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KARLIN-MCGREGOR MUTATIONAL OCCUPANCY PROBLEM

REVISITED

THIERRY E. HUILLET

Abstract. Some population is made of n individuals that can be of p possible
species (or types). The update of the species abundance occupancies is from a
Moran mutational model designed by Karlin and McGregor in 1967. We first
study the equilibrium species counts as a function of n, p and the total muta-
tion probability ν before considering various asymptotic regimes on n, p and ν.

Running title: KMG Model with Mutations.

Keywords: Species abundance; Karlin-McGregor-Moran Models; Muta-
tional and evolutionary processes; Population dynamics. Asymptotics.

1. Introduction

Some population is made of n individuals that can be of p possible species (or
types). The discrete-time update of the species abundance occupancies is from
a Moran mutational model first designed in [9] and for which the size n of the
population is maintained constant over the generations. We will study in great
detail the equilibrium species counts as a function of n, p and the total mutation
probability ν before considering various asymptotic regimes of interest on n, p and
ν, some of which were not considered in [9]. When they exist while n∧ p → ∞, the
limiting distributions of the typical species abundance are not heavy-tailed, rather
they have a dominant exponential decay factor and this may be seen to result from
the conservation of the population size n. They are rather related to the negative
binomial or Fisher log-series distributions, [5]. Also of particular interest will be
(i) the distribution of the number of occupied species with positive occupancy (ii)
the probability that two randomly sampled individuals are of the same species; this
both for fixed n, p and ν and under their asymptotic regimes.

This model should not be confused with the following related (although non-
conservative) Yule mutation model, [19], [21]: A species starts with a single in-
dividual. As a result of mutations, new individuals are produced according to a
linear pure birth Yule process with some birth rate and they all belong to the same
species. Concomitantly and as a result of specific mutations, inside a species, an
individual of a novel species can be created at some other rate and the new species,
once it has appeared, behaves like all the previous ones. For the Yule model, the
asymptotic abundance inside a typical species is distributed like a Simon distribu-
tion [17] which (in sharp contrast with the former log-series-like distribution), is
heavy-tailed, translating the presence of very large family counts. Note that here
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both n and the number p of possible species should be set to infinity because both
are bound to grow indefinitely in the process, see [16].

The Karlin-McGregor (KMG) mutation model was originally developed to study
multiallelic frequencies dynamics in population genetics, as from [11]. It was later
applied to the study of surname distributions and random isonymy, making the
observation that surnames can be considered as alleles transmitted along the male
line. See [20], [12], [22], [15] and the references therein. One can apply the model
not only to surnames (which can be linked to Y−chromosomes) but also to first
names and other elements of culture that do propagate by copying.

2. Species abundances evolution: the KMG mutation model

Some population is made of n individuals that can be of p possible species (or
types).

At (discrete-time) step t, there areKt (q) ≥ 0 individuals of type q, q = 1, ..., p. The
occupancy vector Kt := (Kt (q) ; q = 1, ..., p) is called the species abundance vector.
The species q will be said filled if Kt (q) > 0 (it has at least one representative).

We let Qt :=
∑p

q=1 1 (Kt (q) > 0) be the number of types present at step t (the

number of filled species).

We let Nt (k) :=
∑p

q=1 1 (Kt (q) = k) be the number of species with k representa-
tives at step t.

We have 1 ≤ Qt = p−Nt (0) ≤ p ∧ n and
∑p

q=1Kt (q) = n =
∑maxq Kt(q)

k=1 kNt (k) .

The dynamics of Kt is in the spirit of a Moran β−mutation evolution model,
preserving the total number of individuals n, namely, [13], [7]:

Given Kt (q) = kq, q = 1, ..., p, we let (k1, ..., kp) → (k1, ..., kq − 1, ..., kq′ + 1, ..., kp)
be the moves between step t and step t+1: at each step, an individual of type q is
deleted from the population and an individual of type q′ 6= q is created. We assume
that this event occurs with probability (w.p.)

(1)
kq
n

[
kq′

n
(1− (p− 1)β) +

(
1−

kq′

n

)
β

]
.

For such a mutation model, an individual of type q is deleted (with probability
kq

n )
and an individual of type q′ is created either because q′ is selected to duplicate

(with probability
kq′

n ) and the duplicate has not mutated to any other state than
q′ (an event of probability 1− (p− 1)β) or because an individual of type q′′ 6= q′ is

selected to duplicate (with probability 1−
kq′

n ) and the duplicate has mutated to an
individual of type q′ (with probability β). We let pβ = ν be the overall mutation
probability.

