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Abstract

The well-known Baker-Campbell-Hausdorff theorem in Lie theory says that the

logarithm of a noncommutative product eXeY can be expressed in terms of iterated

commutators of X and Y . This paper provides a gentle introduction to Écalle’s mould

calculus and shows how it allows for a short proof of the above result, together with

the classical Dynkin explicit formula [Dy47] for the logarithm, as well as another for-

mula recently obtained by T. Kimura [Ki17] for the product of exponentials itself. We

also analyse the relation between the two formulas and indicate their mould calculus

generalization to a product of more exponentials.
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1 Introduction

Let A be a noncommutative associative algebra with unit. In the associative algebra

A [[t]] of all power series in an indeterminate t with coefficients in A , one can take the

exponential of any series without constant term in t and the logarithm of any series with

constant term 1A . In this context, the famous Baker-Campbell-Hausdorff theorem (BCH

theorem, for short) can be phrased as

log(etXetY ) ∈ Lie(X,Y )[[t]] for any X,Y ∈ A , (1)

where Lie(X,Y ) is the Lie subalgebra of A generated byX and Y , i.e. the smallest subspace

which contains X and Y and is stable under commutator (see e.g. [BF12] and references

therein).

In fact, using the notation [A,B] or adAB for a commutator AB −BA, one has

log(etXetY ) = t(X + Y ) +
t2

2
[X,Y ] +

t3

12
([X, [X,Y ]] + [Y, [Y,X]])−

t4

24
[Y, [X, [X,Y ]]] + · · · ,

where the coefficient of each power of t can be written in terms of nested commutators

involving X and Y only, and there is a remarkable explicit formula due to Dynkin [Dy47]:

log(eXeY ) =
∑ (−1)k−1

k

tσ

σ

[Xp1Y q1 · · ·XpkY qk ]

p1!q1! · · · pk!qk!
(2)

with summation over all k ∈ N∗ and (p1, q1), · · · , (pk, qk) ∈ N × N \ {(0, 0)}, where σ :=

p1 + q1 + · · ·+ pk + qk and [Xp1Y q1 · · ·XpkY qk ] := adp1X adq1Y · · · adpkX adqk−1
Y Y if qk ≥ 1 and

adp1X adq1Y · · · adpk−1
X X if qk = 0 (in which case pk ≥ 1). Of course, the contribution of the

terms with qk ≥ 2, or with pk ≥ 2 and qk = 0, is zero.

Our aim is to revisit the BCH theorem and the Dynkin formula in the light of Écalle’s

so-called “mould calculus”. We will show how mould calculus allows one to prove these

results with little effort, as well as an interesting formula which was recently obtained by

T. Kimura [Ki17] in relation to the BCH theorem and the Zassenhaus formula and reads

etXetY = 1A +

∞∑

r=1

∞∑

n1,...,nr=1

1

nr(nr + nr−1) · · · (nr + · · · + n1)
Dn1 · · ·Dnr

with Dn :=
tn

(n− 1)!
adn−1

X (X + Y ) for each n ≥ 1. (3)

We will also show how formula (3) and a little knowledge of mould calculus immediately

imply the BCH theorem, and how the results can be generalized to a product of more than

two exponentials. It seems hard to prove all these facts using the methods of [Ki17], which

rely on a lot of explicit combinatorial computations, whereas almost no computation is

needed when using a tiny part of mould machinery. In a nutshell, the point is that the

rational coefficients in (3) make up a “symmetral mould”—in fact, a very classical one in
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mould calculus—and that Dynkin’s formula (2) is in essence a typical “Lie mould expan-

sion” involving an “alternal” mould; we will explain in due time what “mould expansions”,

“symmetrality” and “alternality” are and how they relate to the Lie theory. We will also

define a new operation in mould calculus, which gives the relation between the rational

coefficients appearing in formulas (2) and (3).

Mould calculus was set up by J. Écalle in the 1980s as part of his resurgence theory

([Ec81], [Ec92]). Originally, Écalle developed resurgence theory as a tool to study analytic

classification problems within dynamical system theory, first for one-dimensional holomor-

phic germs, and then for much larger classes of discrete dynamical systems or vector fields,

allowing him to tackle the Dulac conjecture about the finiteness of limit cycles of planar

analytic vector fields. It soon turned out that resurgence theory has its own merits not only

in mathematics but also in physics. For example, quantum resurgence was developed by

Écalle himself ([Ec84]) and Voros ([Vo83]) to study the spectrum of Schrödinger operators,

and it was continued by Pham and his collaborators (e.g. [DDP93]) as an essential aspect

of exact WKB analysis. The mathematical side of resurgence theory has evolved steadily

([Sa16]). Recently, resurgence theory has been at the forefront in such diverse topics in

mathematical physics as BPS spectrum ([GMN13]), supersymmetric field theories ([BD16]

and references therein), resurgence and quantization as Riemann-Hilbert correspondence

([Ko17]), topological strings and Gromov-Witten theory ([CMS17], [CSV17]), to name a

few.

Resurgence theory deals with analytic functions which enjoy a certain property of an-

alytic continuation (“endlessly continuable functions”), which form an algebra, and which

typically appear as Borel transforms of certain divergent series. In his systematic study of

the singularities of these functions, their monodromies and Stokes data, Écalle discovered

an infinite family of derivations acting on them, which generate a free Lie algebra. Mould

calculus first appeared as a convenient combinatorial tool to manipulate these derivations.

Later on, Écalle also used mould calculus to study formal classification problems in dy-

namical system theory, without any relation to resurgence theory. Mould calculus has

since been used in various branches of mathematics, for example in the theory of multiple

zeta values ([Ec03], [Sc12], [BE17], [BS17]), in conjugacy problems for formal or analytic

differential equations [Me09], [Sa09], in combinatorial Hopf algebras related to symmetric

functions [Th11], in conjugacy problems in Lie algebras motivated by classical and quantum

dynamics [PS17], in the study of Rayleigh-Schrödinger series [NP18].

In the present paper, we do not assume any familiarity with mould calculus on the part

of the reader, and we introduce the most basic ideas about moulds. The BCH formula can

be seen as an application, and we hope that readers can find other interesting applications

in mathematics or physics.
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The paper is organized as follows.

– Section 2 is a gentle introduction to mould calculus, containing the basic definitions and

properties that we will require in our applications.

