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We demonstrate the existence of a collective excitation branch in the pair-breaking continuum of
superfluid Fermi gases and BCS superconductors, as suggested by Littlewood and Varma in 1982.
We analytically continue the RPA equation on the collective mode energy through its branch cut
associated with the continuum, and obtain the full complex dispersion relation, including in the
strong coupling regime. For ∆/µ > 1.210 (very close to unitarity in a superfluid Fermi gas), where
∆ is the order parameter and µ the chemical potential, the real part of the branch is wholly within
the band gap [0, 2∆]. In the long wavelength limit, the branch varies quadratically with the wave
number, with a complex effective mass that we compute analytically. This contradicts the result of
Littlewood and Varma that prevailed so far.

Introduction – Systems with a macroscopic coherence
between pairs of fermions exhibit in their excitation spec-
trum a pair-breaking continuum, whose energy is greater
than twice the order parameter ∆. This is particularly
the case of superconductors and cold gases of spin-1/2
fermionic atoms. The collective behavior of these sys-
tems at energies lower than 2∆ is known: it is charac-
terized by a bosonic excitation branch, of phononic start
in neutral gases and plasmonic start in superconductors
with Coulomb interactions [1]. The dispersion relation
of this branch was calculated in the Random Phase Ap-
proximation (RPA) [2, 3] and its existence experimentally
confirmed [4–6].

Conversely, the existence of a collective mode inside
the pair-breaking continuum remains an open question
that attracts a strong interest because of an analogy often
suggested with the Higgs mode in field theory [7]. We
identify two major shortcomings [8–10] in the existing
theoretical treatment: (i) it is based on a particle-hole
symmetry hypothesis and neglects the coupling between
the amplitude and phase of the order parameter, which
restricts it to the weak coupling regime, (ii) it is limited to
long wavelengths. These shortcomings are prejudicial as
they raise doubts about the very existence of this second
collective mode [11], in particular at zero wave vector
[12].

In this article, we clarify considerably the description
of the collective modes of the continuum. By analytically
continuing the order parameter Gaussian fluctuations
matrix we reveal a pole in the propagator of ∆ below
the branch cut associated to the continuum, for positive
chemical potential µ > 0 and non-zero wave number only.
We obtain the full dispersion relation of this mode com-
pletely accounting for amplitude-phase coupling. This
allows us to deal with the strong coupling regime; in par-
ticular we show that the real part of the branch is fully
in the band gap [0, 2∆] when ∆ > 1.210µ. In the weak

coupling and long wavelength limit, we disagree sharply
with the prediction commonly accepted in the literature
[10], in particular for the damping rate that, we find, has
a quadratic start at low wave number, rather than a lin-
ear one. All our predictions are based on the RPA for
contact interactions. This theory describes qualitatively
well both cold Fermi gases in the BEC-BCS crossover
and BCS superconductors (assuming that Coulomb in-
teractions have no effect on the amplitude modes [10]),
and is a prerequisite for any more realistic description of
interactions.

The branch that we find describes the collective behav-
ior of the pairs following an excitation of their internal
degrees of freedom; its frequency is thus not trivially the
edge of the continuum 2∆/~, as for the “Higgs oscillation”
observed [12–18] at zero wave vector. It is observable in
a superfluid Fermi gas using momentum-resolved Bragg
spectroscopy, in the same way that Ref. [6] observed the
Bogoliubov-Anderson mode. The pole in the analytic
continuation results in a broadened peak at energy above
2∆ in the order parameter response function.

Fluctuations of the order parameter – We consider a
homogeneous system of fermions of mass m, spin σ =↑
/ ↓ and chemical potential µ, with attractive contact in-
teractions. At zero temperature T = 0, the fluctuations
of the order parameter ∆ around its equilibrium value
admit eigenmodes, which are the collective modes of the
system. Expanding to second order in amplitude δλ and
phase δθ fluctuations yields the Gaussian action [19]

S = S0 +

∫
dω
∫

d3q
(
−i∆δθ∗ δλ∗

)
M(ω,q)

(
i∆δθ
δλ

)
(1)

