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A PROJECTION BASED REGULARIZED APPROXIMATION
METHOD FOR ILL-POSED OPERATOR EQUATIONS

L. GRAMMONT , M.T. NAIR

Abstract: Problem of solving Fredholm integral equations of the first kind is a pro-

totype of an ill-posed problem of the form T (x) = y, where T is a compact opera-

tor between Hilbert spaces. Regularizations and discretizations of such equations are

necessary for obtaining stable approximate solutions for such problems. For ill-posed

integral equations, a quadrature based collocation method has been considered by Nair

(2012) for obtaining discrete regularized approximations. As a generalization of that,

a projection collocation method has been studied in 2016. In both of the considered

methods, the operator T is approximate by a sequence of finite rank operators. In the

present paper, the authors choose to approximate TT ∗ by finite rank operators. It is

found that in some cases, the derived estimates are improvements over the previous

estmiates.

Keywords: First kind Fredholm integral equations, Inverse problems, Ill-posed prob-

lems, Projection, Tikhonov regularization.

1. Introduction

Let X and Y be Hilbert spaces and T : X → Y be a bounded linear operator with

its range R(T ) not closed in Y . We would like to obtain stable approximate solutions

for the ill-posed operator equation

(1) Tx = y,

where y ∈ Y . We know that (see [4]), for x ∈ X,

T ∗Tx = T ∗y ⇐⇒ ‖Tx− y‖ = inf
u∈X
‖Tu− y‖

⇐⇒ y ∈ D(T †) := R(T ) +R(T )⊥,

where T † : D(T †) → X denotes the Moore-Penrose inverse of T . Recall that T † is a

closed operator, and it is continuous iff R(T ) is closed. It is also known that (see [4])

for y ∈ D(T †), x† := T †y is the unique element in X such that

‖x†‖ = inf{‖x‖ : T ∗Tx = T ∗y},

and it is known as the generalized solution of (1).
1
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Since R(T ) is not closed, T † is not continuous, and hence, ỹ close to y ∈ D(T †)

does not imply that ỹ ∈ D(T †) and even if ỹ ∈ D(T †), T †ỹ need not be close to

T †y. Therefore, it is necessary to use a regularized version of (1) for obtaining stable

approximate solutions. In this note we shall use the Tikhonov regularization of (1) and

then consider a projection method for obtaining approximations for the regularized

solutions under the assumption that y ∈ D(T †).

We may recall that the Tikhonov regularization of (1) is the equation

(2) (T ∗T + αI)xα = T ∗y

for α > 0 (cf. [1, 2, 4]). Clearly, since T ∗T is a positive self-adjoint operator, (2) is

uniquely solvable for every y ∈ Y and

y 7→ xα := (T ∗T + αI)−1T ∗y

is a continuous linear operator. Further, using spectral theory, it can be shown that

(see [4]) if y ∈ D(T †), then

(3) ‖x† − xα‖ = α‖(T ∗T + αI)−1x†‖ → 0 as α→ 0.

It is also known that (see [4]) xα ∈ X is the unique element at which the function

x 7→ ‖Tx− y‖2 + α‖x‖2

is minimized.

A prototype of the ill-posed equation (1) is the Fredholm integral equation of the

first kind,

(4)

∫ 1

0

k(s, t)x(t)dt = y(s), s ∈ [0, 1],

where kernel k(·, ·) is such that the map T defined by

(5) (Tx)(s) :=

∫ 1

0

k(s, t)x(t)dt, s ∈ [0, 1],

is a compact operator between appropriate Hilbert spaces of functions on [0, 1].