– Section 3 gives short proofs of the BCH theorem (Theorem A) and Dynkin’s formula

(Theorem B) based on mould calculus.

– Section 4 gives a short proof of Kimura’s formula (Theorem C) via mould calculus, as

well as another derivation of the BCH theorem (Corollary 4.5).

– Section 5 indicates how to generalize the previous results to the case of a product of more

factors etX1 · · · etXN , with arbitrary N ≥ 2 (Theorems B’ and C’).

– Section 6 defines a new operation in mould calculus, that we call σ-composition, which

allows us to relate the mould used for Dynkin’s formula and the one used for Kimura’s

formula.

2 Mould calculus for pedestrians

Throughout the article we use the notation

N = {0, 1, 2, . . .}, N∗ = {1, 2, 3, . . .}.

In this section, we denote by k a field of characteristic zero (it will be Q in our later

applications) and by N a nonempty set (in our applications, it will be either a finite set

or N∗).

2.1 The mould algebra

Viewing N as an alphabet (the elements of which we call “letters”), we denote by N the

corresponding set of “words” (or “strings”):

N := {n = n1 · · ·nr | r ∈ N, n1, . . . , nr ∈ N}.

The concatenation law (a1 · · · ar, b1 · · · bs) ∈ N ×N 7→ a1 · · · ar b1 · · · bs ∈ N yields a monoid

structure, with the empty word ∅ as unit.

Definition 2.1. A k-valued mould on N is a function N → k. The set of all moulds is

denoted by kN .

Given a mould M , it is customary to denote by Mn the value it takes on a word n.

Mould multiplication is defined by the formula

(M ×N)n :=
∑

(a,b) such that n=a b

MaN b for n ∈ N , (4)
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for any two moulds M,N ∈ kN . For instance,

(M ×N)n1n2 =M∅Nn1n2 +Mn1Nn2 +Mn1n2N∅.

It is immediate to check that kN is an associative k-algebra, noncommutative if N has

more than one element, whose unit is the mould 1 defined by 1
∅ = 1 and 1

n = 0 for

n 6= ∅.

We say that a mouldM has order ≥ p ifMn = 0 for each word n of length < p. Clearly,

if ordM ≥ p and ordN ≥ q, then ord(M × N) ≥ p + q. In particular, if M∅ = 0, then

ordM×k ≥ k for each k ∈ N∗, hence the moulds

eM :=
∑

k∈N

1

k!
M×k and log(1+M) :=

∑

k∈N∗

(−1)k−1

k
M×k (5)

are well-defined (because, for each n ∈ N , only finitely many terms contribute to (eM )n or

(log(1+M))n). We thus get mutually inverse bijections

{M ∈ kN |M∅ = 0 }
exp

⇄

log
{M ∈ kN |M∅ = 1 }.

2.2 Comoulds and mould expansions

Moulds are meant to provide the coefficients of certain multi-indexed expansions in an

associative algebra A. To deal with infinite expansions, we require this A to be a complete

filtered associative algebra, i.e. there is an order function ord: A → N ∪ {∞} compatible

with sum and product,1 such that every family (Ai)i∈I of A is formally summable provided,

for each p ∈ N, all the Ai’s have order ≥ p except finitely many of them. See [Sa09] or

[PS17] for the details. For the present paper, the reader may think of

A = A [[t]]

with the order function relative to powers of t, where A is an associative algebra as in the

introduction.

Assumption 2.2. We suppose that we are given a family (Bn)n∈N in A such that all the

Bn’s have order ≥ 1 and, for each p ∈ N, only finitely many of them are not of order ≥ p.

Definition 2.3. We call associative comould generated by (Bn)n∈N the family (Bn)n∈N

defined by B∅ := 1A and

Bn1···nr
:= Bn1 · · ·Bnr for all r ≥ 1 and n1, . . . , nr ∈ N .

1We assume ord(A + B) ≥ min{ordA, ordB} and ord(AB) ≥ ordA + ordB for any A,B ∈ A, and

ordA = ∞ iff A = 0.
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Lemma 2.4. The formula

M ∈ kN 7→MB :=
∑

n∈N

MnBn ∈ A (6)

defines a morphism of associative algebras. Moreover,

M∅ = 0 ⇒ (eM )B = eMB , M∅ = 1 ⇒ (logM)B = log(MB). (7)

Proof. Observe that the family (MnBn)n∈N is formally summable in A thanks to our

assumption on the Bn’s. The property Ba b = BaBb for all a, b ∈ N entails

(M ×N)B = (MB)(NB), (8)

whence M×kB = (MB)k for all k ∈ N, and (7) follows.

It is the right-hand side in (6) that is called a mould expansion.

Example 2.5. Suppose we are given X,Y ∈ A , an associative algebra. Take k = Q,

N = Ω := {x, y}, a two-letter alphabet, and A = A [[t]]. We then consider the associative

comould generated by

Bx := tX, By := tY. (9)

Trivially, tX = IxB and tY = IyB, where Ix, Iy ∈ QΩ are defined by

Iωx :=

{
1 if ω is the one-letter word x

0 else,
Iωy :=

{
1 if ω is the one-letter word y

0 else.

We thus get etX = eIxB, etY = eIyB, and

etXetY = SΩB with SΩ := eIx × eIy , log(etXetY ) = TΩB with TΩ := log SΩ. (10)

By (4) and (5), we get

S
ω
Ω =





1

p!q!
if ω is of the form xpyq with p, q ∈ N

0 else,

(11)

thus the first part of (10) is just another way of writing etXetY =
∑

tp+q

p!q! X
pY q.

In the general case, retaining from the associative algebra structure of A only the

underlying Lie algebra structure, i.e. using only commutators (with the notation adAB =

[A,B]), one can define another kind of mould expansion:

Definition 2.6. We call Lie comould generated by (Bn)n∈N the family (B[n ])n∈N of A

defined by B[∅] := 0 and

B[n1···nr] := adBn1
· · · adBnr−1

Bnr = [Bn1 , [· · · [Bnr−1 , Bnr ] · · · ]].
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We define the Lie mould expansion associated with a mould M ∈ kN by the formula

M [B] :=
∑

n∈N\{∅}

1

r(n)
MnB[n ] ∈ A, (12)

where r(n) denotes the length of a word n.