The fluctuation matrix M is symmetric and gives access
to the propagator of the ∆ field through a mere inversion.
The equation giving the energy zq of the collective modes
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as a function of their wave vector q is then

detM(zq,q) = 0 (2)

Since the order parameter ∆ describes pair condensation,
the coefficients of its fluctuation matrix contain an inte-
gral over the internal wave vector k of the pairs, involving
ξk = ~2k2/2m − µ and Ek =

√
ξ2
k + ∆2, the dispersion

relations of free fermions and BCS quasiparticles respec-
tively, as well as the energy Ekq = Ek+q/2 + Ek−q/2 of
a pair of quasiparticles of total wave vector q:

M±±(z,q) =

∫
d3k

2

[
(W±kq)2

z − Ekq
−

(W±kq)2

z + Ekq
+

1

Ek

]
(3)

M+−(z,q) =

∫
d3k

2
W+

kqW
−
kq

[
1

z − Ekq
+

1

z + Ekq

]
(4)

where the indices + and − refer to phase and am-
plitude fluctuations respectively and we introduce the
notation (W±kq)2 = (Ek+q/2Ek−q/2 + ξk+q/2ξk−q/2 ±
∆2)/(2Ek+q/2Ek−q/2).1 Note that Eq. (2) is found also
in the RPA [1, 20, 21], by a diagrammatic resummation
[3] or by linearization of the time-dependent BCS equa-
tions [22].

Since Eq. (2) is invariant under the change of z to −z,
we can restrict ourselves to Re z ≥ 0. The matrixM then
has a branch cut for z ∈ Cq = {Ekq,k ∈ R3}, originating
in the terms having z−Ekq in the denominator in (3 - 4).
As such, Eq (2) has at most one solution for fixed q: it
is real, below the continuum ~ωB,q < min Cq, and corre-
sponds to the bosonic Anderson-Bogoliubov branch [3].
This is not what we are looking for here. The collective
modes we want to characterize are inside the continuum,
that is, a priori for Re zq > min Cq. As in the textbook
problem of a single atom coupled to the electromagnetic
field [23], the correct way to obtain a solution to (2) in the
presence of the continuum is to analytically continue the
matrixM through its branch cut [8]. This is an opportu-
nity for us to recall the beautiful prescription of Nozières
[24, 25] on how to analytically continue a function of the
form

f(z) =

∫ +∞

−∞
dω

ρ(ω)

z − ω
, (5)

analytic for Im z 6= 0 but exhibiting a branch cut on the
real axis, wherever the spectral density ρ(ω) is non-zero.
The non-analytic contribution to Mσσ′ , with σ, σ′ = ±,
is naturally cast into this form with the spectral densities

ρσσ′(ω,q) =

∫
d3k

2
Wσ

kqW
σ′

kqδ(~ω − Ekq) (6)

1 withW+
kq > 0 for all k andW−kq > 0 if and only if k2 > 2mµ/~2−

q2/4.
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FIG. 1: As a function of k, the interval between minuEkq
(reached for u = 0, solid line on the left) and maxuEkq
(reached for u = ±1, dashed line on the left) determines an
energy band (gray area) in which the resonance ~ω = Ekq oc-
curs for at least one value of u = cos(k,q) in [−1, 1]. For fixed
ω, the integration interval over k in (6) is read horizontally;
as a function of ω, its structure undergoes 3 transitions in ω1,
ω2 and ω3 (dotted lines), which result in angular points in the
spectral density, here the example of ρ−− (red solid line on
the right). In this figure, µ/∆ = 1 and ~q/

√
2m∆ = 0.5.

The analytic continuation of f from the upper half-
complex plane to the lower half-plane, through an in-
terval ]ω1, ω2[ of the branch cut where ρ is analytic, is
simply

f↓(z) =

{
f(z) if Im z > 0

f(z)− 2iπρ(z) if Im z ≤ 0
(7)

where z 7→ ρ(z) is the analytic continuation of ρ for
Im z 6= 0. This is readily demonstrated by writing
ρ(ω) = (ρ(ω)− ρ(z)) + ρ(z) in (5).

