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Abstract 1 

Contemporary cognitive neuroscience recognises unconstrained processing varies 2 

across individuals, describing variation in meaningful attributes, such as intelligence. It may 3 

also have links to patterns of on-going experience. This study examined whether dimensions 4 

of population variation in different modes of unconstrained processing can be described by the 5 

associations between patterns of neural activity and self-reports of experience during the same 6 

period. We selected 258 individuals from a publicly available data set who had measures of 7 

resting-state functional magnetic resonance imaging, and self-reports of experience during the 8 

scan. We used machine learning to determine patterns of association between the neural and 9 

self-reported data, finding variation along four dimensions. ‘Purposeful’ experiences were 10 

associated with lower connectivity - in particular default mode and limbic networks were less 11 

correlated with attention and sensorimotor networks. ‘Emotional’ experiences were associated 12 

with higher connectivity, especially between limbic and ventral attention networks. 13 

Experiences focused on themes of ‘personal importance’ were associated with reduced 14 

functional connectivity within attention and control systems. Finally, visual experiences were 15 

associated with stronger connectivity between visual and other networks, in particular the 16 

limbic system. Some of these patterns had contrasting links with cognitive function as assessed 17 

in a separate laboratory session - purposeful thinking was linked to greater intelligence and 18 

better abstract reasoning, while a focus on personal importance had the opposite relationship. 19 

Together these findings are consistent with an emerging literature on unconstrained states and 20 

also underlines that these states are heterogeneous, with distinct modes of population variation 21 

reflecting the interplay of different large-scale networks. 22 

  23 
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1 Introduction 24 

Unconstrained processing reflects important population level variation in measures of 25 

cognition, affect, and demographic / lifestyle factors. Psychological studies show that almost a 26 

third of on-going thought is unconstrained by events in the here-and-now (Killingsworth & 27 

Gilbert, 2010) with important links to cognitive and affective processing (Mooneyham & 28 

Schooler, 2013). In neuroscience, metrics defined from the brain during wakeful rest, describe 29 

the organisation of neural function at both the micro and macro scale (Glasser et al., 2016; 30 

Margulies et al., 2016). They also reflect individual differences in cognitive function (Finn et 31 

al., 2015), psychiatric conditions (Nooner et al., 2012) and demographic / lifestyle factors 32 

(Smith et al., 2015). These findings establish unconstrained neuro-cognitive processing as a 33 

core element of human cognition, highlighting the need to formally understand the underlying 34 

neural architecture, and the associated patterns of experience. 35 

One perspective on unconstrained processing emphasises the role of memory, with 36 

contributions of conceptual and episodic representations to on-going thought (Binder, Desai, 37 

Graves, & Conant, 2009; Gusnard, Raichle, & Raichle, 2001). Psychological studies have 38 

shown patterns of unconstrained processing have links with memory retrieval, creativity and 39 

planning (Baird et al., 2012; Leszczynski et al., 2017; Medea et al., 2016; Poerio et al., 2017). 40 

Such evidence raises the possibility that episodic representations anchored in the medial 41 

temporal lobe (Moscovitch, Cabeza, Winocur, & Nadel, 2016) or conceptual representation 42 

anchored in anterior temporal lobe (Ralph, Jefferies, Patterson, & Rogers, 2017) contribute to 43 

on-going thought (Smallwood et al., 2016). It is hypothesised that these systems contribution 44 

to unconstrained states may be linked to the ability for these regions to become functionally 45 

decoupled from systems more directly involved in action and perception, allowing them to 46 

operate in an offline manner (Smallwood, 2013). This process of decoupling may also be 47 

important in neural systems closely allied to those involved in memory – the default mode 48 

network (Raichle et al., 2001). These regions of transmodal cortex are relatively distant in 49 

functional and structural space from systems involved in perception and action, potentially 50 

facilitating their role in stimulus independent aspects of cognition (Buckner & Krienen, 2013; 51 

Margulies et al., 2016; Mesulam, 1998). Together these ‘representational’ accounts of 52 

unconstrained processing highlight default mode and limbic networks as important candidate 53 

neural systems, especially when decoupled from systems directly involved in perception and 54 

action. 55 
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Alternative perspectives on unconstrained thought emerge from links between types of on-56 

going experience and problems maintaining a task relevant goal in mind. This “executive-57 

failure” view (Kane & McVay, 2012; McVay & Kane, 2010) takes as a starting point evidence 58 

that patterns of on-going thought, such as the experience of mind-wandering, are linked to 59 

problems on tasks including sustained attention (McVay & Kane, 2009) and measures of 60 

general aptitude and executive control (Mrazek et al., 2012). Task-based neuroimaging 61 

investigations highlight a network of regions that increase their activity across many different 62 

task situations - so called multiple demand regions (Duncan, 2010). These regions broadly 63 

correspond to three well described intrinsic networks: ventral attention, dorsal attention, and 64 

frontal-parietal networks. Since these systems are important for the effective performance of 65 

many different tasks then dysregulation within these systems could reflect the hypothesised 66 

‘executive-failure’ contribution to aspects of on-going thought (McVay & Kane, 2010; 67 

Weissman, Roberts, Visscher, & Woldorff, 2006). 68 

Other aspects of unconstrained processing could reflect the importance of affective 69 

processes, or different modalities of processing. On-going thought is linked to mood state: 70 

Experimental inductions of mood (Smallwood, Fitzgerald, Miles, & Phillips, 2009; Smallwood 71 

& O'Connor, 2011), as well as natural fluctuations (Poerio, Totterdell, & Miles, 2013; Ruby, 72 

Smallwood, Engen, & Singer, 2013) impact on on-going thought. Contemporary accounts of 73 

emotional processing emphasise the role of limbic regions including the amygdala (Bzdok, 74 