Division by r(n) is just a normalization choice whose convenience will appear in Sec-

tion 2.3. In Section 3, we will prove the BCH theorem by showing how to pass from the

second part of (10) to a Lie mould expansion.

2.3 Symmetrality and alternality

One can get a morphism property for Lie mould expansions analogous to (8) by imposing

restrictions to the moulds that we use: they must be “alternal”. A tightly related notion

is that of “symmetral” mould. The definition of both notions relies on word shuffling.

Recall that the shuffling of two words a = ω1 · · ·ωℓ and b = ωℓ+1 · · ·ωr is the set

of all the words n which can be obtained by interdigitating the letters of a and those

of b while preserving their internal order in a or b, i.e. the words which can be written

n = ωτ(1) · · ·ωτ(r) with a permutation τ such that2 τ−1(1) < · · · < τ−1(ℓ) and τ−1(ℓ +

1) < · · · < τ−1(r). We define the shuffling coefficient sh
(
a, b
n

)
to be the number of such

permutations τ , and we set sh
(
a, b
n

)
:= 0 whenever n does not belong to the shuffling of a

and b. For instance, if n,m, p, q are four distinct elements of N ,

sh
( nmp,mq
nmqpm

)
= 0, sh

( nmp,mq
mnqmp

)
= 1, sh

( nmp,mq
nmmqp

)
= 2.

We also define, for arbitrary words n and a, sh
(
a,∅
n

)
= sh

(
∅, a
n

)
= 1 if a = n, 0 else.

Definition 2.7. A mould M ∈ kN is said to be alternal if M∅ = 0 and

∑

n∈N

sh
(
a, b

n

)
Mn = 0 for any two nonempty words a, b. (13)

A mould M ∈ kN is said to be symmetral if M∅ = 1 and

∑

n∈N

sh
(
a, b

n

)
Mn =MaM b for any two words a, b. (14)

Example 2.8. It is obvious that any mould M whose support is contained in the set of

one-letter words (i.e. r(n) 6= 1 ⇒ Mn = 0) is alternal. For instance, the moulds Ix and Iy

of Example 2.5 are alternal. An elementary example of symmetral mould is E defined by

2Indeed, τ−1(i) is the position in n of ωi, the i-th letter of a b.
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En := 1
r(n)! . Indeed, since the total number of words obtained by shuffling of any a, b ∈ N

(counted with multiplicity) is
(
r(a b)
r(a)

)
,

∑

n∈N

sh
(
a, b

n

)
En =

r(a b)!

r(a)!r(b)!
·

1

r(a b)!
= EaEb.

We shall see later that the moulds eIx , eIy and SΩ involved in (10) are symmetral, and that

TΩ is alternal.

In this paper,3 we are interested in the shuffling coefficients because of the following

classical relation between the Lie comould and the associative comould:

B[n ] =
∑

(a,b)∈N×N

(−1)r(b)r(a) sh
(
a, b

n

)
B
b̃ a

for all n ∈ N , (15)

where, for an arbitrary word b = b1 · · · bs, we denote by b̃ the reversed word: b̃ = bs · · · b1

(we omit the proof—see [vW66], [Re93], [PS17]). An immediate and useful consequence is

Lemma 2.9. If M is an alternal mould, then M [B] =MB, i.e.

∑

n∈N\{∅}

1

r(n)
MnB[n ] =

∑

n∈N

MnBn.

Proof. Putting together (12) and (15), we get M [B] =
∑
n6=∅

∑
a,b

(−1)r(b) r(a)
r(n) sh

(
a, b
n

)
MnB

b̃ a
.

Now, sh
(
a, b
n

)
6= 0 ⇒ r(n) = r(a) + r(b), hence

M [B] =
∑

r(a)+r(b)≥1

(−1)r(b) r(a)
r(a)+r(b)

(∑

n∈N

sh
(
a, b

n

)
Mn

)
B
b̃ a

=
∑

a 6=∅

MaBa =MB

(the internal sum is Ma when b = ∅ and it does not contribute when a or b 6= ∅ because

of (13), nor when a = ∅ because of the factor r(a)).

Any mould expansion associated with an alternal mould thus belongs to the (closure of

the) Lie subalgebra of A generated by the Bn’s, since it can be rewritten as a Lie mould

expansion, involving only commutators of the Bn’s.

Lemma 2.9 is related to the classical Dynkin-Specht-Wever projection lemma in the

context of free Lie algebras (see e.g. [Re93]). One should also mention that the concepts

3In Écalle’s work, the initial motivation for the definition of alternality and symmetrality is the situation

when A is an algebra of operators (acting on an auxiliary algebra) and each Bn acts as a derivation: in that

case, the B[n ]’s satisfy a modified Leibniz rule which involves the shuffling coefficients, whence it follows

that MB is itself a derivation if M is an alternal mould, and an algebra automorphism if M is symmetral.

Here we do not assume anything of that kind on A and the Bn’s but rather follow the spirit of “Lie mould

calculus” as advocated in [PS17].
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of symmetrality and alternality are related to certain combinatorial Hopf algebras, as em-

phasized by F. Menous in his work on the renormalization theory in perturbative quantum

field theory—see e.g. [Me09] and footnote 4. Hopf-algebraic aspects of mould calculus are

also touched upon in [Sa09], [PS17] and [NP18].

For our applications, we require a last general result from mould calculus (see e.g. [Sa09]

for a proof):

Lemma 2.10.

• The product of two symmetral moulds is symmetral.

• The logarithm of a symmetral mould is alternal.

• The exponential of an alternal mould is symmetral.

Example 2.11. The mould I defined by

In =

{
1 if r(n) = 1

0 else,
(16)

is alternal (being supported in one-letter words). The symmetral mould E of Example 2.8

is eI .

In fact, the set of all symmetral moulds is a group for mould multiplication, the set of

all alternal moulds is a Lie algebra for mould commutator, and we get the analogue of (8)

for Lie mould expansions:

M , N alternal ⇒ [M,N ][B] =
[
M [B], N [B]

]
.

Let us also mention a manifestation of the antipode of the Hopf algebra related to moulds:4

M alternal ⇒ S(M) = −M, M symmetral ⇒ S(M) = multiplicative inverse of M ,

where S(M)n1···nr := (−1)rMnr···n1 .

All these facts are mentioned in Écalle’s works and can be proved by Hopf-algebraic

techniques or by direct computation.