To carry out the analytic continuation of M , we then
study the function ω 7→ ρσσ′ first on the real axis, and
search for singularities. For that, we calculate the inte-
gral over k in (6) in a spherical frame of axis q. The in-
tegral over the azimuthal angle disappears by rotational
invariance and we use the Dirac δ to perform the inte-
gral over the polar angle parametrized by u = k · q/kq.
The remaining integral over k is then restricted to a do-
main represented on Fig. 1, whose form depends on ω.
When µ > 0 the BCS excitation branch has its minimum
in k0 =

√
2mµ/~2; then, for 0 < q < 2k0 the function

ω 7→ ρσσ′ has three angular points related to a config-
uration change of the integration domain, which divides
the real axis in four distinct sectors (see Fig. 1). (i) For
ω < ω1 = 2∆/~, the resonance condition ~ω = Ekq is
never satisfied, so that ρσσ′(ω < ω1) = 0. This sector
is outside the branch cut Cq. (ii) For ω1 < ω < ω2 the
resonance is reached for k ∈ [k1, k2], with

~k1,2

(2m)1/2
=

√
µ− ~2q2

8m
±
√
~2ω2 − 4∆2

2
(8)

(iii) For ω2 < ω < ω3, the resonance occurs for k ∈
[k1, k

′
1]∪[k′2, k2] where k1 and k2 are still given by (8) and
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k′1 and k′2 are the real positive solutions of the polynomial
equations

ω̃4−4ω̃2P (k̃, q̃)+4R2(k̃, q̃) = 0 and ω̃2−2P (k̃, q̃) > 0
(9)

with the polynomials P (x, y) = (x2 + y2/4 − µ/∆)2 +
x2y2 + 1 and R(x, y) = 2xy(x2 + y2/4 − µ/∆) and the
notations k̃2 = ~2k2/2m∆, q̃2 = ~2q2/2m∆ and ω̃ =
~ω/∆. (iv) For ω > ω3, solutions k1 and k′1 are no longer
real, and the integration interval is reduced to [k′2, k2].

After this study the extension of ρσσ′ to the complex
plane is straightforward: we simply replace ω by z in
Eqs. (8–9) giving the integration boundaries. ρσσ′(z) is
then given by a line integral between complex bound-
aries. Now, using the Nozières prescription (7), we ob-
tain an analytical continuation of M , where the angular
points ω1, ω2 and ω3 become the branching points of
three branch cuts.
Numeric study at arbitrary q – We find a solution

zq = ~ωq− i~Γq/2 to Eq. (2) in the analytic continuation
through the interval ]ω1, ω2[, which we identify as the en-
ergy of the “Littlewood-Varma” collective mode we seek.
The dispersion relation q 7→ ωq is represented on Fig. 2
for different pairing strength µ/∆ = 1/10, 10 and 100
(1/kFa ' 0.5, −1.5 and −3.0 in a cold spin-1/2 Fermi gas
with kF the Fermi wave number and a the s-wave scat-
tering length). Departing quadratically from its limit 2∆
in q = 0, the branch goes through a maximum of height
proportional to ∆ in the weak coupling regime ∆ � µ,
then plunges into the band gap [0, 2∆] at q = qsup. In the
strong coupling regime ∆ > µ, the domain [0, qsup] where
the energy of the branch is greater than 2∆ shrinks, un-
til its disappearance for µ/∆ ' 0.8267. Conversely, the
damping rate Γq is a strictly increasing function of q,
also starting quadratically from its zero limit in q = 0.
This is in direct contrast with the commonly accepted
prediction in the literature of a damping rate linear in q
[10].

The branch disappears in q = 2k0 (hence before the
Bogolioubov-Anderson branch hits the continuum [3])
when the interval [ω1, ω2] through which our analytic
continuation passes is reduced to one point. Last, we
exclude the existence of a branch of energy greater than
2
√

∆2 + µ2 in the BEC regime where µ < 0 and where
the three singularities of ρσσ′ gather, ω1 = ω2 = ω3 =
2
√

(|µ|+ ~2q2/2m)2 + ∆2/~.
Long wavelength limit – In this limit, we obtain several

analytical results that corroborate our numerical study.
We deal separately with the singular case q = 0, where
the matrix M(z,q = 0) is expressible in terms of the
complete elliptic functions of the first and third kind,
K(k) and Π(n, k) [26]:

thζM̃++(z, 0) =
M̃−−(z, 0)

thζ
= −π(2et)1/2[F (ζ)− F (−ζ)]

