, and semi-algebraic (see [27, Example
5.3]). The associated proximity operator of the quadratic `1-penalization is:

Proposition 4. For every η ∈ R,

prox
τ max

{
|.|, |.|

2

4ε

} (η) = sign(η) max
{

0,min
[
|η| − τ,max

(
4ε,

|η|
τ
2ε + 1

)]}
. (18)

The choice of L(·, z) will be dependent on the restoration problem considered and it will be
given in each subsection.

4.2 Gray-scale white Gaussian noise denoising

Experimental setting – For this first set of experiments, we assume that Dα models white
Gaussian noise with standard deviation denoted α > 0. In the context of gray-scale denoising,
M = 1, L = N and A1 ≡ IN . As commonly used in image restoration when Gaussian noise is
involved, the data-term is a squared Euclidean norm, i.e. L(u, z) = 1

2‖u− z‖22, which is bounded
below, proper, l.s.c and semi-algebraic [27]. By definition of Ψ and since the finite sum of semi-
algebraic functions is semi-algebraic, we deduce that Ψ satisfies Assumptions 1-i), ii), iii). In
addition, this particular choice of A implies that L(A., z) satisfies the boundedness assumption in
Proposition 2.

Let us consider the ground truth image in Figure 2 (left), where the contours are obtained
by binarization and computation of the gradients. In this section, we evaluate the denoising and
contour detection performances obtained with the proposed D-MS performed with Algorithm 2,
when the input corresponds to Figure 2 with an additive white Gaussian noise of standard deviation
α ∈ {0.22, 0.42}.

Regarding the algorithms step-size, we set ck and dk constant. We first compute ν
(
e[k]
)
,

assuming that e is not equal to 1 everywhere. This assumption is not restrictive in general, since
its means that we do not have contours everywhere. We have ν

(
e[k]
)

= β(1−e[k])2‖D‖2 ≤ β‖D‖2,

where the upper bound is attained when e[k] ≡ 0. Hence, we choose, for both PALM and SL-PAM,

10



ck ≡ 1.01 ∗ β‖D‖2. In the other hand, ε(u[k+1]) = β(1 − e)‖Du[k+1]‖2 ≤ β(1 − e)‖D‖2‖u[k+1]‖2.
If we normalize z, then ∀k ∈ N, ‖u[k]‖2 ≤ 1. Thus we set, for PALM, dk ≡ 1.01 ∗ β‖D‖2. Finally,
for SL-PAM, we set dk ≡ 1.01 ∗ β‖D‖2 ∗ 10−3. This choice will be discussed below (see Figure 5).

We compare the results obtained with various regularization terms: the `0 pseudo-norm, the
`1 norm, and the quadratic-`1 penalization.

Figure 2: Ground truth image of size 256× 256 with real contours.

Performances evaluation – The performances are evaluated in terms of signal-to-noise-ratio
(SNR), Structural Similarity Index (SSIM) [41], and Jaccard index [42], for β varying in [1, 50]
and λ varying in [0.0001, 0.9]. The resulting scores are summarized in a map as the one displayed
in Figure 3.

We performe the experiments on a 3.2GHz Intel Core i5 CPU, and stop when |(Ψ(u[k+1], e[k+1])−
Ψ(u[k], e[k])|<10−4.

The best performance with the quadratic-`1 penalization, according to each measure (SNR,
SSIM and Jaccard index), is summarized in Table 1. It is displayed in Figure 6 for α = 0.22 and in
Figure 7 for α = 0.42. From Figures 6 and 7, we first observe that the SNR and the SSIM lead to
similar denoising and segmentation results. For small α, they do not allow us to extract a sparse
1-dimensional contour, while the result obtained from Jaccard index provides the best denoising
and segmentation result. However, for strong noise, the SNR and the SSIM both outperform the
Jaccard index for denoising purpose, with satisfying denoising and contour detection results.

Choice of R – From Tables 1 and 2, we notice that the best performances are obtained using
either the `1 norm or the quadratic-`1 penalization. Since the latest provides the best segmentation
results, we propose in the sequel to use the quadratic-`1 penalization together with the SSIM or
Jaccard index, depending on the noise level.