When the Kt=0 (q)’s are exchangeable, the Kt (q)’s remain exchangeable for all t
(having law invariant upon a permutation of the q’s), in particular all the Kt (q)’s

share the same distribution. Let us thus focus on Kt (1) with Kt (q)
d
= Kt (1),

q = 2, ..., p (equality in distribution). Then, see [9], while lumping the states Kt (q),
q = 2, ..., n, given Kt (1) = k ∈ {0, ..., n}

(k, n− k) → (k + 1, n− k − 1) w.p. pk =
(
1− k

n

) (
k
n (1− (p− 1)β) +

(
1− k

n

)
β
)

(k, n− k) → (k − 1, n− k + 1) w.p. qk = k
n

(
k
n (p− 1)β +

(
1− k

n

)
(1− β)

)
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defines the tridiagonal transition probabilities of a random walk on the set {0, ..., n}
with holding probability rk = 1 − (pk + qk) that (k, n− k) → (k, n− k) . This
random walk is ergodic with invariant probability measure (independent of the
initial condition Kt=0 (1)) given for k = 0, ..., n by (see [10] or [7] for instance):

(2) πk := P (K∞ (1) = k) =

(k+ 1
p
nν/(1−ν)−1

k

)(n/(1−ν)−k− 1
p
nν/(1−ν)−1

n−k

)
(
n/(1−ν)−1

n

) .

This is also

(3)
πk =

(
n
k

)B(k+θ,n−k+(p−1)θ)
B(θ,(p−1)θ)

=
(
n
k

)Γ(nν/(1−ν))
Γ(n/(1−ν))

Γ(k+θ)
Γ(θ)

Γ(n/(1−ν)−k−θ)
Γ(nν/(1−ν)−θ)

where θ = n
p ν/ (1− ν) and B (a, b) is the beta function. In particular, π0 =

Γ(nν/(1−ν))
Γ(n/(1−ν))

Γ(n/(1−ν)−θ)
Γ(nν/(1−ν)−θ) . The distribution πk ofK (1) := K∞ (1) is aB (θ, (p− 1) θ)

s-mixture of a binomial bin(n, s) distribution, s ∈ (0, 1). It is a Pólya-Eggenberger
distribution with probability generating function (pgf)

E
(
uK(1)

)
= F (−n, θ; pθ; 1− u) ,

where F :=2 F1 is a Gauss hypergeometric function. One can check that K (1) has
mean E (K (1)) = n/p and variance

σ2 (K (1)) =
n (p− 1) (n+ pθ)

p2 (pθ + 1)
=

(
n

p

)2
p− 1

1 + ν (n− 1)
.

An interesting immediate consequence is the following: noting that pk := kπk/E (K (1))
is the size-biased probability to pick an individual with k representatives at equilib-
rium, the probability α that two randomly chosen individuals from the population
are of the same species is
(4)

α =

n∑

k=1

k

n
pk =

p

n2

n∑

k=1

k2πk =
p

n2

(
σ2 (K (1)) +E (K (1))

2
)
=

p+ ν (n− 1)

p (1 + ν (n− 1))
.

The one-dimensional law of K (1) being under control for all n, p, we now wish
to evaluate its asymptotic shape under various limiting conditions on n, p, namely
n ≈ p, n ≪ p and n ≫ p corresponding respectively to µ := n/p = O (1), µ → 0
and µ → ∞. For each asymptotic regime, we shall denote by “∗” the asymptotic
evaluation of the quantities of interest.

3. Various asymptotics

We shall study five asymptotic regimes depending on the density µ of individuals
over the species range.

1. (balanced case). If both p, n → ∞ while µ = n/p → µ∗ > 0 and ν fixed, then
θ = n

p ν/ (1− ν) ∼ θ∗ = µ∗ν/ (1− ν) > 0 and

(5)
πk =

(
n
k

)Γ(nν/(1−ν))
Γ(n/(1−ν))

Γ(k+θ)
Γ(θ)

Γ(n/(1−ν)−k−θ)
Γ(nν/(1−ν)−θ)

∼ nk

k!
Γ(k+θ∗)
Γ(θ∗)

(n/(1−ν))−(k+θ∗)

(nν/(1−ν))−θ∗ = νθ∗

k!
Γ(k+θ∗)
Γ(θ∗) (1− ν)k =: π∗

k
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is a well-defined negative binomial distribution for all k ∈ {0, 1, 2, ...}, so with limit-

ing pgfE
(
uK(1)

