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Abstract. One of the main problems associated with the use of 6 DOF
parallel robots remains the solving of their kinematic models. This is
rarely possible to analytically solve their models thereby justifying the
application of numerical methods. These methods are difficult to imple-
ment in an industrial controller and can cause solution bifurcations close
to singularities resulting in following an unplanned trajectory. Recently,
a 3-PPPS robot with U-shaped base was introduced where an analytical
kinematic model can be derived. Previously, quaternion parameters were
used to represent the orientation of the mobile platform. To allow for
simpler model handling, this article introduces the use of Euler angles
which have a physical meaning for the users. Compact writing of the
direct and inverse kinematic model is thus obtained. Using algebraic and
cylindrical decomposition for the workspace, this provides a simpler rep-
resentation of the largest domain without singularity around the “home”
configuration.
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1 Introduction

The first all-electric robot, namely the Stanford Arm, was created in 1969 by Vic-
tor David Scheinman in the Stanford Artificial Intelligence Laboratory (SAIL).
By using 6-axis, (five revolute joints and one prismatic joint), this design permits
a closed-form kinematics solution which could easily be calculated despite the
limitations of the first computers. [1]. These robots are classified as serial robots
since all the bodies and joints form a serial chain. Thirty years later, the majority
of industrial robots still have a simple architecture derived from this robot [2].
Also, for many years, serial robots have been designed with two distinct units:
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the robotic arm to position the end-effector and then the wrist to orient the
end-effector, meaning (i) three articulations for translation and (ii) three pivot
joints with concurrent axes for rotation. We can then summarize their kinematics
characteristics as (i) a trivial direct kinematic model, (ii) an inverse kinematic
model with only eight easily identifiable solutions (elbow up, elbow down. shoul-
der left, shoulder right) and (iii) a regular workspace (spherical, cylindrical or
cubic). The main problem with serial robots is their lack of rigidity which is
solved by more mass resulting in less accelerations. If the parallel robots can
solve this problem, they bring new challenges like (i) the complexity of their
kinematic models, (ii) the presence of singularities inside their workspace and
especially (iii) a low ratio between the workspace and the size of the robot [3].
Seeking a compromise led to the creation of (i) hybrid robots, and (ii) paral-
lel robots with several actuators per kinematics chain (not fully parallel). The
Tripteron is the parallel robot with three degrees of freedom having the simplest
kinematic model which is as a simple Cartesian serial robot of the PPP type [4].
For spatial parallel robots, finding architectures with simple kinematic models
remains an open problem. The purpose of this article is to use the 3-PPPS robot
with a U-shaped base where the Euler angles are implemented for the orientation
of the mobile plate-form [9].

The outline of this paper is as follows. First, we introduce the 3-PPPS parallel
robot design parameters with simplifications which permit to study its joint
space and workspace in a three dimensional space. In the next section, we will
define the inverse and the direct kinematic models. In the later section, we
study its singular configuration to provide the definition of an aspect included
the “home” pose of the robot.

2 Parameters and kinematics of the 3-PPPS parallel

robot with U-shape base

The results of the first work done at Monash University on the 3-PPPS in-
troduced the MEPaM robot [5]. In the first design, the first actuators of the
kinematics chains are located in orthogonal directions. For each leg, the three
prismatic joints are placed orthogonally. With this design, it has been shown
that the robot admits up to six solutions to the direct kinematic problem and
it is able to follow non-singular assembly mode-changing trajectories. Another
invariant is that the parallel singularity postures depend only on the orientation
of the end-effector. Thus it is possible to study the workspace in a 3 dimen-
sional space only. For the MEPaM manipulator, using a variable change, the
joint space can also be studied in a 3 dimensional space. These properties al-
low us to calculate and display the domains without singularities of this robot.
Another architecture was introduced where the two first actuated joints are lo-
cated on the faces of a prism [5]. From the kinematic point of view, this design
is simpler than the MEPaM, but the joint space needs to be analyzed in a five
dimensional space. Recently a novel design was proposed where the actuated
prismatic joints were located in a U-shaped base, as shown in Figure 1 [9]. To
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Fig. 1. The 3-PPPS parallel robot and its parameters in its “home” pose with the
actuated prismatic joints in blue, the passive joints in white and the mobile platform
in green

define the end-effector orientation, the A, B and C angles define the rotation
around the X, Y and Z axes respectively [8]. We will use the following rotation
matrix R = R(x)R(y)R(z)