Discrete regularization methods associated with Tikhonov regularization consist in

approximating the operator T ∗T by An, a finite rank operator. In [5], the operator

T in (5 ) is from L2[0, 1] into itself with a continuous kernel. In this case, T ∗T is

approximated by T ∗nTn, where Tn : L2[0, 1]→ Kn
w is defined by

Tnx = (T (x)(t1), T (x)(t2), . . . , T (x)(tn)), x ∈ L2[0, 1],

corresponding to a partition t1, . . . , tn of [a, b], and Kn
w = Kn with a weighted inner

product with weights wi, i = 1, . . . , n. Here, K is the field R of real numbers or the

field C of complex numbers.
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In [6], the author consideres a more general discrete regularization method for the

equation (1), approximating T ∗ by T ∗nTn, and obtained the approximatioin for xα as

xα,n and the corresponding estmate for the discretization error as

(6) ‖xα − uα,n‖ ≤
‖T ∗T − T ∗nTn‖

α
‖x† − xα‖.

The methods in [6] includes Tn = πnT , where (πn) is a sequence of finite rank operators

which converges to the identity operator pointwise, so that

‖T ∗T − T ∗nTn‖ ≤ (‖T‖+ ‖Tn‖)‖(I − πn)T‖ → 0 as n→∞

and also the method in [5], proving T ∗nTn = FnT , where Fn is the Nyström approxima-

tion of T ∗ associated to a convergent quadrature rule, namely,

Fn(x)(s) =
n∑
i=1

wjk(tj, s)x(tj).

As ‖xα − x†‖ is the regularization error and can not be improved, our aim in this

paper is to improve the discretization error ‖xα − uα,n‖. For this purpose, we propose

a projection based regularized approximation xα,n for which the an estimate for the

error ‖xα − xα,n‖ can be better than the estimates in (6)(see Theorem 3).

It is also to be mentioned that the assumption y ∈ R(T ) is used for the error analysis

in [5] and [6]. In this paper, we derive the error estimates using the general case of

y ∈ D(T †) = R(T ) +R(T )⊥.

2. The Projection Method

Let xα be as in equation (2). Since A := TT ∗ : Y → Y is also positive self-adjoint

operator, for every α > 0, the operator A+ αI : Y → Y is bijective and (A+ αI)−1 is

a bpunded operator. Let vα be the unique the elelement in Y satisfying the equation

(7) (A+ αI)vα = y.

It can be seen that

(8) xα := T ∗vα.

Motivated by this observation, we consider the following method for obtaining approx-

imations for xα for each α > 0:

For each n ∈ N, let πn : Y → Y be a continuous linear projection operator. In

applications each πn may be of finite rank. Let vα,n be the Kantorovich approximation

(cf. [4]) vα, that is, vα,n satisfies the equation

(πnA+ αI)vα,n = y
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uniquely. Of course, one has to impose some condition on (πn) so that that the above

equation is uniquely solvable. We assume throughout that

‖(I − πn)A‖ → 0 as n→∞

which will ensure the unique solvability of (10). In this regard we state the following

theorem which is helpful in deriving the error estimate as well. Its proof is also given

for the sake of completion of exposition.

Proposition 1. For α > 0, let n ∈ N be such that ‖(I − πn)A‖ ≤ α
2
. Then we have

the following.

(i) I − (I − πn)A(A+ αI)−1 is bijective and

‖
(
I − (I − πn)A(A+ αI)−1

)−1 ‖ ≤ 2.

(ii) πnA+ αI is bijective and

‖(πnA+ αI)−1‖ ≤ 2

α
.

Proof. (i) Since A is self-adjoint, ‖(A+ αI)−1‖ ≤ 1

α
. Now, note that

πnA+ αI = (A+ αI)− (I − πn)A

= [I − (I − πn)A(A+ αI)−1](A+ αI).

Since

‖(I − πn)A(A+ αI)−1‖ ≤ ‖(I − πn)A‖ ‖(A+ αI)−1‖ ≤ 1

2
.

Hence, by a well known result from functional analysis (see e.g. [3], pp 317), the

operator I−(I−πn)A(A+αI)−1 is bijective and ‖ (I − (I − πn)A(A+ αI)−1)
−1 ‖ ≤ 2.