)
∼ (ν/ (1− (1− ν)u))

θ∗
. When k is large π∗

k ∼ νθ∗

k!
Γ(k+θ∗)
Γ(θ∗) (1− ν)

k
∼

νθ∗

Γ(θ∗)k
θ∗−1 (1− ν)

k
, a distribution displaying an algebraic prefactor (if θ∗ 6= 1) com-

bined to a dominant geometric cutoff. The mean of K (1) is µ∗ while its variance
is µ∗/ν > µ∗ (overdispersion holds). We have

π∗
k+1

π∗
k

=
k + θ∗

k + 1
(1− ν) ,

so that if
π∗

1

π∗

0

> 1 (µ∗ν > 1), the mode of this distribution is away from zero at

about (µ∗ν − 1) /ν; otherwise the mode is at the origin.

The size-biased version of π∗
k is p∗k = kπ∗

k/µ
∗ and the limiting probability α∗ that

two randomly chosen individuals from the population are of the same species tends
to 0 like

α∗ :=
n∑

k=1

k

n
p∗k =

1

nµ∗

n∑

k=1

k2π∗
k =

1

p

(
1 +

1

µ∗ν

)
.

Note that under this asymptotic regime, with Q = Q∞, the limiting number of
species present in the population,

E (Q) =

p∑

q=1

P (K (q) > 0) = p (1−P (K (1) = 0)) ∼ p (1− π∗
0) = n

1− νθ
∗

µ∗
→ ∞.

It scales like a fraction of n because 1 − νθ
∗

< µ as a result of −θ∗ log ν =
µ∗ν log (1/ν) / (1− ν) < − log (1− µ∗) and log (1/ν) < (1− ν) /ν for all ν ∈ (0, 1).
Note that as a result, π∗

0 > 1−µ∗ which is useful only if µ∗ ∈ (0, 1). We will show be-
low that σ2 (Q) ∼ p

(
νθ

∗

− ν2θ
∗
)
. This asymptotic regime was not considered in [9].

2. First fix n. If now as in [9], we let p → ∞ (infinitely many possible types in
the population, see [11] for a justification of this in population genetics) and β → 0
(small mutation probability) while pβ = ν > 0 is fixed, then µ = n

p → 0 and

θ = n
p ν/ (1− ν) → 0 while pθ → nν/ (1− ν). To the leading order, as p→ ∞

(6)
πk ∼ θ

(
n
k

)Γ(k)Γ(n/(1−ν)−k)
Γ(n/(1−ν)) = π∗

k, k = 1, ..., n

π0 ∼ 1− θ
(

Γ′(n/(1−ν))
Γ(n/(1−ν)) − Γ′(nν/(1−ν))

Γ(nν/(1−ν))

)
= π∗

0,

showing that the equilibrium mass concentrates on state zero: in this low density
regime, the number n of individuals being very few compared to p, the typical
species occupancy is very low.

However (with ψ (z) := Γ′ (z) /Γ (z) the digamma function), given K (1) ≥ 1, for
all k = 1, ..., n,

(7) P (K (1) = k | K (1) ≥ 1) =
π∗
k

1− π∗
0

∼

(
n

k

)
B (k, n/ (1− ν)− k)

ψ (n/ (1− ν))− ψ (nν/ (1− ν))

is a well-defined probability mass function as θ → 0 (p → ∞) and fixed n and
ν: given a species is filled, it has a well-defined occupancy distribution. Note in
passing that this leads to the non-trivial identity involving the digamma function:
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for all ν ∈ (0, 1)

ψ

(
n

1− ν

)
− ψ

(
nν

1− ν

)
=

n−1∑

k=0

1

k + nν/ (1− ν)
=

n∑

k=1

(
n

k

)
B (k, n/ (1− ν)− k) .

This results from (7) and from ψ (z + 1) − ψ (z) = 1/z so that by telescopic sum-

mation: ψ (z + n)− ψ (z) =
∑n−1

k=0 1/ (k + z) .

With (n)k = n!/ (n− k)!, the mean of π∗
k is

µ = θ
n∑

k=1

k

(
n

k

)
Γ (k) Γ (n/ (1− ν)− k)

Γ (n/ (1− ν))
= θ

1− ν

ν
.