Laird, Zilles, Fox, & Eickhoff, 2013; Lindquist, Wager, Kober, Bliss-Moreau, & Barrett, 2012) 75 

and anterior aspects the insula (Touroutoglou, Hollenbeck, Dickerson, & Barrett, 2012), 76 

suggesting these regions may be important in determining affective aspects ofon-going thought. 77 

Psychological studies of on-going thought also suggest that another important dimension of 78 

unconstrained processing may reflect the different modalities of processing (Konishi, Brown, 79 

Battaglini, & Smallwood, 2017; Smallwood et al., 2016). It has been shown, for example, that 80 

the visual system plays an important role in the expression of visual imagery (Ganis, Thompson, 81 

& Kosslyn, 2004; Kosslyn, Ganis, & Thompson, 2001). Recent work has extended this 82 

evidence to shown patterns of activity with visual regions are linked to the emergence of visual, 83 

non-verbal, elements of on-going thought (Raij & Riekki, 2017). It is also possible that 84 

sensorimotor processes may be implicated in language processing during unconstrained 85 

processing, given that a role for these regions in langauge processing extends beyond 86 

production (Bzdok et al., 2016; Pulvermuller, 2010; Pulvermuller & Fadiga, 2010). 87 
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2 Current study 88 

Our study aimed to identify patterns of intrinsic connectivity associated with different 89 

patterns of unconstrained states and examines their neuro-cognitive features from the 90 

perspectives outlined above. We used a large publicly available dataset, containing measures 91 

of resting-state functional magnetic resonance imaging (fMRI), and an accompanying self-92 

report instrument describing cognition experienced during the resting-state (Gorgolewski et al., 93 

2014; Nooner et al., 2012). We previously explored the relationships between patterns of on-94 

going thought and measures of neural activity, such as the fractional amplitude of low 95 

frequency oscillations, as well as the regional homogeneity of neural activity, in a sub sample 96 

of this data set (Gorgolewski et al., 2014). In this study we focused on connectivity, we applied 97 

sparse canonical correlation analysis (SCCA) to obtain a conjoined decomposition of self-98 

reports of experience with matrices of whole brain connectivity data. This analysis produces 99 

multivariate patterns that reflect dimensions of variation that are mutually constrained by both 100 

brain and experience. In this way we capitalize on the fact that self-reports of experience during 101 

scanning and descriptions of on-going neural processing provide complementary descriptions 102 

of unconstrained cognition. Our analysis, therefore, helps define, at a population level, the 103 

shared links between brain patterns and different types of experience. It is important to note 104 

that this approach necessarily conflates state and trait related aspects of any brain-experience 105 

associations that are identified in this manner, and this aspect of our design should be borne in 106 

mind when interpreting our results. As our analytic approach respects the multivariate nature 107 

of brain and behaviour space, it can accommodate complex many-to-many relationships 108 

between patterns of connectivity and self-reports, and therefore is sensitive to the possibility of 109 

complex relationships in the underlying data. We took two steps to explore the robustness of 110 

the components that our study identifies. First, we use permutation testing to examine the extent 111 

to which our components are different from those that would be achieved based on a null 112 

distribution. Second we established whether these neuro-cognitive dimensions are associated 113 

with performance on a battery of available cognitive tasks, including measures of executive 114 

control and intelligence. When interpreting the results produced through our analysis it is 115 

important to give greater weight to components that show evidence of robustness in both 116 

comparisons. 117 

We use the dimensions our analysis produces, and their links with cognitive function to 118 

evaluate the perspectives on unconstrained thought outlined earlier. ‘Representational’ 119 

accounts emphasise links with neural systems involved in memory, such as the limbic system, 120 
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and regions of transmodal cortex, such as the default mode network. They highlight states with 121 

lower levels of functional communication between these regions and those more directly 122 

involved in external action. In contrast, ‘executive-failure’ accounts emphasise dysregulation 123 

in attention and control networks as contributing to patterns of on-going thought that are linked 124 

to problems in domain general task performance. Affective accounts highlight limbic regions 125 

as important hubs in aspects of on-going thoughts linked to emotion. Finally, modality specific 126 

influences on unconstrained thought may depend on information codes represented in regions 127 

that specialise in that particular types of information, such as a role of visual cortex in 128 

experiences dominated by images. Notably, some views lead to dissociable predictions with 129 

respect to cognitive performance. For example, executive-failure accounts predict patterns of 130 

thoughts linked to worse performance on measures of cognitive function, while 131 

representational accounts makes the alternative prediction. 132 

3 Materials and Methods 133 

3.1 Participant 134 

We analysed 258 participants (females = 162; age range 18 – 55, M = 34.97, SD = 135 

12.24) obtained from the enhanced Nathan Kline Institute-Rockland sample (NKI-RS; 136 

http://fcon_1000.projects.nitrc.org/indi/enhanced/). Full details of the acquisition of this 137 

sample can be found in Nooner et al., 2012. We selected participants between 18 and 55 138 

years old as our sample, this choice allowed us to maximise the cohesive nature of our 139 

sample.  All the participants have the MRI data and less than 5 missing data points among the 140 

selected assessments. 141 

3.2 Cognitive measures and Questionnaires 142 

Based on prior studies examining the links between spontaneous thought and cognitive 143 

performance (see Mooneyham & Schooler, 2013) we selected established neuropsychological 144 

measures linked to executive control, abstract reasoning and intelligence. The meaures 145 

included the Delis-Kaplan Executive Function System (D-KEFS; Swanson, 2005), Wechsler 146 

Abbreviated Scale of Intelligence (WASI-II; Wechsler, 1999), and Wechsler Individual 147 