(ii) By (i), the operator [I − (I − πn)A(A + αI)−1](A + αI), that is, the operator

πnA+ αI is bijective and

(πnA+ αI)−1 = (A+ αI)−1[I − (I − πn)A(A+ αI)−1]−1.

Thus,

‖(πnA+ αI)−1‖ ≤ ‖(A+ αI)−1‖ ‖[I − (I − πn)A(A+ αI)−1]−1‖ ≤ 2

α
.

This completes the proof. �

For α > 0, let nα ∈ N be such that

(9) ‖(I − πn)A‖ ≤ α

2
∀n ≥ nα.
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Then, by Proposition 1, equation

(10) (πnA+ αI)vα,n = y

is uniquely solvable for all n ≥ nα. Motivated by the relation (8), we define

xα,n := T ∗vα,n, n ≥ nα.

As already mentioned, in practice, the projections πn may be of finite rank. However,

the solution vα,n of equation (10) is in an infinite dimensional space. So, in order to

obtain vα,n using a system in a finite dimensional setting, we observe first that

vα,n =
1

α
(y − πnAvα,n).

Now, applying πnA on both sides of (10), we obtain

(πnA+ αI)πnAvα,n = πnAy

so that

wα,n := πnAvα,n

belongs to R(πn), and

(11) (πnA+ αI)wα,n = πnAy.

Thus we have the following algorithm.

Algorithm:

(1) Solve equation (11): (πnA+ αI)wα,n = πnAy.

(2) Compute: vα,n =
1

α
(y − wα,n).

(3) Compute: xα,n := T ∗vα,n.

We observe that for defining xα,n, it is required to solve the equation (11), that is,

(πnA+ αI)wα,n = πnAy,

and its unique solvability is assured under condition (9). However, if πn are orthogonal

projections, then the solvability of (11) is ensured without using condition (9), and

thus xα,n := T ∗vα,n are well defined for all n ∈ N. This is a simple consequence of the

following general result.

Theorem 2. Let α > 0 and let (πn) is a squence of orthogonal projections on Y . Then

for every (n, ψ) ∈ N× Y , there exists a unique ϕα,n ∈ Y such that

(πnA+ αI)ϕα,n = πnψ.
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Proof. Note that for (n, ψ) ∈ N× Y and ϕ ∈ Y ,

(πnA+ αI)ϕ = πnψ ⇐⇒ (πnAπn + αI)ϕ = πnψ.

Note that, since πn is an orthogonal projection and A is a positive self adjoint operator,

the operator πnAπn is also a positive self adjoint operator. Hence, for each α > 0,

πnAπn + αI bijective and has continuous inverse. This completes the proof. �

Next theroem gives an error estimate which is the main result of this paper. We

shall be using the following easily verifiable reations:

(12) (TT ∗ + αI)−1T = T (T ∗T + αI)−1,

(13) (T ∗T + αI)−1T ∗ = T ∗(TT ∗ + αI)−1.

Also, we shall make use of the estimates (see [4], pp 156)

(14) ‖(T ∗T + αI)−1T ∗T‖ ≤ 1, ‖(TT ∗ + αI)−1T‖ ≤ 1

2
√
α
.

Theorem 3. For α > 0, let n ∈ N be such that ‖(I − πn)A‖ ≤ α
2
and let y ∈ Y . Let

vα,n ∈ Y be as in (10) and let xα,n := T ∗vα,n. Suppose y ∈ D(T †). Then

‖xα − xα,n‖ ≤
1√
α

min{ε(1)α,n, ε(2)α,n, ε(3)α,n},

where

ε(1)α,n := ‖(I − πn)T‖ ‖x†‖,

ε(2)α,n :=
1

2
√
α
‖(I − πn)A‖ ‖x†‖

ε(3)α,n :=
1

α
‖(A− πnA)T‖‖x† − xα‖.

Further, we have the following.

(i) If x† = T ∗u for some u ∈ Y , then

‖xα − xα,n‖ ≤
‖A− πnA‖ ‖u‖√

α
.