It vanishes like θ. However, the size-biased version of π∗
k, namely p∗k = kπ∗

k/µ, is
well-defined, and the limiting probability α∗ that two randomly chosen individuals
from the population are of the same species is (see 4.20 of [9])

α∗ :=
n∑

k=1

k

n
p∗k =

1

nµ

n∑

k=1

k2π∗
k =

1

1 + ν (n− 1)
,

which could have been guessed from (4) as p→ ∞, ν fixed.

If now n itself tends to ∞ while ν is still held fixed and n/p → 0 (so that θ still

tends to 0 as well), owing to ψ (z) = Γ′(z)
Γ(z) ∼

z→∞
log z and the Stirling formula,

(8) P (K (1) = k | K (1) ≥ 1) ∼
1

k

(1− ν)
k

log (1/ν)
, k ≥ 1,

a Fisher log-series distribution displaying an hyperbolic prefactor combined to a
geometric cutoff, [16], [5], [2] and [3]. Note again that µ = n/p→ 0 stipulates that
on average each of the species abundances vanish and only given a species is filled,
does it has a well-defined occupancy distribution.

In this asymptotic regime, with Q = Q∞, the limiting number of species present in
the population,

(9) E (Q) ∼ p (1− π∗
0) ∼ pθ log (1/ν) = nν log (1/ν) / (1− ν) → ∞

and it scales like a fraction of n as well (recalling log (1/ν) < (1− ν) /ν for all
ν ∈ (0, 1)). From [9]

σ2 (Q) ∼ n [ν log (1/ν) / (1− ν)− ν] > 0

suggesting that (Q−E (Q)) /σ (Q) is asymptotically normal. Note σ2 (Q) < E (Q)
(underdispersion).

3. Suppose now that n → ∞, ν → 0 while nν = λ > 0 is held fixed and pν → ∞.
Then θ = n

p ν/ (1− ν) ∼ λ
p → 0 and, with k = [nx]

(10)

πk ∼ λ
p

(
n
nx

)Γ(nx)Γ(n(1−x)+λ)
Γ(n+λ) = λ

pnx
Γ(n(1−x)+1+λ−1)

Γ(n(1−x)+1)
Γ(n+1)

Γ(n+1+λ−1) ∼
λ
pk

(
1− k

n

)λ−1
, k ≥ 1

π0 ∼ 1− λ
p

(
Γ′(n)
Γ(n) − Γ′(λ)

Γ(λ)

)
∼ 1− λ

p logn =: π∗
0,

showing that the equilibrium probability mass concentrates on state zero. Note
that since here θ → 0 (p → ∞) and n → ∞, ν → 0 while nν = λ > 0, then
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µ = n/p ∼ θ
ν ∼ λ

pν → 0 if pν → ∞ (on average each species abundance vanishes).

With x ∈ (0, 1) and k = [nx] → ∞, putting n−1 = dx, we have

π∗
[nx] ∼

λ

p
x−1 (1− x)

λ−1
dx,

not a probability density. Following [9] however, pπ∗
k = E (N (k)) ∼ λ

k

(
1− k

n

)λ−1
is

also the asymptotic expected number of mutants in the population with k represen-
tatives. This shows that in this regime, the expected number of species whose fre-

quencies range in the interval (x1, x2) ⊆ [0, 1] is λ
∫ x2

x1
x−1 (1− x)

λ−1
dx as n→ ∞.

Note λ
∫ 1

1/n x
−1 (1− x)

λ−1
dx ∼ λ logn ∼ p (1− π0) while λ

∫ 1

0 x
−1 (1− x)

λ−1
dx =

∞.

With Q = Q∞, the limiting number of species present in the population, this is
consistent with

(11) E (Q) = p (1− π0) ∼ λ logn− λ
Γ′ (λ)

Γ (λ)
.

In this regime, E (Q) scales like logn and (mutations being rare) the asymptotic
number of types present is sparse compared to n. It is also shown in [9] that
σ2 (Q) ∼ λ logn, so that, upon scaling, (Q−E (Q)) /σ (Q) is asymptotically nor-
mal.

4. The authors of [9] also consider the asymptotic regime for which n→ ∞, ν → 0
while νn logn = c ≥ 0 (λ = c/ logn → 0) for which from the above estimates and

λΓ′(λ)
Γ(λ) ∼

λ→0+
−1, E (Q) ∼ 1 + c and σ2 (Q) ∼ c. In this asymptotic regime, only a

finite number of types are present.