Achievement Test – Second Edition Abbreviated (WIAT-IIA; Wechsler, 2005).  In D-KEFS 148 

we selected the tower test (move accuracy ratio), colour-word interference test (errors 149 

inhibition/switching), verbal fluency test (letter fluency - category fluency), design fluency 150 
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test (design accuracy), trail making test (sequencing errors score + set-loss errors score + 151 

time-discontinue errors score), and the proverb test (a measure of abstract semantic 152 

reasoning). We used the rescaled score (M = 10, SD = 3) in our analysis. Tasks measures that 153 

reflected error rates (i.e. the colour-word interference test and trail making test) were 154 

reversed, so that high rescaled scores indicated better task performance. All the scores were 155 

transformed to z-scores. 156 

3.3 On-going cognition measure 157 

The New York Cognition Questionnaire (NYC-Q) is a self-report tool used to assess 158 

the thoughts experienced at rest (Gorgolewski et al., 2014; Sanders, Wang, Schooler, & 159 

Smallwood, 2017). It assesses thoughts and feelings experienced during the resting-state 160 

period. The first section contains 23 questions about the content of thought. These questions 161 

covers the temporal, social, emotional aspects of spontaneous thoughts that have been shown 162 

to be important by prior studies (e.g. Ruby et al., 2013). Participants rated each question on a 163 

scale of 1 (Completely did not describe my thoughts) to 9 (Completely did describe my 164 

thoughts). The second section contains 8 questions about the forms thoughts take, capturing 165 

aspects of experience such as modality and detail associated with experience that prior 166 

studies suggest as important for spontaneous thoughts (Smallwood et al., 2016). Participants 167 

rated each question on a scale of 1 (Completely did not characterise my experience) to 9 168 

(Completely did characterise my experience).  In the current study we analysed the two 169 

sections together to provide single solutions that combined information on both the content 170 

form of experience. The full list of questions and the corresponding labels are presented in 171 

Table 1. The questionnaire was administrated once after the resting-state scan in order to 172 

assess experiences during the scanning session. For the full details of the NYC-Q, please 173 

refer to Gorgolewski et al., 2014. We have placed the questionnaire measure used in this 174 

study along with an example self-report collection task on GitHub at the following address: 175 

https://github.com/htwangtw/restingstate_thoughtreports. 176 

Table 1 The New York Cognition Questionnaire (NYC-Q) 177 

# Questions Labels 

Q01 I thought about things I am currently worried about Concerns 

Q02 I thought about people I have just recently met People 

Q03 I thought of people I have known for a long time (friends) Friend 

https://github.com/htwangtw/restingstate_thoughtreports
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Q04 I thought about members of my family Family 

Q05 I thought about an event that took place earlier today Today - Past 

Q06 I thought about an interaction I may possibly have in the future Social - Future 

Q07 I thought about an interaction with somebody that took place in the 
past Social - Past 

Q08 I thought about something that happened at a place very close to 
me Near Location 

Q09 I thought about something that made me feel guilty Guilt 

Q10 I thought about an event that may take place later today Today - Plan 

Q11 I thought about something that happened in the recent past (last 
couple of days but not today) Recent Past 

Q12 I thought about something that happened a long time ago in the 
past Distant Past 

Q13 I thought about something that made me angry Anger 

Q14 I thought about something that made me happy Happiness 

Q15 I thought about something that made me cheerful Cheerfulness 

Q16 I thought about something that made me calm Calm 

Q17 I thought about something that made me sad Sadness 

Q18 I thought about something that is important to me Importance 

Q19 I thought about something that could still happen today Today - Future 

Q20 I thought about something that may take place in the distant future Distant Future 

Q21 I thought about something that could take place in the near future 
(days or weeks but not today) Near Future 

Q22 I thought about personal worries Worries 

Q23 I thought about something that happened in a place far away from 
where I am now 

Distant 
Location 

Q24 In the form of images: Image 

Q25 In the form of words: Words 

Q26 Like an inner monologue or audiobook: Monologue 

Q27 Like a television program or film: Film 

Q28 Had a strong and consistent personal narrative: Narrative 

Q29 Had a clear sense of purpose: Purpose 

Q30 Vague and non-specific: Vague 

Q31 Fragmented and disjointed: Fragment 
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3.4 MR data processing 178 

3.4.1 Resting-state fMRI.   179 

We used resting-state fMRI to describe the general functional organisation of the 180 

brain. We selected resting-state multiband functional magnetic resonance imaging (R-181 

mfMRI;  TR = 1400msec; voxel size = 2mm isotropic; duration = 10 minutes) for our 182 

analysis. Functional and structural data were pre-processed using Configurable Pipeline for 183 

the Analysis of Connectomes (C-PAC; https://fcp-indi.github.io/) to interface with FMRIB’s 184 

Software Library (FSL version 5.0, www.fmrib.ox.ac.uk/fsl). Individual FLAIR and T1 185 

weighted structural brain images were extracted using Brain Extraction Tool (BET). 186 

Structural images were linearly registered to the MNI-152 template using FMRIB's Linear 187 

Image Registration Tool (FLIRT). The resting-state functional data were pre-processed and 188 

analysed using the FMRI Expert Analysis Tool (FEAT). X, Y, Z displacement and the three 189 

axis rotations were used to calculate the mean frame displacement (FD), characterising 190 

movement of each participant during the scanning session (Power et al., 2014). Mean of the 191 

absolute values for FD were later used to account for subject specific head motion. No global 192 

signal regression was applied. The individual subject analysis involved: motion correction 193 

using MCFLIRT; slice-timing correction using Fourier space time series phase-shifting; 194 

spatial smoothing using a Gaussian kernel of FWHM 6 mm; bandpass filtering (0.1 Hz < f < 195 

0.009 Hz); six motion parameters (as estimated by MCFLIRT) regressed out; cerebrospinal 196 

fluid and white matter signal regressed out (top five PCA components, CompCor method).  197 

3.4.2 Connectivity matrices 198 

To describe the functional architecture of the whole brain, we transformed the resting-199 

state BOLD time series into connection strength values of the different networks for each 200 

participant. The whole brain parcellation was obtained from connectivity-based functional 201 

parcellation created by Yeo and collegues (Yeo et al., 2011). The 7 network parcellation was 202 

used in the current study. We split the networks into two hemispheres and extracted clusters. 203 