R =





CθCσ −CθSσ Sθ

SφSθCσ + CφSσ −SφSθSσ + CφCσ −SφCθ

−CφSθCσ + SφSσ CφSθSσ + SφCσ CφCθ



 (1)

where CX = cos(X) and SX = sin(X) for X = φ, θ or σ associated with the A,
B and C angles respectively.

2.1 Geometric parameters

Similarly to [9], the three kinematics chains are identical and comprised of two
actuated prismatic joints plus one passive prismatic joint and a spherical joint
(Figure 1). The axes of the first three joints form an orthogonal reference frame.
It may be noted that the placement order of the passive and active joints is not
important. Thus, all the passive joints can be moved on the base of each leg to
simplify the design. We have defined an origin Ai for each leg as

A1 = [2, 0, 0]T , A2 = [0, 2, 0]T , A3 = [0,−2, 0]T (2)

The coordinates of the point C1 are ρ1x, ρ1y and ρ1z, where the last two are
actuated. The coordinates of C2 and C3 are obtained by a rotation around the
z axis by π/2 and −π/2, respectively.

C1 = [ρ1x, ρ1y, ρ1z]
T , C2 = [−ρ2y, ρ2x, ρ2z]

T , C3 = [ρ3y,−ρ3x, ρ3z]
T (3)

The origin on the mobile equilateral platform is similar to the parameters
used in [9], meaning on the mobile platform.

V1 = [0, 0, 0]T , V2 = [−
√
3/2, 1/2, 0]T , V3 = [−

√
3/2,−1/2, 0]T (4)
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Only the mobile platform orientation is positioned at the “home” posture to
obtain φ, θ, σ equal to zero. The moving platform coordinates, in the fixed
reference frame, can be written as

Wi = RVi +P where P = [x y z]T (5)

2.2 Constraint equations

From the nine equations coming from Eq. 5 and the position of points Ci, we
can easily remove the passive joints, and thus obtain new constraint equations

ρ1y − y = 0 (6)

ρ1z − z = 0 (7)

CθCσ

√
3− CθSσ − 2(ρ2y + x) = 0 (8)

√
3(SφSσ − CφSθCσ) + CφSθSσ + SφCσ + 2(ρ2z − z) = 0 (9)

CθCσ

√
3 + CθSσ + 2(ρ3y − x) = 0 (10)

√
3(SφSσ − CφSθCσ)− CφSθSσ − SφCσ + 2(ρ3z − z) = 0 (11)

We can notice that the symmetrical property of the mobile platform remains
after the elimination of ρ1x, ρ2x and ρ3x.

2.3 Change of variables

We introduce a change of variables to reduce the joint space dimension from six
to three where three coordinates are equal to zero [9].

µ1x = ρ1x − ρ2y µ1y = ρ1y − ρ1y = 0 µ1z = ρ1z − ρ1z = 0 (12)

µ2x = ρ2x − ρ1y µ2y = ρ2y − ρ2y = 0 µ2z = ρ2z − ρ1z (13)

µ3x = ρ3x + ρ2y µ3y = ρ3y − ρ2y µ3z = ρ3z − ρ1z (14)

The remaining six parameters are three passive prismatic joints and three active
prismatic joints. With this change of variables, the coordinates of the mobile
platform are also translated but its orientation does not change.

x′ = x− ρ2y y′ = y − ρ1y z′ = z − ρ1z (15)

This simplification is similar to the case where the three first prismatic joints are
orthogonal as in [6]. If we apply the change of variable (12-14) in the constraint
equations (6-11), we obtain the following