M̃+−(z, 0) = −π(2et)1/2[F (ζ) + F (−ζ)] (10)
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FIG. 2: Frequency (top) and damping rate (bottom) of the
gapped continuum collective modes as functions of their wave
number q for µ/∆ = 100 (1/kFa ' −3.0, black solid curve),
µ/∆ = 10 (1/kFa ' −1.5, red solid curve) and µ/∆ = 0.1
(1/kFa ' 0.5, blue dashed-dotted curve). The dotted curves
show the behavior quadratic in q at low q obtained analyti-
cally from Eqs. (12)-(16).

with variables defined by µ/∆ = sh t and z = 2∆ ch ζ, ζ
constrained by Re ζ ≥ 0 and −π/2 ≤ Im ζ ≤ π/2, and 2

F (ζ)=(sh t+sh ζ)[Π(et+ζ , iet)−Π(−et−ζ , iet)]+K(iet) ch ζ
(11)

Eq. (2) then reads simply F (ζ)F (−ζ) = 0. The only so-
lution to this equation, even after analytic continuation3

of F (ζ), is ζ = ±iπ/2 (that is z = 0): this is the start-
ing point of the phononic Anderson-Bogoliubov branch.
Thus, the limit ω = 2∆/~ in q = 0 of the continuum
collective branch is not a solution of (2): F (ζ) has a fi-
nite non-zero limit F (0) when ζ → 0 with Im z > 0. For
q = 0, there is therefore no collective mode of angular
frequency 2∆/~, and the oscillations observed [15–18] at
this frequency correspond simply to the edge of the pair-
breaking continuum, as understood by Refs. [9, 12, 13].
Here the collective behavior manifests itself rather in the
power-law damping of the oscillations [13, 14].

For small but not zero q, and µ > 0, the resonance
sector between ~ω1 = 2∆ and ~ω2 = 2∆+µ~2q2/2m∆+
O(q4) in Fig. 1 has a width O(q2) in energy, and O(q) in
the wave number k around the minimum k0 =

√
2mµ/~2

of the BCS branch. We then set

zq = 2∆ + Z
~2q2

4m∗
+O(q3) and k = k0 +Kq (12)

2 Using the spectral densities ρσσ′ (ω), we express Mσσ′ (z, 0) as
an integral over ω. The change of variable ~ω = ∆(x2 + 1/x2),
0 < x < 1 leads to elliptic integrals (see §8.110 of [26]).

3 The branch cut [2∆,+∞[ (respectively [2
√

∆2 + µ2,+∞[) in z
translates into a branch [0,+∞[ in ζ for µ > 0 (respectively
[−t,+∞[ for µ < 0).
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with m∗ = m∆/2µ the effective mass of the BCS branch
near its minimum. We thus focus our attention on the
domain of wave vectors where the denominator in (3,4)
is of order q2:

z − Ekq = z − 2∆− ~2q2

m∗
(K2 + u2/4) +O(q3) (13)

Now, using the expansions of the numerator amplitudes
W+

kq ∼ 1 and W−kq ∼ ~2k0qK/m∆, and performing the
integral over the angular variable u before that over K
we obtain without difficulty the analytic expressions for
Im z > 0:

M̃++(z,q)=− iπ2k∆

q
asin

1√
Z

+O(1) (14)

M̃−−(z,q)=− iπ2µq

2∆k∆

[√
Z − 1 + Z asin

1√
Z

]
+O(q2)(15)

where we introduce k∆ =
√

2m∆/~2 and the dimension-
less integrals M̃σσ′ = Mσσ′∆/k3

∆. Since the divergence of
M++ of order 1/q is compensated by the suppression of
M−− linear in q, the finite non-zero limit (10) of M+− in
q = 0, ~ω = 2∆ suffices. All that remains is to insert ex-
pressions (10,14,15) in the RPA equation (2) and analyt-
ically continue the productM++M−− through its branch
cut [0, 1] in Z (corresponding to the segment [~ω1, ~ω2]
in z) with the substitutions asin 1/