4 Denote by kN the linear span of the set of words, i.e. the k-vector space consisting of all formal

sums c =
∑

cn n with finitely many nonzero coefficients cn ∈ k. Now, kN is a Hopf algebra if we define

multiplication by extending (a, b) 7→ a � b :=
∑

sh
(

a, b
n

)

n by bilinearity, comultiplication by extending

n 7→
∑

n=a b

a ⊗ b by linearity, and antipode by extending n1 · · ·nr 7→ (−1)rnr · · ·n1 by linearity (the unit

is ∅ and the counit is c 7→ c∅). The set of moulds can be identified with the set of linear forms on kN , if

we identify M ∈ k
N with c 7→

∑

Mncn. The associative algebra structure (4) of kN is then dual to the

coalgebra structure of kN , and alternal moulds appear as infinitesimal characters of kN (linear forms M

such that M(c� c′) = M(c)c′∅ + c∅M(c′)) and symmetral moulds as characters (linear forms M such that

M(∅) = 1 and M(c� c′) = M(c)M(c′)).
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3 The BCH Theorem and Dynkin’s formula

Let A be an associative algebra. We now use mould calculus to prove

Theorem A. Suppose X,Y ∈ A . Let Ψ = etXetY ∈ A [[t]]. Then

logΨ ∈ Lie(X,Y )[[t]],

where Lie(X,Y ) is the Lie subalgebra of A generated by X and Y .

Theorem B (Dynkin, [Dy47]). In the above situation,

log Ψ =
∑ (−1)k−1

k

tσ

σ

[Xp1Y q1 · · ·XpkY qk ]

p1!q1! · · · pk!qk!
(17)

with summation over all k ∈ N∗ and (p1, q1), · · · , (pk, qk) ∈ N × N \ {(0, 0)}, where σ :=

p1 + q1 + · · ·+ pk + qk and [Xp1Y q1 · · ·XpkY qk ] := adp1X adq1Y · · · adpkX adqk−1
Y Y if qk ≥ 1 and

adp1X adq1Y · · · adpk−1
X X if qk = 0.

Proof of Theorem A. Half of the work has already been done in Example 2.5! With the two-

letter alphabet Ω = {x, y}, Bx = tX and By = tY , we have log Ψ = TΩB with TΩ = logSΩ,

SΩ = eIx × eIy .

The mould SΩ is symmetral, because Ix and Iy are alternal (they are supported in the

set of one-letter words) hence eIx and eIy are symmetral by Lemma 2.10 and so is their

product. It follows, still by Lemma 2.10, that TΩ is alternal. Lemma 2.9 then shows that

logΨ = TΩ[B]. (18)

In particular, being expressed as a Lie mould expansion, logΨ lies in Lie(X,Y )[[t]].

Proof of theorem B. With the same notation as previously, by definition,

T
ω
Ω =

∑

k≥1

(−1)k−1

k

∑

ω1,..., ωk∈Ω\{∅}
ω=ω1···ωk

S
ω1

Ω · · ·S
ωk

Ω for each word ω,

hence (18) yields

log Ψ =
∑

k≥1

(−1)k−1

k

∑

ω1,..., ωk∈Ω\{∅}

1
r(ω1)+···+r(ωk)

S
ω1

Ω · · ·Sω
k

Ω B[ω1···ωk].

Inserting (11), we exactly get (17).

Mould calculus also allows us to express the inner derivation associated with log Ψ:

Corollary 3.1. The inner derivation of A [[t]] associated with Z := log(etXetY ) is

adZ =
∑ (−1)k−1tσ

k

adp1X adq1Y · · · adpkX adqkY
p1!q1! · · · pk!qk!

=
∑ (−1)k−1

k

tσ

σ

[adp1X adq1Y · · · adpkX adqkY ]

p1!q1! · · · pk!qk!
(19)

with summation over all k ∈ N∗ and (p1, q1), · · · , (pk, qk) ∈ N × N \ {(0, 0)}, where σ :=

p1 + q1 + · · · + pk + qk and with the same bracket notation as in Theorem A.

10



Proof. Working in the associative algebra EndA [[t]] with the comould and the Lie comould

associated with Ax := adtX and Ay := adtY , we get adZ = TΩ[A] (i.e. the second part

of (19)) from (17) because A[ω] = adB[ω]
. Lemma 2.9 then entails adZ = TΩA, i.e. the first

part of (19) (which could have been obtained directly from adZ = log(eadtX eadtY ).

4 Alternative formulas for etXetY and its logarithm

In this section, we take N := N∗ = {1, 2, 3, . . .} as our alphabet, and k := Q as base field.

We now show how to find Kimura’s formula (3) from mould calculus.

4.1 An alternative mould expansion for etXetY

Theorem C ([Ki17]). Let X,Y ∈ A as in Theorem A. Then Ψ = etXetY can be written

Ψ = 1A +

∞∑

r=1

∞∑

n1,...,nr=1

1

nr(nr + nr−1) · · · (nr + · · ·+ n1)
Dn1 · · ·Dnr (20)

with Dn :=
tn

(n− 1)!
adn−1

X (X + Y ) for each n ≥ 1. (21)

The rest of section 4.1 is devoted to a new proof of this formula.

Lemma 4.1. Ψ = etXetY is the unique element of A [[t]] such that

Ψ|t=0 = 1A , t∂tΨ = DΨ, where D := t etX(X + Y ) e−tX . (22)

Proof. The fact that Ψ satisfies (22) is straightforward. On the other hand, if Ψ̃ ∈ A [[t]] is

also solution to (22), then ord(Ψ̃−Ψ) ≥ 1 and it is easy to see that in fact ord(Ψ̃−Ψ) = ∞

because t∂t(Ψ̃−Ψ) = D(Ψ̃−Ψ) and ordD ≥ 1; hence Ψ̃−Ψ = 0.

Let N := N∗ and consider the associative comould associated with the family (Dn)n∈N

defined by (21). We have

D =
∑

n∈N

Dn = ID, (23)

where D in the left-hand side is the element of A [[t]] defined in (22), while the right-hand

side is the mould expansion associated with the mould I defined by (16). The proof of (23)

is essentially the Hadamard lemma: adX can be written LX − RX , where LX and RX

are the operators of left-multiplication and right-multiplication by X and they commute,

hence et adX = et(LX−RX) = etLX e−tRX , and etLX and e−tRX are the operators of left-

multiplication and right-multiplication by etX and e−tX , whence

et adXA = etXA e−tX for any A ∈ A [[t]]. (24)

In particular, etX(X + Y )e−tX =
∑

n∈N
tn−1

(n−1)! ad
n−1
X (X + Y ).
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Lemma 4.2. For any mould S ∈ QN ,

t∂t(SD) = (∇S)D,

where ∇S is the mould defined by

(∇S)n1···nr := (n1 + · · · + nr)S
n1···nr for each word n1 · · ·nr ∈ N .