Two voxels are considered connected only if they are adjacent within the same x, y, or z 204 

direction. This yielded 57 clusters from the Yeo 7 networks parcellation. The implementation 205 

of spatial clusters extraction was retrieved from python library Nilearn (Abraham et al., 2014; 206 

http://nilearn.github.io/, version 0.3.1). Next, we extracted and then averaged the time series 207 

of all voxels within each cluster to create a cluster specific time series. We used these time 208 

series to create region-to-region symmetrical correlation matrices representing the 209 

https://fcp-indi.github.io/
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correlations of the network signal that was computed for all the individual subjects. The off-210 

diagonal of each correlation matrix contained 1596 unique region-region connection strengths 211 

(i.e., the upper or lower trinagle of the network covariance matrix). This approach provided a 212 

measure of connection strength of the whole brain for each participant. Finally, Fisher’s r-to-213 

z transformation was applied to each network covariance matrix. 214 

3.5 Conjoint decomposition of functional connectomes and mind-215 

wandering measures 216 

3.5.1 Decomposition method 217 

We performed a sparse canonical correlation analysis (SCCA; see Hastie, Tibshirani, & 218 

Wainwright, 2015) on the functional connectomes and the NYC-Q reports, to yield latent 219 

components that reflect multivariate patterns across neural organisation and experience (For 220 

similar application, see Wang et al., 2017). SCCA maximised the linear correlation between 221 

the low-rank projections of two sets of multivatiate data sets with sparse model to regularise 222 

the decomposition solutions a process that helps maximise the interpretability of the results. 223 

The regularisation function of choice is L1 penalty, which produces ‘sparse’ coefficients, 224 

meaning that the canonical vectors (i.e., translating from full variables to a data matrix’s low-225 

rank components of variation) will contain a number of exactly zero elements. L1 226 

regularisation conducted (i) feature selection (i.e., select only relevant components) and (ii) 227 

model estimation (i.e., determine what combination of components best disentangles the 228 

neuro-cognitive relationship) in an identical process. This way we handle adverse behaviours 229 

of classical linear models in high-dimensional data. A reliable and robust open-source 230 

implementation of the SCCA method was retrieved as R package from CRAN (PMA, 231 

penalized multivariate analysis, version 1.0.9, Witten, Tibshirani, & Hastie, 2009). The 232 

amount of L1 penalty for the functional connectomes and the NYC-Q reports were chosed by 233 

cross-validation. The procedure is described below.  234 

3.5.2 Model selection 235 

We employed cross-validation (CV) to select the most useful model across population 236 

samples and avoid overfitting (Bzdok & Yeo, 2017). The amount of the two L1 penalty terms 237 

for the functional connectomes and the NYC-Q reports, respectively, were chosen by a nested 238 

K-fold CV, where the coefficient for the penalty were chosen using a grid search to maximise 239 

the quality of CV objective metric. The objective metric of choice cumulative explained 240 
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variances. The explained variance of each latent compoent was calculated using the squared 241 

canonical correlation. High explained variance suggests a high pattern recovery rate between 242 

the two data set. The sparse assumption is fundamentally in conflict with the statistical goal 243 

of finding compontents with high explained variance. Therefore we decided the number of 244 

components in the model before searching for the best parameter.  245 

We performed confound removal on functional connectomes and the NYC-Q reports as 246 

suggested by prior studies (Smith et al., 2015). We removed the effects of nuisance variables 247 

from the dataset. These confound variables were sex, age, and head motion indicated by 248 

Jenkinson’s mean FD (Jenkinson, Bannister, Brady, & Smith, 2002). The removal steps was 249 

performed on the training set in each CV fold. We standardized the confound by calculating 250 

the z-score, and also squared the three confound measures to account for potentially nonlinear 251 

effects of these confounds. The 6 resulting confounds were regressed out of both data 252 

matrices. The implementation of the confound removal method (Friston et al., 1994) was 253 

retrieved from python library Nilearn (Abraham et al., 2014; http://nilearn.github.io/, version 254 

0.3.1). 255 

The number of latent components was determined by a preliminary analysis with no 256 

sparsity and calculated the explained variances for the two datasets (i.e., brain network 257 

correlations and questionnaire ratings). The explained variance increased with the number of 258 

components and growth stablised at 10 components. We selected the number of components 259 

based on the point where the tangent stablised. This led to a model of  4 components, and it 260 

accounted for a total of 78% of the variance in connection strength and 29% of the variance 261 

in the self-report data. Next, we determind the two coefficients for the L1 penalty terms that 262 

was associated with the best model performance with 4 latent components. We searched for 263 

the best L1 penalty values between 0.1 and 0.9 in 0.1 increments, which resulted in 81 set of 264 

paramters. For the nested K-Fold CV, we first separate the data into 5 consecutive folds after 265 

shuffling the data and retained one fold as the evaluation set (N ~= 50); the other four folds 266 

were used as the development set. The development set was further separated into 5 folds for 267 

parameter selection and each fold (N ~=40) was used as the validation set once. The model 268 

was estimated on the training folds with all parameter sets, and after completion, we trained 269 

the model with the winning parameter on the whole develpment set and the finally tested the 270 

performance on the independent, unseen evaluation set. We selected the final parameters 271 

according to the best performance on the evaluation set across all folds of the outer CV loop 272 

(Figure 1). This parameter set is used to train on the full development set and tested on the 273 
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evaluation set. The parameter grid search and k-fold CV was conducted by the 274 

implementation in a Python library scikit-learn (Pedregosa et al., 2011; http://scikit-275 

learn.org/stable/, version 0.18.2). The detailed algorithm for selecting the penalty values are 276 

presented in  Appendix: Nested K-Fold CV. 277 

 278 

Figure 1. A diagram of the nested k-fold cross-validation with model selection. 279 