√
Z → π − asin 1/

√
Z

and
√
Z − 1 → −

√
Z − 1 to obtain an explicit yet tran-

scendental equation on Z:[
π − asin

1√
Z

] [
Z

(
π − asin

1√
Z

)
−
√
Z − 1

]
+

2

π4µ

(
~2

2m

)3

M2
+−(2∆, 0) = 0 (16)

The continuation is for the entire lower half-plane, in-
cluding Re z < 2∆ (ReZ < 0). The unique solution
of Eq. (16) faithfully reproduces the coefficient of q2 in
Fig. 2; it is represented in Fig. 3 as a function of µ/∆.
The real part changes sign for µ/∆ ' 0.8267, which con-
firms the existence of a branch of energy below 2∆ in the
strong coupling regime. One should not overinterpret the
existence of solutions below 2∆: they remain separated
from the segment [0, 2∆] of the real axis by a branch
cut, so that their effect is felt near the real axis only at
energies greater than 2∆.

In the weak coupling limit µ/∆→ +∞, M+− tends to
zero because of particle-hole symmetry k ↔ k0 − k, so
the RPA equation reduces to M++M−− = 0 for q 6= 0,
and Eq. (16) to its Z-dependent first line. As suggested in
[10], the Littlewood-Varma collective mode is then a pure
amplitude mode (a root of M−−), while the phononic
phase mode is given by M++ = 0. However, we obtain a
very different dispersion relation

zq
q→0
'

µ/∆→+∞
2∆+(0.2369− 0.2956i)

~2q2

4m∗∆
(17)
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FIG. 3: The real (black solid curve) and imaginary (red solid
curve) parts of the dimensionless coefficient Z of q2 in the en-
ergy zq of the “Littlewood-Varma” mode are represented as
functions of µ/∆. The dashed curves give the asymptotic
expansion in the weak coupling limit µ/∆ → +∞: Z =

Z0− 2Z2
0

Z0−1

(
∆
πµ

)2

ln2 ∆
8µe +. . . with Z0 = 0.2369−0.2956i . The

inset shows the rescaled coefficient Z̃ = Zµ/∆ = Zm/2m∗

which admits the finite real limit Z̃∞ = −16K2(i)/π4 '
−0.2823 in the strong coupling limit µ/∆ → 0+, its imagi-
nary part tending to zero like −12K(i)(µ/∆)1/2/π3.

where even the real part of Z differs from the 2/3 of [10].
Our calculation shows the limits of the usual analogy

with Higgs modes in field theory: although it is also a
gapped amplitude mode in the weak coupling limit, the
collective mode, here immersed in a continuum, is ob-
tained only after a non-perturbative treatment of the cou-
pling to fermionic degrees of freedom; impossible there-
fore to obtain it from a low-energy effective action as
suggested sometimes [7, 27].
Observability in the response functions – The collective

branch that we predict appears in the response functions
of the system. We show in Fig. 4 the example of the
order parameter response function |N/detM |(ω+ i0+,q)
with N = (M++ + M−−)/2 + M+−, obtained from the
amplitude and phase response functions by the change
of variable δ∆ = δλ + ∆iδθ. At low q, when the mode
is weakly damped, the branch obtained in the analytic
continuation remarkably predicts the position of a broad-
ened peak in the response function. We note with great
interest that Ref. [6] observes such a peak in its mea-
surements of the density-density response function. This
may well be our collective branch, particularly if the q2

dependence of the peak location at low q was confirmed.

Conclusion – We have established on solid theoretical
foundations the existence of a collective branch inside
the pair-breaking continuum of a BCS superconductor
and superfluid Fermi gas, and we have fully character-
ized its dispersion relation and damping rate in the RPA.
We thus give a clear and rigorous answer to an old con-
densed matter problem. Our branch appears clearly in
the response functions of the system and can therefore
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FIG. 4: The intensity of the pairing field response function
is represented in colors and arbitrary units as a function of q
and ω in the BCS regime (µ/∆ = 10). The top of a peak in
the function (white dashed curve) is well reproduced at low q
by the collective branch of the analytic continuation (red solid
curve and white solid curve for its quadratic approximation
(12)).

be measured in a cold atom gas by Bragg spectroscopy.
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