(√
3Cσ − Sσ

)

Cθ − 2x′ = 0 (16)
(

−
√
3CφSθ + Sφ

)

Cσ +
(√

3Sφ + CφSθ

)

Sσ + 2µ2z = 0 (17)
(√

3Cσ + Sσ

)

Cθ + 2µ3y − 2x′ = 0 (18)
(

−
√
3CφSθ − Sφ

)

Cσ +
(√

3Sφ − CφSθ

)

Sσ + 2µ3z = 0 (19)
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3 Inverse and direct kinematics of the 3-PPPS parallel

robot

Finding the solutions of the direct geometric model of a parallel robot is often
a difficult problem, especially for robots with six degrees of freedom. If in [9]
for the mechanism studied, a compact form was found, the use of Euler angles
could lead to more complex expressions. With the Siropa library, it is possible to
obtain the kinematic models by using the Gröbner based elimination method by
changing the constraint equation in an algebraic form. A classical approach can
be used to transform the trigonometric equations to algebraic ones as in [10].

3.1 Inverse kinematic model

Thanks to the choice of the origin on the mobile platform which is fixed at C1,
it is straightforward to find the joint positions of the first kinematics chain :

ρ1y = y and ρ1z = z (20)

For the two other kinematics chain, the result keeps the symmetric property and
becomes

ρ2y =
Cθ

(

Cσ

√
3− Sσ

)

2
− x (21)

ρ2z =

√
3 (CφSθCσ − SφSσ)− CφSθSσ − SφCσ

2
+ z (22)

ρ3y = −
Cθ

(

Cσ

√
3 + Sσ

)

2
+ x (23)

ρ3z =

√
3 (CφSθCσ − SφSσ) + CφSθSσ + SφCσ

2
+ z (24)

The computational cost to solve the inverse kinematics handles six trigonometric
functions (sine and cosine), the square of three, 14 multiplications/divisions and
11 additions/subtractions if we used the code generation of Maple with the
optimization function to create intermediary variables.

3.2 Direct kinematic model

The computation of the position does not depend on the choice of parameters
for the orientation. For the position, we have the similar results than in [9].

x =
µ2z

2µ3y − µ2zµ3yµ3z − µ3y/2

(µ2z − µ3z + 1) (µ2z − µ3z − 1)
(25)

±
√

(µ2z
2 − µ2zµ3z + µ3z

2 − 3/4) (µ2z
2 − 2µ2zµ3z + µ3y

2 + µ3z
2 − 1)

(µ2z − µ3z + 1) (µ2z − µ3z − 1)
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For the orientation, for any values of x, we obtain

θ1 = ± arccos



2

√

µ2

3y − µ3yx+ x2

3



 and θ2 = ±(π − θ1) (26)

σ1 = ± arccos





µ3y − 2x

2
√

µ2

3y − µ3yx+ x2



 and σ2 = ±(π − σ1) (27)

φ1 = ± arccos

(√

3/4− ρ2
2z + ρ2zρ3z − ρ3z2

ρ2
3y − ρ3yx+ x2

)

φ2 = ±(π − φ1) (28)

The computational cost to evaluate one solution comprises three arccos func-
tions, three square roots, 17 multiplications, 8 divisions, 8 additions, and 12
subtractions. In [9], it was shown that there exists four direct kinematic solu-
tions for any joint values. We have a similar result because two sets of θ can
define the same mobile platform orientation. So, we keep that a value for θ, such
that π/2 ≤ θ ≤ π. We have 16 solutions considering all θ, σ and φ permutations
but only four are solution of the constraint equations.

4 Workspace and singular configurations of the 3-PPPS

parallel robot

From the constraint equations, we can easily determine the inverse Jacobian of
the robot and its parallel singularities

CφC
2

θ (SφSθSσ − CφCσ) = 0 (29)

As Eq. 29 is factored, we can isolate three surfaces as is shown in Fig.2. The first
term is represented by the blue surface, the second term by the green surface
and the last one by the red surface.