The model with the best test performance was selected as the final model. The final 280 

model’s sparsity coefficient are 0.8 (functional connectivity) and 0.5 (self-reports), and the 281 

out-of-sample explained variance was 48%. We used the ensuing canonical vectors of the 282 

winning SCCA model to compute the latent component scores. There are two sets of 283 

canonical scores in a latent compoent, a weighted sum of variables forms the canonical 284 

vectors. For each latent compoennt, we averaged the z-score of the canonical scores of the 285 

connection strength and NYC-Q as the combined scores. These scores described the 286 

summary of the experience with both the neural basis and the content reports.  287 

3.6 Test of component robustness 288 

After identifying the well performed components in compressing the brain-experience data, 289 

we examined the robustness of the four components in two different ways. The permutation 290 

test is a purely data-driven strategy that access the chance of discovering components in null 291 

samples. We also leveraged the brain-experience components to explain the cognitive 292 

functions, so that we can identify meaningful patterns by well-established cognitive 293 

measurements.  294 

3.6.1 Permutation test 295 

We used permutation testing to assess the robustness of the components identified through 296 

our analysis. We constructed a null distribution for each canonical component by holding the 297 
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functional connectivity data in place and randomising the row order of self-reports data. This 298 

permutation scheme broke the link of individual differences in the dataset, therefore testing 299 

the robustness of the components in the hypothetical population. By calculating the false-300 

discovery rate in the null distribution, we can conclude the possibility of discovering our 301 

components by chance with the given penalty coefficients. Hypotheses that are accepted with 302 

a 5% level of significance. In the current analyses we adopt the permutation test with the 303 

FWE-corrected p-value by Smith and colleagues (2015) with data argumentation to increase 304 

the size of the resampling datasets to 1000. The four components were compared to the first 305 

sparse canonical correlation of the permuted sample. The low-rank components are more 306 

relevant that the rest, therefore we yield more conservative p-value by comparing to the first 307 

canonical correlation only. We performed 5000 permutation tests to get enough estimates for 308 

4 decimal places.  309 

3.6.2 Group analysis 310 

To determine how patterns of unconstrained neuro-cognitive activity related to performance 311 

on the battery of cognitive tests, we conducted an independent statistical analysis on the 312 

identical subjects. A Type III multivariate multiple regression with Pillai’s trace test was 313 

applied to 4 individual scores for each of the latent components describing experience from 314 

the SCCA  were the independent variables, and the original 8 measures of cognitive 315 

performance were the dependent variables that we hoped to described by the linear 316 

combination of the latent components. Pillai’s trace test is considered to be the most powerful 317 

and robust statistic for general use (Huberty & Olejnik, 2006). The p-values reported were 318 

based on Bonferroni correction. We also performed a principal components analysis (PCA) to 319 

identify the patterns of covariance among the 8 measures of cognitive performance and 320 

compressed the data. The relation between the principle score and the 4 brain-expereince 321 

diemsnons identified through SCCA was examined in a linear regression model with Pillai’s 322 

trace test. The analysis was conducted in R (version 3.3.1).  The multivariate multiple 323 

regression was conducted in R (version 3.3.1) using function ‘Manova’ in R package ‘car’ 324 

(companion to applied regression, version 2.1-5).  325 

3.7 Code availbility 326 

The full analysis pipeline is freely avalible at https://github.com/htwangtw/patterns-of-327 

thought.  328 

  329 

https://github.com/htwangtw/patterns-of-thought
https://github.com/htwangtw/patterns-of-thought
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4 Results 330 

4.1 Determining constituent categories of experience 331 

We used Sparse Canonical Correlation Analysis (SCCA) to determine connectome-332 

wide dimensions that describe common variance shared by descriptions of brain and 333 

experience. This took as input individual scores for the connections between each of the 334 

regions extracted from Yeo’s 7 networks parcellation and the scores of each item of the New 335 

York Cognition Questionnaire (NYC-Q). 336 

We applied SCCA with nested 5-fold CV as the model selection strategy. We 337 

obtained a model of 4 canonical components with penalty levels of 0.8 on the functional 338 

connectivity and 0.5 on the NYC-Q that indicated the best out-of-sample prediction on our 339 

data (see 3.5.2 Model Selection). The canonical correlations of the 4 latent components were 340 

0.28, 0.19, 0.16, and 0.07. The latent components yielded by the best model are presented in 341 

Figure 2. For the ease of presentation and interpretation, we summarized the components as 342 

network-network connectivity instead of 57-by-57 connectivity matrices. The heat maps 343 

describe the network-to-network correlations while the word clouds describe the loadings on 344 

the self-report items. The components in full and the heat map for the self-report items can be 345 

found in Supplementary Materials. 346 

Component 1, describes patterns of reduced within network connectivity within all of 347 

the networks studied, with this pattern most prominent in the dorsal attention network. 348 

Between network connections are generally reduced, with the exception of visual to limbic. 349 

Sensorimotor was decoupled from all the other systems, and, in addition, the default and 350 

limbic were most decoupled from the attention networks. Experiential themes in Component 351 

1 are dominated by themes related to deliberate planning with a verbal component (high 352 

loadings on “words”, “monologue”, “today-plan”, “social-future”, “purpose” and 353 

“deliberate”). We refer to this pattern of reports as reflecting thoughts with “purpose”.  354 

Component 2 is dominated by relatively higher within and between network 355 

connections. Connectivity within each network was strong with the exception of the limbic 356 

network. Between network connections were stronger, with this pattern most apparent in the 357 

connections between limbic and ventral attention. In addition, the visual network was 358 

strongly correlated with the other networks. This component is dominated by emotional 359 

responses (high loadings on “anger”, “guilt”, “cheerfulness” and “happiness”) and social 360 
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content (“friends” and “people”). We refer to this pattern of reports as reflecting “emotional” 361 

experience. 362 

Component 3 emphasises reduced connections both between and within networks. 363 

Within network connectivity is weakest for the dorsal and ventral attention networks. Edge-364 

to-edge connections are low, with the ventral and dorsal attention and fronto-parietal 365 

networks showing reduced correlations with each other as well as the visual and sensorimotor 366 

systems. This component was characterised by themes linked to personal “importance” with 367 

social temporal contents (“distant future”, “near future”, “social past”, “family” and “recent 368 

past”). We refer to this pattern of reports as reflecting “personal importance”. 369 