Proof. Obvious, since Dn ∈ tnA for each n ∈ N .

Lemma 2.4, formula (23) and Lemma 4.2 inspire us to look for a solution to (22) in the

form of a mould expansion: Ψ = SD will be solution to (22) if S ∈ QN is solution to the

mould equation

S∅ = 1, ∇S = I × S (25)

(indeed: we have (∇S)D = t∂tΨ on the one hand, and (I × S)D = (ID)(SD) = DΨ on

the other hand, and S∅ = 1 ensures ord(Ψ− 1A ) ≥ 1 because ordDn ≥ 1 for all nonempty

word n). Now the second part of (25) is equivalent to

(n1 + · · ·+ nr)S
n1···nr = Sn2···nr for each nonempty word n1 · · ·nr ∈ N , (26)

thus the mould equation (25) has a unique solution: the mould SN ∈ QN defined by

Sn1···nr

N :=
1

nr(nr + nr−1) · · · (nr + · · ·+ n1)
for each n1 · · · nr ∈ N . (27)

In conclusion, SN is a solution to (25), thus SND is a solution to (22), thus

SND = Ψ = etXetY (28)

and formula (20) is proved.

Remark 4.3. For any alphabet N and base field k, an arbitrary function φ : N → k gives

rise to a linear operator ∇φ : kN → kN defined by the formula

(∇φM)n1···nr =
(
φ(n1) + · · · + φ(nr)

)
Mn1···nr (29)

(with the convention that an empty sum is 0). The reader can check that ∇φ is a mould

derivation, i.e. it satifies the Leibniz rule ∇φ(M ×N) = (∇φM)×N +M ×∇φN . Here,

we have used the mould derivation associated with the inclusion map N∗ →֒ Q.

4.2 An alternative Lie mould expansion for log(etXetY )

The mould SN that we have just constructed happens to be a very common and useful object

of mould calculus (see e.g. [Ec81] or [Sa09, §13]). It is well-known that it is symmetral; we

give the proof for the sake of completeness.

12



Lemma 4.4. The mould SN defined by the formula (27) is symmetral.

Proof. We prove the property (14) for M = SN by induction on r(a) + r(b). The property

holds when a = ∅ or b = ∅ because S∅
N = 1. In particular it holds when r(a) + r(b) = 0.

Suppose now that a and b are arbitrary nonempty words. Using the notation

|n| := n1 + · · ·+ nr, ‘n := n2 · · · nr for any nonempty word n1 · · ·nr,

we multiply the right-hand side of (14) by |a|+ |b|: we get

(|a|+|b|)SaNS
b
N = |a|SaNS

b
N+|b|SaNS

b
N = S

‘a
NS

b
N+S

a
NS

‘b
N =

∑

c

sh
(
‘a, b
c

)
S
c
N+

∑

c

sh
(
a, ‘b
c

)
S
c
N ,

(30)

where we have used (26) and the induction hypothesis. On the other hand, multiplying the

left-hand side of (14) by |a|+ |b|, we get

(|a|+ |b|)
∑

n

sh
(
a, b
n

)
S
n
N =

∑

n

|n| sh
(
a, b
n

)
S
n
N =

∑

n

sh
(
a, b
n

)
S
‘n
N (31)

(using (26) again). The last sum can be split into two according to the first letter of n,

which must come either from the first letter of a or from the first letter of b for sh
(
a, b
n

)

to be nonzero: either n = a1c and sh
(
a, b
n

)
= sh

(
‘a, b
c

)
, or n = b1c and sh

(
a, b
n

)
= sh

(
a, ‘b
c

)
,

therefore (30) and (31) coincide, which proves (14) with M = SN .

We are now in a position to obtain a new formula for log Ψ, on which its Lie character

is manifest—the new formula thus contains the BCH theorem:

Corollary 4.5. Let TN := log SN ∈ QN . Then, with the notation of Theorem C, we have

log Ψ = TN [D], i.e.

log(etXetY ) =
∑

r≥1

∞∑

n1,...,nr=1

1

r
T n1···nr

N [Dn1 , [· · · [Dnr−1 ,Dnr ] · · · ]] ∈ Lie(X,Y )[[t]].

Proof. From Theorem C and Lemma 2.4 we deduce

log Ψ = log(SND) = TND. (32)

By Lemmas 2.10 and 4.4, TN is alternal. We conclude by Lemma 2.9.

From the definition TN =
∞∑
k=1

(−1)k−1

k
(SN −1)×k, we can write down the coefficients for

words of small length:

T n1 = Sn1 =
1

n1

T n1n2 = Sn1n2 −
1

2
Sn1Sn2 =

n1 − n2

2n1n2(n1 + n2)

T n1n2n3 = Sn1n2n3 −
1

2
Sn1n2Sn3 −

1

2
Sn1Sn2n3 +

1

3
Sn1Sn2Sn3

T n1n2n3n4 = Sn1n2n3n4 −
1

2
Sn1Sn2n3n4 −

1

2
Sn1n2Sn3n4 −

1

2
Sn1n2n3Sn4

+
1

3
Sn1Sn2Sn3n4 +

1

3
Sn1Sn2n3Sn4 +

1

3
Sn1n2Sn3Sn4 −

1

4
Sn1Sn2Sn3Sn4

13



· · · · · ·

(omitting the subscript N to lighten notation). The low powers of t in logΨ = TN [D] can

then be extracted from the Lie mould expansion and we recover the classical BCH series:

log Ψ =

∞∑

n1=1

T n1Dn1 +

∞∑

n1,n2=1

1

2
T n1n2 [Dn1 ,Dn2 ] +

∞∑

n1,n2,n3=1

1

3
T n1n2n3 [Dn1 , [Dn2 ,Dn3 ]]

+

∞∑

n1,n2,n3,n4=1

1

4
T n1n2n3n4 [Dn1 , [Dn2 , [Dn3 ,Dn4 ]]] + · · ·

= t(X + Y ) +
t2

2
[X,Y ] +

t3

3!
[X, [X,Y ]] +

t4

4!
[X, [X, [X,Y ]]] +

t5

5!
[X, [X, [X, [X,Y ]]]] + · · ·

−
t3

12
([(X + Y ), [X,Y ]])−

t4

24
([(X + Y ), [X, [X,Y ]]])−

t5

120
[[X,Y ], [X, [X,Y ]]]