Table 1: SL-PAM performances according to the SNR, the SSIM, and the Jaccard index.
α `0 `1 `1,Q

0.
22

SNR 39.67 41.79 41.57
SSIM 0.991 0.995 0.994
Jaccard index 0.557 0.596 0.605

0.
42

SNR 30.19 30.6 30.58
SSIM 0.929 0.933 0.935
Jaccard index 0.396 0.475 0.494

Sensitivity to the initialization – We propose to evaluate the robustness of the proposed

11
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Figure 3: Example of score map with corresponding results on the right. Contours are delineated
in red. The red circle on the map represents the best score. We can observe that larger β leads to
a smoother estimate and that a larger value of λ implies less contours.

Table 2: SL-PAM computational times.
α `0 `1 `1,Q

0.
22

SNR 0.46s 1.98s 3.24s
SSIM 0.93s 1.74s 3.24s
Jaccard index 0.06s 0.09s 0.49s

0.
42

SNR 0.91s 1.67s 4.50s
SSIM 0.83s 1.54s 2.86s
Jaccard index 0.15s 0.25s 0.59s

algorithmic scheme with respect to the initialization. We compare different choices for u[0]: u[0] =
z, u[0] ∼ N (0, IN ) and u[0] ≡ ζu ∈ [min(z),max(z)]. Similarly, we propose to deal with either
e[0] ≡ {0, 1}|E|, e[0] ∼ B(0.5) or e[0] ≡ ζe ∈ (0, 1). We show the mean convergence results for 10
realizations in Figure 4, and we observe that the best initializing pair for Gaussian denoising is
(u[0], e[0]) = (z, 1|E|). Notice that, whatever the initialization, all the run converge to the same
value, which leads to a robust estimation, despite the resolution of a nonconvex problem.

SL-PAM versus PALM – We now compare in Figure 5 the performances of the PALM algorithm
1, to those of our SL-PAM algorithm 2, with decreasing dk ∈ 1.01∗β‖D‖2∗{1, 10−1, 10−2, 10−3},
and a quadratic-`1 regularization. We first notice that PALM and SL-PAM converge to the same
minimum. In particular, they converge the same way when the descent parameters ck and dk are
identically chosen for both of them. Nonetheless, SL-PAM outperforms the PALM algorithm for
dk set such that δ < 1.

4.3 Color denoising and comparisons with state-of-the-art methods

In this section, we propose to perform RGB color image denoising involving white Gaussian noise.
In this case, we consider u = (uR,uG,uB), M = 3 and e ∈ R|E| common to the three components of
u. We compare the proposed method with state-of-the-art approaches, including TV minimization,
the MS relaxation proposed in [20] (disabling the GPU implementation for computational time
comparison) and the Discrete AT formulation [25]. Since the TV minimization does not allow us

12



e[0] ≡ 0|E| e[0] ≡ 1|E|

e[0] ≡ ζe ∈ (0, 1) e[0] ∼ B(0.5)

Figure 4: Performances of SL-PAM with different initial values of u[0] and e[0], when the input is
the image in Fig. 2, degraded by additive white Gaussian noise with standard deviation α = 0.22.
SL-PAM is not sensitive to the initalization.

Figure 5: Comparison of PALM and SL-PAM convergence rates, with fixed ck identically choosen
for both of them, and decreasing dk for SL-PAM, when the input data is the image in Fig. 2,
degraded by additive white Gaussian noise with standard deviantion α = 0.22 (left), and α = 0.42

(right).

to directly extract the contours, we compute them by thresholding the gradient of the estimate,
and we do not include this method in the scores’ comparison. The best results according to SNR
and SSIM are presented in Figures 8. We do not provide the Jaccard index since the real contour
in this case is hard to define.