Component 4 has the most heterogeneous pattern of within and between network 370 

connectivity. It is associated with stronger connections within networks with the exception of 371 

the limbic system. In addition, the visual system was strongly connected to all other 372 

networks, with this pattern most apparent for the limbic network. In contrast, lower network-373 

to-network connectivity was observed between the default mode and sensori-motor and 374 

attention networks. This component is characterised by experiential patterns reflecting a 375 

modality difference in experience, with the highest loadings on “images” and lowest on 376 

“inner monologue”. We refer to this pattern of reports as describing “modality”.  377 

 378 

Figure 2. Unique neuro-cognitive dimensions of population variation revealed by sparse 379 

canonical correlation analysis of measures of whole brain connectivity and self-reported 380 
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descriptions of on-going experience. The heat map describes the canonical variate of the 381 

network-to-network connectivity between different Yeo networks. The connectivity matrices 382 

descibes the coeffiecents from the model, seperated into within and between network 383 

relationships. The word clouds reflect the coeffiencts on the relevant self-report items. In 384 

both cases the colour bars indicate the magnitudes of the coefficients. A detailed version of 385 

the canonical variates and alternative presentation of the self-report coefficients can be found 386 

in Supplimentary Material Figure S1- S5.  387 

4.2 The relationship between neuro-cognitive components and cognitive 388 

function assessed in the laboratory 389 

Having documented four neuro-cognitive dimensions, we next examined the robustness of 390 

the components using two complementary approaches. We first used a permutation test to 391 

identify the chance of discovering components in a null samples as employed by Smith and 392 

colleagues (2015). The top three components passed the permutation test and the 4th 393 

component showed variance that was similar to that produced in a null sample (Component 1 394 

p = 0.0002; Component 2 p = 0.0010; Component 3 p = 0.0204, Component 4 p = 0.998, α = 395 

0.05). This analysis suggests that Components 1 – 3 are unlikely to have occurred by chance. 396 

Component 4 may be a Type II error and so we discuss this component in only a limited 397 

manner moving forward. 398 

Our next test of the robustness of our components is whether they explained unique 399 

patterns of expertise in our battery of cognitive tasks. We used multiple multivariate 400 

regression model in which performance on the battery of selected tasks was the dependent 401 

variables and the individual scores for each of the canonical components describing 402 

experience from the SCCA were the independent variables. In this analysis two of the four 403 

canonical components described significant variance in our battery of tasks at multivariate 404 

level: Component 1 (F(8, 246) = 2.21, p = .027, η2
p = .067) and Component 3 (F(8, 246) = 405 

2.56, p = .024, η2
p = .068).  406 

In the univariate results of the significant component, Component 1 was linked to 407 

good performance in proverb test (β = 0.48, t(251) = 3.27, p = . 006, 95% CI [0.191  0.766]) 408 

and both fluid intelligent tests WASI (β = 0.39, t(251) = 2.74, p = . 033, 95% CI [0.111 409 

0.677]) and WIAT (β = 0.45, t(251) = 3.15, p = . 009, 95% CI [0.167 0.724]). Component 3 410 

showed a reversed pattern of the cognitive functions related to Component 1: proverb test (β 411 

= -0.45, t(251) = -0.14, p = . 007, 95% CI [-0.176 -0.727]); WASI (β = -0.42, t(251) = -3.10, 412 
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p = . 012, 95% CI [-0.151 -0.693]) and WIAT (β = -0.41, t(251) = -3.06, p = . 012, 95% CI [-413 

0.148 -0.682]). The relationships between the neuro-cognitive dimensions and the pattern of 414 

relationships on the full cognitive battery and the adjusted variable scatter plots of the 415 

significant results are summarized in the form of a heat map in Figure 3. 416 

 417 

Figure 3. The relationship between the different neural-cognitive components and the 418 

measures assessed in the cognitive battery. The components 1 and 3 were significant at the 419 

multivariate level determined by multiple multivariate regression, indicated by the asterisk 420 

outside of the heat map. The cells with asterisk(s) indicates the significant resluts from the 421 

univariate test (bonferroni corrected) and the parameter estimates for each variable. CWI – 422 

Colour-word interference, DF – Design fluency, Pro- Proverbs, TOW – Tower of London, 423 

TMT – Trail making task, VF- Verbal Fluency, WASI – Wechseler Adult Intelligence Test, 424 

WIAT – Weschler Individual Attainment Test. P-value significant codes:  0 ”***” 0.001 ”**” 425 

0.01 ”*” .  426 

Finally, we performed a simple principle commponent analysis on the eight task 427 

measures to explore the associations between experience and the structure of the laboratory 428 

data. The aim of this analysis was to see if the pattern retrieved from the univariate level in 429 

the previous multiple multivariate regression was related to the internal structure of the data. 430 

Component selection was determined based on the scree plot, and we accepted one 431 

component explaining 39% of the variance. The principle component loaded on the 432 

intelligence measures and the proverb test. We fitted a linear model to this data to understand 433 
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the relationship to the four canonical components. The results are reported in Figure 4. The 434 

overall linear model was significant (F(4, 253) = 5.43, p = .0003). In the linear regression 435 

model, Component 1 (β = 0.82, t(253) = 3.5, p = . 001, 95% CI [0.36 1.29]) showed 436 

significant contribution to explaining the task principle component. Component 3 showed a 437 

negative correlation to the task components (β = -0.69, t(253) = -3.04, p = .003, 95% CI [-438 