−
t5

80
[(X + Y ), [X, [X, [X,Y ]]]] + · · ·

+
t5

720
[(X + Y ), [(X + Y ), [X, [X,Y ]]]]−

t5

240
[[X,Y ], [(X + Y ), [X,Y ]]] + · · ·

+
t5

720
[(X + Y ), [(X + Y ), [(X + Y ), [X,Y ]]]] + · · ·

= t(X + Y ) +
t2

2
[X,Y ] +

t3

12
([X, [X,Y ]] + [Y, [Y,X]]) −

t4

24
[Y, [X, [X,Y ]]]

−
t5

720
[X, [X, [X, [X,Y ]]]]−

t5

720
[Y, [Y, [Y, [Y,X]]]] +

t5

360
[X, [Y, [Y, [Y,X]]]]

+
t5

360
[Y, [X, [X, [X,Y ]]]] +

t5

120
[Y, [X, [Y, [X,Y ]]]] +

t5

120
[X, [Y, [X, [Y,X]]]] + · · · .

5 Generalization to an arbitrary number of factors

One of the merits of the mould calculus approach is that the formulas are easily generalized

to the case of

Ψ = etX1 · · · etXN ∈ A [[t]],

where A us an associative algebra and X1, . . . ,XN ∈ A for some N ≥ 2.

5.1 Mould expansion of the first kind

Theorem B’. Let NN∗ := { p ∈ NN | p1 + · · ·+ pN ≥ 1 }. We have

logΨ =
∑ (−1)k−1

k

tσ

σ

[
X
p11
1 · · ·X

p1N
N · · ·X

pk1
1 · · ·X

pkN
N

]

p11! · · · p
1
N ! · · · p

k
1! · · · p

k
N !

with summation over all k ∈ N∗ and p1, · · · , pk ∈ NN∗ , where σ :=
k∑
i=1

N∑
j=1

pij and the bracket

denote nested commutators as before.
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Proof. Let Ω := {x1, . . . , xN} be an N -element set. We consider the associative comould

generated by the family

Bx1 := tX1, . . . , BxN := tXN ∈ A [[t]]. (33)

We can write tX1 = I1B, . . . , tXN = INB, with moulds I1, . . . , IN ∈ QΩ defined by

I
ω
j
:=

{
1 if ω is the one-letter word xj

0 else

for j = 1, . . . , N . Hence

Ψ = SΩB with SΩ := eI1 × · · · × eIN , log Ψ = TΩB with SΩ := log SΩ. (34)

The moulds I1, . . . , IN are alternal (being supported in one-letter words), hence Lemma 2.10

entails that their exponentials are symmetral, and also SΩ, while TΩ is alternal. We deduce

that

logΨ = TΩ[B] =
∑

k≥1

(−1)k−1

k

∑

ω1,..., ωk∈Ω\{∅}

1
r(ω1)+···+r(ωk)

S
ω1

Ω · · ·Sω
k

Ω B[ω1···ωk].

The conclusion stems from the fact that

S
ω
Ω =





1

p1! · · · pN !
if ω is of the form x

p1
1 · · · xpNN with (p1, . . . , pN ) ∈ NN

0 else.

5.2 Mould expansion of the second kind

Theorem C’. In the above situation, Ψ = etX1 · · · etXN can also be written

Ψ = 1A +
∞∑

r=1

∞∑

n1,...,nr=1

1

nr(nr + nr−1) · · · (nr + · · ·+ n1)
Dn1 · · ·Dnr (35)

with Dn := tn
N∑

j=1

∑

m1,...,mj−1∈N
m1+···+mj−1=n−1

adm1
X1

· · · ad
mj−1

Xj−1

m1! · · ·mj−1!
Xj for each n ≥ 1. (36)

Note that formula (35) involves exactly the same rational coefficients as in the case

N = 2. The only difference in the formula is that the Dn’s of (21) have been generalized

to the Dn’s which are defined in (36) and read

Dn :=





t(X1 + · · ·+XN ) for n = 1,

tn
adn−1

X1

(n− 1)!
X2 + · · ·+ tn

∑

m1+···+mN−1=n−1

adm1
X1

· · · ad
mN−1

XN−1

m1! · · ·mN−1!
XN for n > 1.

(37)
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Proof. We have Ψ|t=0 = 1A and

t∂tΨ = tX1 e
tX1 · · · etXN + t etX1X2 e

tX2 · · · etXN + · · · + t etX1 · · · etXN−1XN etXN

= DΨ, where D := t

N∑

j=1

AdetX1 · · ·AdetXj−1 Xj

with the notation AdE A = EAE−1 for any A ∈ A [[t]] whenever E is an invertible element

of A [[t]]. Moreover, we observe that there is no other solution in A [[t]] to the system

Ψ|t=0 = 1A , t∂tΨ = DΨ, (38)

because ordD ≥ 1.

Thanks to (24), we compute D = t
∑N

j=1 e
adtX1 · · · eadtXj−1Xj =

∑
n≥1Dn. Let us thus

take N = N∗ as alphabet and consider the associative comould generated by (Dn)n∈N , so

that D can be rewritten as the mould expansion ID, with the same mould as in (16).

Lemmas 2.4 and 4.2 show that a mould expansion Ψ = SD is solution to (38) if S ∈ QN

is solution to the mould equation (25) (indeed: (∇S)D = t∂tΨ on the one hand, and

(I × S)D = (ID)(SD) = DΨ on the other hand, and S∅ = 1 ensures ord(Ψ − 1A ) ≥ 1

because ordDn ≥ 1 for all nonempty word n). But we already know that S = SN defined

by (27) is the unique solution to (25), hence

Ψ = SND, (39)

which is equivalent to (35).