Despite good SNR and SSIM results, we observe the typical staircasing artifacts using the TV
minimization, which are visually disturbing and unpleasant, while the other ones provide piecewise
smooth results, and poor contour detection. The D-MS allows us to extract 1-dimensional contours
similar to those obtained with the MS relaxation and the Discrete AT, but with some additional
contours detected, especially in the necklace or around the lips. Regarding computational time, D-
MS outperforms the Discrete AT method. The MS relaxation relies on an very efficient algorithm
(even with the CPU implementation), but without convergence guarantees.
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Data SNR SSIM Jaccard

SNR = 30.61 dB SNR = 41.57 dB SNR = 41.57 dB SNR = 37.48 dB
SSIM = 0.681 SSIM = 0.994 SSIM = 0.994 SSIM = 0.944

Jaccard = 0.323 Jaccard = 0.323 Jaccard = 0.605
Time = 3.24s Time = 3.24s Time = 0.49s

Figure 6: Denoising with SL-PAM and the quadratic-`1 penalization on the image in Fig. 2,
degraded by additive white Gaussian noise with standard deviation α = 0.22. The best results for
each score are presented.

4.4 Poisson denoising and image restoration

Since Problem 1 allows us to deal with more complex data fidelity terms, we propose here to
illustrate the results obtained when (i) data are corrupted by Poisson noise and (ii) data are
degraded by both a blur and Gaussian noise. Since the experiments in Section 4 showed that
the proposed approach outperforms the TV minimization, we do not present TV results in the
following.

Poisson denoising – The choice of the Kullback-Leibler divergence L(u, z) =
∑

m DKL(um, zm)
fits data corrupted by Poisson noise [43, 32, 33]. This data-term is bounded below and l.s.c. Thus
Ψ satisfies Assumption 1-i), ii), iii).

We first consider the image in Figure 2 corrupted by a Poisson noise with parameter σ = 100.
The best results according to (SNR,SSIM,Jaccard index) using the quadratic-`1 regularization are
shown in Figure 9. In Figure 10, we present the Poisson denoising results of a real image with
the quadratic-`1 regularization. The performances are comparable with Gaussian denoising, with
higher computational time, due to the use of the Kullback-Leibler divergence.

14



Data SNR SSIM Jaccard

SNR = 18.68 dB SNR = 30.58 dB SNR = 30.43 dB SNR = 27.45 dB
SSIM = 0.173 SSIM = 0.928 SSIM = 0.935 SSIM = 0.568

Jaccard = 0.361 Jaccard = 0.380 Jaccard = 0.494
Time = 4.5s Time = 2.86s Time = 0.59s

Figure 7: Denoising with SL-PAM and the quadratic-`1 penalization on the image in Fig. 2,
degraded by additive white Gaussian noise with standard deviation α = 0.42. The best results for
each score are presented.

Image restoration – We propose to discuss the potential of the SL-PAM algorithm for image
restoration tasks. In presence of blur, the data fidelity term depends on the blur matrix A, and
reads: L(Au, z) = 1

2‖Au−z‖22. In our experiments, we consider a Gaussian blur of size Q×Q and
standard deviation σ, and additive white Gaussian noise, with standard deviation α. This type of
degradation allows us to ensure the boundedness assumption in Proposition 2. Figure 11 displays
the restoration results on the image in Figure 2, when α = 0.2 and Q = 7. Restoration results
on a real image are presented in Figure 12, with α = 0.2 and Q = 7. Except for the best results
according to the SNR, we observe that the method is able to detect sharp contours and to recover
thin structures.

5 Conclusion

In this work, we propose 1) a new discrete formulation of the MS functional, and 2) a new proximal
algorithm, with proved convergence, to solve it. Numerical experiments show that the proposed
method is able to detect sharp contours and to reconstruct piecewise smooth approximations with
low computational cost, and that it is competitive with state-of-the-art approaches. The influence
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Ground truth Data TV Convex relaxation Discret AT [25] quadratic-`1

SNR = 15.90 dB SNR = 24.67 dB SNR = 22.42 dB SNR = 23.43 dB SNR = 23.75 dB
SSIM = 0.594 SSIM = 0.944 SSIM = 0.855 SSIM = 0.867 SSIM = 0.877

Time = 29.25 s Time = 1.92s Time = 1992s Time = 57.84s

Figure 8: Comparison according to the SNR of color denoising performances, involving white
Gaussian noise with standard deviation α = 0.1, with state-of-the-art methods, from left to right:
TV, the MS relaxation [20], the Discrete AT [25], and the proposed method. Regarding the scores
comparison, we do not include the TV minimization since it does not perform joint restoration
and segmentation.
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Data SNR SSIM Jaccard

SNR = 10.20 dB SNR = 34.32 dB SNR = 33.84 dB SNR = 31.46 dB
SSIM = 0.222 SSIM = 0.942 SSIM = 0.972 SSIM = 0.741

Jaccard = 0.488 Jaccard = 0.528 Jaccard = 0.588
Time = 22.47s Time = 41.89s Time = 5.04s

Figure 9: Denoising with quadratic-`1 penalization with SL-PAM on the image in Fig. 2 degraded
by Poisson noise with parameter α = 100. The best results for each score are presented.

of the choice of the regularization parameters with respect to different performance measures is
also provided. The proposed SL-PAM algorithm could be useful for other tasks, e.g. nonnegative
matrix factorization.