We can also notice that the coordinate change does not change the singularity
locus in the joint space, [9]. However, the computational cost is higher because in
the Gröbner based elimination, we have to remove six more parameters that are
required with quaternions. Using the Cylindrical Algebraic Decomposition, the
aspect is characterized including the robot “home” position, [7]. This is done by
only two cells. The orientation workspace has the following distinct limitations
which can be directly related to the platform rotations, figure 3:

– Along the θ and φ angles, the complete range of motion is from −π/2 until
π/2;

– Along the φ angle, the complete motion ranges from −π until π intersecting
a plane at φ = π/2, if α > 0 then −π/2 ≤ θ ≤ 0 the this plane segment
looks like a rectangle;
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Fig. 2. The three singularity surface of the
3-PPPS parallel robot

Fig. 3. The aspect of the 3-PPPS parallel
robot around the “home” pose

– On the other side, accordingly, intersecting a plane at φ = −π/2, if α < 0
then 0 ≤ θ ≤ pi/2 meaning a symmetrical rectangle appears. These two
symmetrical rectangles will evolve towards the other side as φ is changed
from π/2 to−π/2. In the middle, intersecting a plane at φ = 0, the workspace
is a square with sides at −π/2 and π/2.

Hence, the θ range divides itself differently if α is positive or negative with
traveling symmetrical rectangles. This results from the selected symmetries and
axis positions. These traveling or sliding rectangles actually produce two inter-
esting saddle points on the workspace limit where α = 0 and θ = 0. Hence,
the graph solution is geometrically confirming the displacement limitations that
can be intuitively understood from manipulator observation. These workspace
distinct limits come from the passive prismatic joints.

5 Conclusions

In this article, we introduced kinematics modeling where the orientation rep-
resentation of the 3-PPPS mobile platform implemented the Euler angles as
it is often represented on many machine tools followed by a significant variable
change. We can see that the equations of the direct and inverse kinematics model
remain very compact. An estimate of the calculation cost is presented. Since the
equations are quadratic, it is possible to obtain an analytical expression which
is not possible for most parallel robots with 6 degrees of freedom. A representa-
tion of the aspect encompassing the “home” position is given. Conversely to the
5-axis Orthoglide [11] or 4-axis Kanuk [12], the 3-PPPS parallel robot is using 6
identical linear or prismatic actuators as a Gough-Stewart platform. Inside each
kinematic chain, the passive and active joint order can be changed to obtain, for
example, the passive joint fixed into the base without altering the singularity
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and aspect results. Future works will be done to characterize the stiffness model
as well as to know the influence of the joint limits in the spherical joints.
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8. Lamikiz A. , López de Lacalle L. N. , Ocerin O., Dı́ez D., and Maidagan E., “The
Denavit and Hartenberg approach applied to evaluate the consequences in the tool
tip position of geometrical errors in five-axis milling centres,” Int J Adv Manuf
Technol (2008) 37:122139.

9. Chablat D., Baron L., Jha R., “Kinematics and Workspace Analysis of a 3PPPS
Parallel Robot with U-Shaped Base,” International Design Engineering Technical
Conferences & Computers and Information in Engineering Conference, 2017.

10. Moroz G., Rouiller F., Chablat D., Wenger P., On the determination of cusp points
of 3-RPR parallel manipulators, Mechanism and Machine Theory, Vol. 45(11), pp.
1555-1567, 2010.

11. Caro S., Chablat D., Lemoine P., Wenger P., Kinematic Analysis and Trajectory
Planning of the Orthoglide 5-Axis, Proceedings of the ASME 2015 , International
Design Engineering Technical Conferences & Computers and Information in Engi-
neering Conference, Aug 2015, Boston, United States, 2015.

12. Rolland L. The Manta and the Kanuk: Novel 4-DOF Parallel Mechanisms for
Industrial Handling. In proceedings of the ASME, Dynamic Systems and Control
Division - 1999, vol 67, pp 831 - 844, Conference IMECE’99, Nashville, novembre
14-19, 1999.