Notice that, in view of Section 4.2, the mould SN is symmetral, the mould TN = log SN

is alternal, whence

log Ψ = TND = TN [D], (40)

i.e.

log(etX1 · · · etXN ) =
∑

r≥1

∞∑

n1,...,nr=1

1

r
T n1···nr

N [Dn1 , [· · · [Dnr−1 ,Dnr ] · · · ]]

which thus belongs to Lie(X1, . . . ,XN )[[t]], in accordance with the BCH theorem.

6 Relation between the two kinds of mould expansion

In our application to products of two or more exponentials, we have seen two different kinds

of mould expansion. The first kind involves an N -element alphabet Ω := {x1, . . . , xN} and

the comould generated by the family (Bω)ω∈Ω defined by (33). For the second one, the

alphabet is N := N∗ and the comould is generated by the family (Dn)n∈N which is defined
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by (37) and boils down to the Dn’s of (21) when N = 2. A natural question is: What is the

relation between both kinds of mould expansion? i.e. can one pass from the representation

of the product Ψ as SΩB in (34) to its representation as SND in (39), or from log Ψ = TΩB

in (34) to log Ψ = TND in (40)?

In this section, we will answer this question by defining a new operation on moulds,

which allows one to pass directly from SN to SΩ, or from TN to TΩ. We take N = 2 for

simplicity but the generalization to arbitrary N is easy.

We start by giving a mould expansion of the first kind for the Dn’s themselves.

Lemma 6.1. Let Ω := {x, y}. The formula

ω ∈ Ω 7→ Uω :=





1 if ω = x

(−1)q

p!q!
if ω is of the form xpyxq for some p, q ∈ N

0 else

(41)

defines an alternal mould U ∈ QΩ such that

Dn = UnB for each n ∈ N∗, (42)

where the left-hand side is defined by (21) and the right-hand side is the mould expansion

(for the comould generated by (9)) associated with

Un := restriction of U to the words of length n.

Proof. In view of (8), we have adMB(NB) = [MB,NB] = [M,N ]B = (adM N)B for any

M,N ∈ QΩ, hence (21) can be rewritten as Dn = 1
(n−1)! ad

n−1
IxB

(
(Ix + Iy)B

)
= UnB with

Un := 1
(n−1)! ad

n−1
Ix

(Ix + Iy). Since Ix and Iy are alternal and the set of all alternal moulds

is stable under mould commutator (as mentioned at the end of Section 2.3), we see that

this mould Un is alternal. Since the support of Un is contained in the set of words of

length n, the formula U :=
∑

n≥1 Un makes sense and defines an alternal mould (and Un

now appears as the restriction of this U to the set of words of length n). There only remains

to check (41).

Now, adIx = L− R, where L and R are the operators of left-multiplication and right-

multiplication by Ix, which commute, hence the binomial theorem yields

Un =
∑

p+q=n−1

(−1)q

p!q! L
pRq(Ix + Iy) =

∑

p+q=n−1

(−1)q

p!q! I
×p
x × (Ix + Iy)× I×qx ,

i.e. U
ω
n = 1 if ω = x and n = 1, (−1)q

p!q! if ω is of the form xpyxq for some p, q ∈ N such that

p + q = n − 1 (in which case p and q are uniquely determined), and 0 else. Our U thus

coincides with the mould defined by (41).
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In fact the proof just given shows that

U = eadIx (Ix + Iy) = eIx × (Ix + Iy)× e−Ix . (43)

This mould will allow us to relate D-mould expansions and B-mould expansions:

Theorem D. Let N := N∗. Define a linear map M ∈ QN 7→M ⊙U ∈ QΩ by the formulas

(M ⊙ U)∅ :=M∅, (44)

(M ⊙ U)ω :=
∑

s≥1

∑

ω=ω1···ωs

ω1,..., ωs∈Ω\{∅}

M r(ω1)···r(ωs)Uω
1
· · ·Uω

s

for ω ∈ Ω \ {∅}. (45)

Then

MD = (M ⊙ U)B for any M ∈ QN .

Recall that r : Ω → N∗ = N is our notation for the length function. In (45), r(ω1) · · · r(ωs)

is to be understood as a word of length s of N (and the sum is finite because the words ωj

are nonempty, hence s ≤ r(ω)).

Proof. By direct computation, using (42) to express Dn1···ns = Dn1 · · ·Dns ,

MD =
∑

n∈N

MnDn =M∅ 1A +
∑

s≥1

∑

n1,...,ns∈N

Mn1···ns

∑

ω1∈Ω
r(ω1)=n1

Uω
1
Bω1 · · ·

∑

ωs∈Ω
r(ωs)=n1

Uω
s

Bωs

=M∅ 1A +
∑

s≥1

∑

n1,...,ns∈N

Mn1···ns

∑

ω1,..., ωs∈Ω
r(ω1)=n1,...,r(ωs)=ns

Uω
1
· · ·Uω

s

Bω1···ωs

=M∅ 1A +
∑

s≥1

∑

ω1,..., ωs∈Ω\{∅}

M r(ω1)···r(ωs)Uω
1
· · ·Uω

s

Bω1···ωs

=M∅ 1A +
∑

ω∈Ω\{∅}

(
∑

s≥1, ω1,... ωs∈Ω\{∅}
ω=ω1···ωs

M r(ω1)···r(ωs)Uω
1
· · ·Uω

s

)
Bω = (M ⊙ U)B.

The relations SND = SΩB (which coincides with Ψ according to (10) and (28)) and

TND = TΩB (which coincides with log Ψ according to (28) and (32)) now appear as a

manifestation of Theorem D and the following

Theorem E.

SN ⊙ U = SΩ, TN ⊙ U = TΩ.

The proof of Theorem E is given at the end of this section.

Our definition (44)–(45) of the mould operation ‘⊙’ is a variant of Écalle’s mould com-

position ‘◦’ which is defined for any alphabet that is a commutative semigroup ([Ec84],

[Sa09], [FFM17]). Here is a definition which encompasses both operations:
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Definition 6.2. Given two alphabets Ω and N , and a map σ : Ω \ {∅} → N , we define

the σ-composition

(M,U) ∈ kN × kΩ 7→M ◦σ U ∈ kΩ

by the formulas

(M ◦σ U)∅ :=M∅, (46)

(M ◦σ U)ω :=
∑

s≥1

∑

ω=ω1···ωs

ω1,..., ωs∈Ω\{∅}

Mσ(ω1)···σ(ωs)Uω
1
· · ·Uω

s

for ω ∈ Ω \ {∅}. (47)

Thus, we recover the ‘⊙’ composition in the special case when N = N∗ and σ(ω) = r(ω)

(with arbitrary Ω), and Écalle’s composition ‘◦’ when N = Ω is a commutative semigroup

and σ(n1 · · ·nr) = n1 + · · ·+ nr for any nonempty word of N . Some classical properties of

the latter operation can be generalized as follows:

(i) (M ◦σ U)× (N ◦σ U) = (M ×N) ◦σ U .