6 Appendix

6.1 Proof of Lemma 1

(i) Let k ≥ 0. Applying [27, Lemma 3.2] with h = S
(
e[k], ·

)
, σ = L and t = ck we obtain:

S
(
e[k],u[k+1]

)
+ L(u[k+1])

≤S
(
e[k],u[k]

)
+ L(u[k])− 1

2
(ck − ν(e[k]))‖u[k+1] − u[k]‖2 (19)

≤S
(
e[k],u[k]

)
+ L(u[k])− 1

2
(γk − 1)ν(e[k])‖u[k+1] − u[k]‖2 (20)

with ck = γkν(e[k]). On the other hand, the update of e[k+1] can be written

e[k+1] ∈ argmin
e

dk
2
‖e− e[k]‖22 + λR(e) + βS(e,u[k+1]), (21)

leading to

λR(e[k+1]) + βS
(
e[k+1],u[k+1]

)
+
dk
2
‖e[k+1] − e[k]‖2

17



Data SNR SSIM Jaccard

SNR = 11.13 dB SNR = 22.89 dB SNR = 22.89 dB SNR = 22.72 dB
SSIM = 0.538 SSIM = 0.748 SSIM = 0.748 SSIM = 0.720

Jaccard = 0.319 Jaccard = 0.319 Jaccard = 0.371
Time = 6.16s Time = 6.16s Time = 10.99s

Figure 10: Denoising with quadratic-`1 penalization with SL-PAM on a muscle image degraded by
Poisson noise with parameter α = 100. The best results for each score are presented.

≤ λR(e[k]) + βS
(
e[k],u[k]

)
(22)

Hence, combining (20) and (22), we get

Ψ(x[k])−Ψ(x[k+1]) (23)

= L(u[k]) + βS
(
e[k],u[k]

)
+ λR(e[k])

− L(u[k+1])− βS
(
e[k+1],u[k+1]

)
− λR(e[k+1]) (24)

≥ L(u[k+1]) + βS
(
e[k],u[k+1]

)
+ λR(e[k])

− L(u[k+1])− βS
(
e[k],u[k+1]

)
− λR(e[k])

+
1

2
(γk − 1)ν(e[k])‖u[k+1] − u[k]‖2 +

dk
2
‖e[k+1] − e[k]‖2 (25)

≥ ρ1

2
‖x[k+1] − x[k]‖2. (26)

Combined with Assumptions 1-iv), v), it proves the result.

(ii) Since Ψ is bounded from below, Ψ converges to some Ψ ∈ R. Let now N ∈ N∗. It follows
from (i) that

N−1∑
k=0

‖x[k+1] − x[k]‖2 ≤ 2

ρ1
(Ψ(x[0])−Ψ(x[N ])) (27)

≤ 2

ρ1
(Ψ(x[0])−Ψ) <∞. (28)

We conclude taking the limit as N →∞.
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Data SNR SSIM Jaccard

SNR = 23.90 dB SNR = 24.72 dB SNR = 24.04 dB SNR = 24.12 dB
SSIM = 0.059 SSIM = 0.765 SSIM = 0.941 SSIM = 0.860

Jaccard = 0.061 Jaccard = 0.146 Jaccard = 0.188
Time = 3.5s Time = 17.54s Time = 8.67s

Figure 11: Image restoration with quadratic-`1 penalization on the image in Fig. 2 degraded by
additive white Gaussian noise with standard deviation α = 0.2, and a Gaussian blurring filter of
size 7×7 and standard deviation σ = 2. The best results for each score are presented.