1.13 -0.24]). The relationships between tasks and the neuro-cognitive components here were 439 

similar to the ones uncovered by the multiple multivariate regression. In this analysis 440 

Component 4 (β = 0.442, t(253) = 3.09, p = .002, 95% CI [0.16 0.72]) showed a significant 441 

contribution in the regression model, but it did not pass the permutation test of robustness (p 442 

= 0.998). The related results should be treated cautiously. Together with our prior analysis, 443 

these results suggest that Components 1 and 3 are the most robust components identified in 444 

our study. 445 

446 
Figure 4. The principle component and its relationship to the different neural-cognitive 447 

components. The heat map describes the principle component of the task battery, and the 448 

scatter plots describe the association with the components identified in our study. Component 449 

1 and 3 passed the permutation test for component robustness significantly contributed in 450 

explaining the principle component of the task. Component 4 showed a significant 451 

contribution in the regression model, but it did not pass the permutation test. The related 452 

results should be treated cautiously. 453 

  454 
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5 Discussion 455 

We set out to describe different modes of neuro-cognitive patterns derived through the 456 

simultaneous decomposition of whole brain connectivity data with self-reports of on-going 457 

experience. We used a whole brain parcellation that describes cortical function in seven 458 

independent networks (Yeo et al., 2011). We combined this data with self-reports of the 459 

experience of our participants at rest, using a multivariate approach that allows for the 460 

possibility of many-to-many mappings between neural patterns and on-going cognition. Our 461 

analyses identified four stable canonical components, describing unique dimensions of neural-462 

experiential variation. Permutation testing demonstrated the statistical robustness of 463 

Components 1-3. Furthermore, two components (1 and 3) described independent patterns of 464 

performance in a battery of commonly used cognitive measures. This association with 465 

cognitive performance that establishes a source of independent validity for these neuro-466 

cognitive components since they are related to independent measures of cognitive performance. 467 

We next consider the fit between the dimensions produced by our analysis and theoretical 468 

views of unconstrained neuro-cognitive processing. 469 

We found evidence broadly consistent with contemporary representational accounts of 470 

unconstrained processing. The neural patterns described by Component One reflect a pattern 471 

of reduced correlation between regions with links to memory and representation (e.g. limbic, 472 

default mode) from those with links to external behaviour (e.g. visual and sensorimotor cortex 473 

and attention networks). This pattern was associated with experiences characterised by a sense 474 

of purposefulness, and with verbally mediated content that was social and temporal in nature. 475 

Participants high on this dimension were proficient at generating abstract semantic links and 476 

performed well on measures of reasoning and intelligence. Together the features of Component 477 

One support the hypothesis that the functional decoupling of systems important for memory 478 

and representation are important for aspects of unconstrained cognition (Smallwood, 2013). 479 

This capacity may arise from the topographical organisation of the cortex, in which neural 480 

systems that can take on more transmodal properties tend to be located in regions that are more 481 

distant in functional and structural terms (Buckner & Krienen, 2013; Margulies et al., 2016; 482 

Mesulam, 1998). This spatial location may allow neural signals in these regions to take on 483 

properties that are discrepant from the neural signal more closely tethered to inputs describing 484 

the external world (Buckner & Krienen, 2013; Friston, 2013). The pattern identified by 485 

Component One, therefore, may reflect a pattern of population variation describing the 486 

hypothesised role of functional decoupling of memory and representational systems plays in 487 
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the generation of more abstract aspects of human cognition (Margulies et al., 2016; Mesulam, 488 

1998). Importantly, in our prior work, limbic and default mode networks were the most distant 489 

in functional connectivity terms from unimodal systems (Margulies et al., 2016). 490 

Our data also highlights neural patterns that capture the hypothesised influence of 491 

attention and control on on-going thought (McVay & Kane, 2010). Component 3 highlights 492 

links between reduced connectivity within attention and control systems and patterns of 493 

thought that emphasise personal importance. This is associated with worse performance on 494 

measures of intelligence and reasoning. The combination of a focus on personally important 495 

themes linked to poor performance on measures of general aptitude, captures the hallmark 496 

psychological features of the current concerns X executive-failure accounts of on-going 497 

thought (McVay & Kane, 2010). This view suggests that failures in attentional control lead to 498 

highly personally relevant cognition to intrude into ongoing thought, leading to lapses in task 499 

performance. Importantly, the neural pattern described by this component emphasises 500 

dysregulated connectivity both within and between networks implicated in attention and 501 

control by task-based studies (Duncan, 2010). Our prior work established that spontaneous 502 

mind-wandering is linked to cortical thinning within regions linked to attention and control, 503 

such as the intra-parietal sulcus (Golchert et al., 2017). Spontaneous mind-wandering has been 504 

linked to worse cognitive control (Robison & Unsworth, 2018), as well as showing stronger 505 

links with attention related problems, including ADHD (Seli, Smallwood, Cheyne, & Smilek, 506 

2015). Together with these prior studies, our data suggests that population variation in the 507 

intrinsic neural functioning within networks with an established role in external task 508 

performance captures the hypothesised contribution of executive-failure to patterns of on-going 509 

thought. 510 

The method of decomposition used in the current study also highlighted patterns related to 511 

affective processing and the modality of the experience that are similar to those seen in our 512 

prior work that applied principal components analysis (PCA) to self-reported data only. 513 

Component Four places experiences with visual features (“images”) in opposition to 514 

experiences with verbal features (“monologue”), capturing dissociations between visual and 515 

verbal thinking observed in our prior studies (Konishi et al., 2017; Medea et al., 2016; 516 

Smallwood et al., 2016). The accompanying neural pattern were associated with higher 517 

connectivity between the visual network with other networks, in particular the limbic system. 518 

It is important to note that our permutation analysis failed to validate this component, so despite 519 

its association with task performance using the PCA analysis it should be treated with relative 520 
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caution. Component Two loads on emotional experiences (“cheerfulness”, “anger”, “guilt” and 521 