(ii) If x† = T ∗Tv for some v ∈ X, then

‖xα − xα,n‖ ≤
‖(A− πnA)T‖ ‖v‖√

α
.

Proof. Let vα be as in (8). Then we have

vα − vα,n = (A+ αI)−1[I − (I − πn)A(A+ αI)−1]−1(πnA− A)(A+ αI)−1y
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so that

xα − xα,n = T ∗(A+ αI)−1[I − (I − πn)A(A+ αI)−1]−1(πnA− A)(A+ αI)−1y.

By Proposition 1, we have ‖[I−(I−πn)A(A+αI)−1]−1‖ ≤ 2. Hence, using the relation

T ∗(A+ αI)−1 = (T ∗T + αI)−1T ∗ and the estimate (14), we have

‖xα − xα,n‖ ≤
εn(y)√
α
,

where

εn(y) := ‖(I − πn)A(A+ αI)−1y‖.
Since y ∈ D(T †), we have T ∗y = T ∗Tx†. Hence,

A(A+ αI)−1y = (A+ αI)−1Ay = (TT ∗ + αI)−1TT ∗Tx†.

Now, using the relations (12) snf (13), we obtain

εn(y) = ‖(I − πn)(TT ∗ + αI)−1TT ∗Tx†‖
= ‖(I − πn)T (T ∗T + αI)−1T ∗Tx†‖
= ‖(I − πn)A(A+ αI)−1Tx†‖
= ‖(A− πnA)T (T ∗T + αI)−1x†‖

Hence, from (14) and (3), we obtain

‖(I − πn)T (T ∗T + αI)−1T ∗Tx†‖ ≤ ‖(I − πn)T‖ ‖x†‖

‖(I − πn)A(A+ αI)−1Tx†‖ ≤ ‖(I − πn)A‖ ‖x†‖
2
√
α

‖(A− πnA)T (T ∗T + αI)−1x†‖ ≤ ‖(A− πnA)T‖
α

‖x† − xα‖.

Therefore,

εn(y) ≤ min{ε(1)α,n, ε(2)α,n, ε(3)α,n},
where

ε(1)α,n := ‖(I − πn)T‖ ‖x†‖,

ε(2)α,n :=
1

2
√
α
‖(I − πn)A‖ ‖x†‖

ε(3)α,n :=
1

α
‖(A− πnA)T‖‖x† − xα‖.

Thus, we obtain

‖xα − xα,n‖ ≤
εn(y)√
α
≤ 1√

α
min{ε(1)α,n, ε(2)α,n, ε(3)α,n}.
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If, in addition, x† = T ∗u for some u ∈ Y , then we have

εn(y) = ‖(πnT − T )(T ∗T + αI)−1T ∗Tx†‖
= ‖(πnA− A)(A+ αI)−1Au‖
= ‖πnA− A‖ ‖u‖.

Hence, we obtain (i). In case x† = T ∗Tv for some v ∈ X, then

εn(y) = ‖(πnT − T )(T ∗T + αI)−1T ∗Tx†‖
= ‖(πnT − T )(T ∗T + αI)−1T ∗TT ∗Tv‖
= ‖(πnTT ∗ − TT ∗)(TT ∗ + αI)−1TT ∗Tv‖
= ‖(πnA− A)T‖ ‖v‖

Thus, the proof is complete. �

Corollary 4. Let y ∈ D(T †). For each n ∈ N, let αn > 0 be such that

max{2‖A− πnA‖, ‖(A− πnA)T‖2/3} ≤ αn.

Then the following are true.

(i) For each n ∈ N, there exists a unique vn ∈ Y such that

(πnA+ αnI)vn = y.

(ii) For each n ∈ N, if xn ∈ X is such that (T ∗T +αnI)xn = T ∗y and if x̃n := T ∗vn,

then

‖x† − x̃n‖ ≤ 2‖x† − xn‖.

Proof. (i) Since ‖A − πnA‖ ≤ αn/2, by Proposition 1, there exists a unique vn ∈ Y
such that (πnA+ αI)vn = y.