6.2 Proof of Lemma 2

Writing down the optimality conditions for the iterative steps of Algorithm 2, we get:

β∇uS
(
e[k−1],u[k−1]

)
+ ck−1(u[k] − u[k−1]) + υ[k] = 0, (29)

where υ[k] ∈ ∂L(u[k]), and

β∇eS
(
e[k],u[k]

)
+ dk−1(e[k] − e[k−1]) + ξ[k] = 0, (30)

where ξ[k] ∈ ∂(λR(e[k])).

Subdifferential property [27, Proposition 2.1] allows us to state that β∇uS
(
e[k],u[k]

)
+ υ[k] ∈

∂uΨ(u[k], e[k]) and β∇eS
(
e[k],u[k]

)
+ ξ[k] ∈ ∂eΨ(u[k], e[k]), and hence (Aku, A

k
e) ∈ ∂Ψ(u[k], e[k]).

Combining Assumption 1-iii) with the assumption of Lipschitz continuity of ∇S, and following
arguments in [27, Lemma 3.4], we can prove that there exists M > 0 such that

‖Aku‖ ≤ (2M + γkν
+)‖x[k] − x[k−1]‖. (31)

On the other hand,
‖Ake‖ = dk−1‖e[k−1] − e[k]‖ ≤ d+‖x[k] − x[k−1]‖. (32)

Summing up (31) and (32) we obtain the desired result with ρ2 = γkν
+ + d+.
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Data SNR SSIM Jaccard

SNR = 18.10 dB SNR = 19.47 dB SNR = 19.34 dB SNR = 19.34 dB
SSIM = 0.394 SSIM = 0.578 SSIM = 0.589 SSIM = 0.573

Jaccard = 0.135 Jaccard = 0.135 Jaccard = 0.141
Time = 150.2s Time = 42.1s Time = 121.9s

Figure 12: Image restoration with quadratic-`1 penalization on the image in Fig. 2 degraded by
additive white Gaussian noise with standard deviation α = 0.2 and a Gaussian blurring filter of
size 7×7 and standard deviation σ = 2. The best results for each score are presented.

6.3 Proof of Proposition 4

Let η ∈ R. One has:

prox
τ max

{
|.|, .2

4ε

}(η) = argmin
x

1

2
‖x− η‖22 + τ max

{
|x|, x

2

4ε

}
(33)

One must split cases:

• If |x| ≤ 4ε, then max
{
|x|, x

2

4ε

}
= |x| and we have:

prox
τ max

{
|.|, .2

4ε

} (η) = argmin
x

1

2
‖x− η‖22 + τ |x| (34)

= proxτ |.| (η) (35)

= sign(η) max(0, |η| − τ) (36)

when |η| ≤ 4ε+ τ .

• If |x| > 4ε, then max
{
|x|, x

2

4ε

}
=
x2

4ε
:

prox
τ max

{
|.|, .2

4ε

} (η) = argmin
x

1

2
‖x− η‖22 + τ

x2

4ε
(37)

= prox τ
2ε
x2 (η) (38)
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= sign(η)
|η|

τ
2ε + 1

(39)

when |η| > 4ε+ 2τ .

Finally, we obtain

prox
τ max

{
|.|, .2

4ε

} (η) =


sign(η) max(0, |η| − τ) if |η| < 4ε+ τ,

4ε if 4ε+ τ ≤ |η| ≤ 4ε+ 2τ,

sign(η)
|η|

τ
2ε + 1

if |η| > 4ε+ 2τ.

(40)

6.4 Proof of Proposition 3

For every i ∈ {1, ..., |E|},

= argmin
e

λ

dk
σi(e) +

β

dk
(1− e)2

(
Du[k+1]

)2
i

+
1

2

(
e− e

[k]
i

)2
(41)

= argmin
e

λ

dk
σi(e) +

β

dk
(1− 2e + e2)

(
Du[k+1]

)2
i

(42)

+
1

2

[
e2 − 2ee

[k]
i +

(
e

[k]
i

)2]
(43)

= argmin
e

λ

2β
(
Du[k+1]

)2
i

+ dk
σi(e) (44)

+
1

2

e−
β
(
Du[k+1]

)2
i

+
dke

[k]
i

2

βgi + dk
2

2

, (45)

which concludes the proof.
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