(ii) eM◦σU = (eM ) ◦σ U if M∅ = 0, log(M ◦σ U) = (logM) ◦σ U if M∅ = 1.

(iii) I ◦σ U = U − U∅
1Ω, where I is defined by (16) and 1Ω is the unit of kΩ.

(iv) Denote by ιΩ : Ω −֒→ Ω \ {∅} the inclusion map. If φ : N → k is a function such that

φ ◦ σ maps the concatenation in Ω to the addition in k, then

(∇φM) ◦σ U = ∇ψ(M ◦σ U) for all M ∈ kN , with ψ := φ ◦ σ ◦ ιΩ, (48)

where ∇φ and ∇ψ are the mould derivations defined by (29).

(v) If U is alternal and σ(ω1 · · · ωr) = σ(ωτ(1) · · ·ωτ(r)) for every permutation τ and for

any ω1, . . . , ωr ∈ Ω, then

M alternal ⇒ M ◦σ U alternal, M symmetral ⇒ M ◦σ U symmetral.

(vi) Suppose (Bω)ω∈Ω satisfies Assumption 2.2. Then the formula Dn :=
∑

ω∈σ−1(n)

UωBω

defines a family (Dn)n∈N which also satisfies Assumption 2.2, and

MD = (M ◦σ U)B for any M ∈ kN .

(vii) Suppose that τ : N \ {∅} → M is a map such that ψ := τ ◦ ιN ◦ σ satisfies

ψ(ω1 · · · ωs) = τ(σ(ω1) · · · σ(ωs)) for any s ≥ 1 and ω1, . . . ωs ∈ Ω \ {∅},

then

M ◦ψ (N ◦σ U) = (M ◦τ N) ◦σ U for any M ∈ kM, N ∈ kN , U ∈ kΩ.
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(The proof of these properties is left to the reader.)

Proof of Theorem E. Here Ω = {x, y}, N = N∗ and σ = r : Ω → N is word length. Since

TN = log SN and TΩ = logSΩ, in view of (ii) it is sufficient to prove SN ◦σ U = SΩ.

As noticed in Section 4.1, SN is a solution in QN to equation (25), which involves

∇ = ∇φ, with the notation φ : N −֒→ Q for the inclusion map. Taking ‘⊙U ’ of both sides

of (25), we get

(∇φSN ) ◦σ U = (I × SN ) ◦σ U. (49)

We compute the left-hand side by means of (iv): φ◦σ(ω) = r(ω) is word length, in particular

it maps concatenation in Ω to addition in Q, and φ ◦ σ ◦ ιΩ ≡ 1, hence the left-hand side is

∇1(SN ◦σ U). Note that the mould derivation ∇1 is given by (∇1M)ω = r(ω)Mω.

By (i) and (iii), the right-hand side of (49) is (I ◦σ U) × (SN ◦σ U) = U × (SN ◦σ U).

Therefore, SN ◦σ U is a solution to

M∅ = 1, ∇1M = U ×M. (50)

It is easy to see that (50) has no other solution in QΩ.

On the other hand, by (10), SΩ = eIx ×eIy , and ∇1 is a mould derivation which satisfies

∇1Ix = Ix and ∇1Iy = Iy, thus

∇1SΩ = ∇1(e
Ix)× eIy + eIx ×∇1(e

Iy) = Ix × eIx × eIy + eIx × Iy × eIy

= (Ix + eIx × Iy × e−Ix)× eIx × eIy = U × SΩ

by (43). Therefore SΩ is a solution to (50), hence it must coincide with SN ◦σ U .
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bilan, Journal de Théorie des Nombres de Bordeaux 15, 2 (2003), 411–478.

[FFM17] F. Fauvet, L. Foissy, and D. Manchon, The Hopf algebra of finite topologies and

mould composition, Annales de l’Institut Fourier 67, 3 (2017), 911–945.

[GMN13] D. Gaiotto, G. W. Moore and A. Neitzke, Wall-crossing, Hitchin Systems, and

the WKB Approximation, Adv. in Math. 234, (2013), 239–403.

[Ki17] T. Kimura, Explicit description of the Zassenhaus formula, Theor.Exp.Phys.,

(2017), 041A03.

21



[Ko17] M. Kontsevich, Resurgence and Quantization, Course given at IHES, Paris in

April, 2017.

[Ma15] M. Matone, An algorithm for the Baker-Campbell-Hausdorff formula, J. High

Energy Phys. 05 (2015) 113, [arXiv:1502.06589].

[Me09] F. Menous, Formal differential equations and renormalization, in Renormal-

ization and Galois theories, A. Connes, F. Fauvet, J.-P. Ramis (eds.), IRMA

Lect.Math.Theor.Phys., 15 (2009), 229–246.

[NP18] J.-C. Novelli, T. Paul, D. Sauzin, J.-Y. Thibon, “Rayleigh-Schrödinger series and

Birkhoff decomposition”, Letters in Mathematical Physics 108 (2018), 18 p.

https://doi.org/10.1007/s11005-017-1040-1

[PS17] T. Paul and D. Sauzin, Normalization in Lie algebras via mould calculus and

applications, Regular and Chaotic Dynamics 22, 6 (2017), 616–649.

[Re93] C. Reutenauer, Free Lie algebras, London Mathematical Society Monographs 7,

Clarendon Press, Oxford University Press, New York 1993, xviii+269 pp.

[Sa08] D. Sauzin, Initiation to mould calculus through the example of saddle-node sin-

gularities, Rev. Semin. Iberoam. Mat. 3 (2008), no. 5-6, 147–160.

[Sa09] D. Sauzin, Mould expansions for the saddle-node and resurgence monomials, in

Renormalization and Galois theories, A. Connes, F. Fauvet, J.-P. Ramis (eds.),

IRMA Lectures in Mathematics and Theoretical Physics 15, Zürich: European
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