(ii) By Theorem 3 and by the defiition of αn, we obtain

‖xn − x̃n‖ ≤
‖(πnA− A)T‖

α
3/2
n

‖x† − xn‖ ≤ ‖x† − xn‖.

Hence,

‖x† − x̃n‖ ≤ ‖x† − xn‖+ ‖xn − x̃n‖ ≤ 2‖x† − xn‖.
Thus, the proof is compete. �

Corollary 5. For each n ∈ N, let xn and x̃n be as in Corollary 4.

(1) If y ∈ D(T †) and x† ∈ R(T ∗), then ‖x† − x̃n‖ = O(
√
αn).

(2) If y ∈ D(T †) and x† ∈ R(T ∗T ), then ‖x† − x̃n‖ = O(αn).



A PROJECTION BASED REGULARIZED APPROXIMATION METHOD 9

3. Comparison with previous methods

Let us recall the approximation uα,n of (1) proposed in [6], namely,

uα,n = T ∗nwα,n,

where Tn = πnT and wα,n is the solution of

(TnT
∗
n + αI)wα,n = πny,

This approximation includes some of the existing projection based methods but also a

quadrature based collocation method considered by Nair in [5]. In this connection, we

make a few observations.

(a) Recall the estimate (6) proved in [6], namely,

‖xα − uα,n‖ ≤
‖T ∗T − T ∗nTn‖

α
‖x† − xα‖.

If πn is an orthogonal projection, then T ∗nTn = T ∗πnT so that

‖T ∗T − T ∗nTn‖ = ‖T ∗(I − πn)T‖ ≤ ‖(I − πn)T‖2

. Thus, we have

‖xα − uα,n‖ ≤
(
‖(I − πn)T‖√

α

)2

‖x† − xα‖.

Thus, if πn are orthogonal projections, then the estimate

(15) ‖xα − xα,n‖ ≤
1√
α
‖(I − πn)T‖ ‖x†‖

results from Theorem 3 is not as good as that in (6) whenever

‖(I − πn)T‖√
α

< 1.

If πn are not orthogonal, then with Tn = πnT , the (6) is

‖xα − uα,n‖ ≤
‖T ∗T − T ∗π∗nπnT‖

α
‖x† − xα‖.

Thus, in this case, the estimate in (15) is better than (6) if and only if

‖(I − πn)T‖√
α

‖x†‖ ≤ ‖T
∗T − T ∗π∗nπnT‖

α
‖x† − xα‖

if and only if

‖(I − πn)T‖ ‖x†‖ ≤ ‖T
∗T − T ∗π∗nπnT‖√

α
‖x† − xα‖.

Therefore, the it is possible that the the estimate in (15) is of better order than (6).

This is the case if

αn := ‖T ∗T − T ∗π∗nπnT‖2 and ‖(I − πn)T‖ = o(‖x† − xαn‖).



10 L. GRAMMONT , M.T. NAIR

The rate ‖(I − πn)T‖ = o(‖x† − xαn‖) is possible if x† is less smooth.

(b) Another estimates from Theorem 3 is

(16) ‖xα − xα,n‖ ≤
1

α3/2
‖(A− πnA)T‖‖x† − xα‖.

This case estimate is better than (6) if and only if

1

α3/2
‖(A− πnA)T‖‖x† − xα‖ ≤

‖T ∗T − T ∗π∗nπnT‖
α

‖x† − xα‖

if and only if
1√
α
‖(A− πnA)T‖ ≤ ‖T ∗T − T ∗π∗nπnT‖

if and only if
1√
α
‖(I − πn)T (T ∗T )‖ ≤ ‖T ∗(I − π∗nπn)T‖.

This can happen if for example ‖(I − πn)T (T ∗T )‖ = o(‖T ∗(I − π∗nπn)T‖) and if we

take
√
αn ≥

‖(I − πn)T (T ∗T )‖
‖T ∗(I − π∗nπn)T‖

.
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