“happiness”) with the exception of those that are unhappy (“sad”). In neural terms this 522 

component was characterised by high levels of connectivity, however, unlike Component Four, 523 

this was highest between limbic and ventral attention networks. This pattern of coupling is 524 

consistent with accounts that emphasise interactions between saliency and limbic systems in 525 

affective processing (Touroutoglou et al., 2012). In the case of Component Two permutation 526 

testing indicated this component was likely to be robust in statistical terms, however, we did 527 

not observe associations with task performance. As with Component Four, interpretations of 528 

Component Two should be made with caution in lieu of more empirical work.  529 

Before closing it is worth considering several important limiting factors of our study. We 530 

focused on patterns of population variance in unconstrained neuro-cognitive processing that 531 

were measured once in each individual. Our study, therefore, cannot separate the influences 532 

state and traits on our observed components. Treating patterns of unconstrained processing as 533 

a trait is common in both the psychological (McVay & Kane, 2009; Smallwood, Ruby, & 534 

Singer, 2013) and neural domains (Smith et al., 2015). Nonetheless, it remains an open 535 

question how consistent these components will be across individuals over time, as well as 536 

which aspects may be better described as traits. Importantly, by its very nature there are 537 

dimensions of experience that our study cannot adequately address. We cannot, for example, 538 

identify brain-experience associations that are highly dynamic in nature and in particular 539 

those that change rapidly within an individual. Insight into this issue could be achieved by a 540 

focus on dynamic rather than static connectivity (Kucyi, 2017). For example, the application 541 

of techniques such as sliding window analysis (Chang & Glover, 2010) or Hidden Markov 542 

models (Vidaurre, Smith, & Woolrich, 2017) to fMRI could provide information that would 543 

complement our analyses. However, it may also be more important to examine these across 544 

multiple sessions within the same individuals, as this would also make it most possible to 545 

dissociate state from trait related influences on neural activity (Mueller et al., 2013). There 546 

are also types of experience that may be difficult to assess using the measure of retrospective 547 

experience sampling we have employed (Smallwood & Schooler, 2015). For important 548 

features of experience, such as whether it has evolving features (Mills, Raffaelli, Irving, Stan, 549 

& Christoff, 2017), or when the participant is unaware of the content of their experience 550 

(Schooler, 2002), these experiential features may be best assessed using experience sampling 551 

techniques that capture momentary elements of experience (Smallwood, 2013).  552 

 553 
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There are a number of methodological improvements that could enhance future studies of 554 

brain-experience association. A recent benchmark study by Ciric and colleagues (Ciric et al., 555 

2017) shows that scrubbing can improve the performance of resting state analyses. Regarding 556 

to the analysis pipeline, we gained hyper-parameters and best model with nested-CV an 557 

approach that can help prevent overfitting (Bzdok & Yeo, 2017). There are also alternative 558 

ways that could provide better tests of the robustness of the components we identified. We 559 

assessed the validity of the components in three different ways; 1) with a data-driven, non-560 

parametric permutation test (Smith et al., 2015) that establishes the statistical validity of the 561 

identified components and 2) by establishing the relationship between the laboratory 562 

cognitive measures and 3) by consideration of their links with contemporary theoretical 563 

accounts of ongoing cognition. In our study, Components 1 and 3 were statistically 564 

significant in both cases and fitted well with contemporary accounts of ongoing cognition. 565 

Accordingly we place encourage readers to focus on these patterns from our data. There are 566 

alternative strategies that could help validate the robustness of patterns of brain-experience 567 

association. One approach could be to compare the relationship between multiple sessions 568 

within the same individual (Poldrack et al., 2015) and to have a larger sample that would 569 

allow the reproducibility of these results through a formal split-half validation procedure. To 570 

achieve this latter aim for future studies, we have placed the questionnaire measure used in 571 

this study along with an example self-report collection task on GitHub at the following 572 

address: https://github.com/htwangtw/restingstate_thoughtreports. We encourage interested 573 

investigators to apply these measures in their resting-state investigation and to also upload the 574 

resultant data onto open fMRI. These studies could be used in conjunction with the openly 575 

access data used in this study to enable future investigations the opportunity to cross validate 576 

experiential analyses in a more sophisticated manner than we have been able to achieve in 577 

this study. The analysis pipeline of the current study can be further unified into one frame 578 

work that benefits from both validation strategies. We can include the number of components 579 

along with penalty coefficients in the hyper-parameters determined in the CV process, or 580 

determine the best penalty terms with the first component. The permutation test will then 581 

identify the reliable components occurring above chance level. After all the data-driven 582 

component selection, we can examine the survived components through their relations with 583 

well-documented cognitive measures and conclude the meaningful patterns. Finally, it is 584 

likely that our measure of on-going thought lacks important questions regarding the content 585 

of experience. It will be important, therefore, in the future to examine the relationships of the 586 

type described in this study with a more exhaustive description of on-going experience. We 587 

https://github.com/htwangtw/restingstate_thoughtreports
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hope that by publishing our questionnaire collection task in a GitHub repository we will be 588 

able to harness the power of the broader community to help generate and test plausible 589 

questions for use in future studies. 590 
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9 Appendix: Nested K-Fold CV 608 

1. Separate the model into 5 folds. In every iteration, 1 fold is the test set and the rest are 609 
the development set. 610 

2.  For each outer fold: 611 

a. For each parameter set to be considered: 612 

i.  Separate the development set into 5 folds. . In every iteration, 1 fold is 613 
the validation set and the rest are the training set. 614 

ii. For each inner fold: 615 

1. Train the model on the training set 616 

2. Calculate test error in the validation set 617 

iii. Compute the average inner CV test error. 618 

b. Choose the best parameter set with minimum average test error.  619 

c. Use this parameter set to train on the development set. 620 

d. Calculate test error in the test set 621 

3. Determine the optimal model based on the outer fold test error  622 

4. Train the full dataset on the optimal model 623 

  624 
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