5. (the dense case). If p is fixed and n → ∞, ν → 0 while nν = λ > 0, then
θ = n

p ν/ (1− ν) → θ∗ = λ/p > 0 and

(12)
πk ∼ Γ(λ)

Γ(θ∗)Γ(λ−θ∗)
Γ(k+1+θ∗−1)

Γ(k+1)
Γ(n−k+1+λ−θ∗−1)

Γ(n−k+1)
Γ(n+1)

Γ(n+1+λ−1)

∼ Γ(λ)
Γ(θ∗)Γ(λ−θ∗)

Γ(k+1+θ∗−1)
Γ(k+1)

(n−k+1)λ−θ∗−1

(n+1)λ−1 = π∗
k.

If k = [nx] → ∞ with x ∈ (0, 1)

(13)
π∗
[nx] ∼ n−1n Γ(λ)

Γ(θ∗)Γ(λ−θ∗) (nx)
θ∗−1

(n (1− x))
λ−θ∗−1

n−(λ−1)

∼ dx Γ(λ)
Γ(θ∗)Γ(λ−θ∗)x

θ∗−1 (1− x)
λ−θ∗−1

,

a beta density with parameters θ∗ = λ/p, λ − θ∗ = λ (1− 1/p) . This shows (with

n−1 = dx) that, in this asymptotic regime, n−1K (1)
d
→ B (θ∗, λ− θ∗) as n → ∞.

This asymptotic regime was not considered in [9] either.

Note that, from (4), the limiting probability α∗ that two randomly chosen individ-
uals from the population are of the same species is

α =
p+ ν (n− 1)

p (1 + ν (n− 1))
→ α∗ =

p+ λ

p (1 + λ)
,

approaching 1/ (1 + λ) if p is in turn large enough.



MORAN MODEL WITH MUTATIONS 7

Remark: Regime 1 deals with a large population of size n together with a large
number of types p both of the same order of magnitude (a case with asymptotic
density n/p → µ∗). It is balanced. In the regimes 2 to 4, n ≪ p, a dilute phase
situation with low density of individuals compared to the species range. And while
scrolling from regimes 2 to 4, nν ranges from infinity to zero, through moderate
in regime 3. The main results are from [9]. In the dense (large density) regime
5 on the contrary, n ≫ p and the population is made of few types but a large
number of individuals. It is sometimes adapted to the surname distribution studies:
for instance in France, there are about p = 1.5 million different surnames for a
population of about n = 67 millions people. As of 2000, about p = 286 Korean
family names were reported in use in South Korea for a population around n = 50
millions people. In both cases however, n cannot be assumed having stabilized.
The study [22] dealing with the Sardinian island looks convincing. Note that the
whole KMG theory breaks down would the hypothesis of a constant population size
be relaxed, as in the Yule approach to the speciation process briefly addressed in
the introduction. A hint of the drastic changes to be made in the neutral context
when the population size is held constant on average only is to be found in [6].
Note also that there is no “selection effect” in the model, the adjunction of which
would also considerably alter the KMG machinery ([9] p. 422).

4. Joint distributions of species abundances under KMG mutation

model

So far we only obtained useful information on the limiting occupancy of a typical
species K (1) and only partial (mean and variance) information on the asymptotic
number Q of filled species. We are able to be more precise. We start with fixed n
and p before considering asymptotic regimes.

With θ = n
p ν/ (1− ν), consider the Dirichlet continuous density function, say

Dp (θ), on the simplex
{
sq ∈ (0, 1) :

∑p
q=1 sq = 1

}

(14) fS1,...,Sp
(s1, ..., sp) =

Γ (pθ)

Γ (θ)
p

p∏

q=1

sθ−1
q · δ(

∑p

q=1
sq−1).

The law of Sp := (S1, ..., Sp) can as well be characterized by its joint moment
function (λq > 0)

(15) E

(
p∏

q=1

Sλq
q

)
=

1

[pθ]∑p
q=1

λq

p∏

q=1

[θ]λq
.

where [θ]λ = Γ (θ + λ) /Γ (θ).

Clearly, the equilibrium joint distribution of Kt, namely K := (K (q) , q = 1, ..., p),
is aDp (θ) s-mixture of a multinomial multin(n, s) distribution where s =(s1, ..., sp).
With N0 := {0, 1, 2, ...}, it is thus a Dirichlet-multinomial distribution on the now

discrete simplex
{
kq ∈ N0 :

∑p
q=1 kq = n

}
with (see [8], Theorem 6, for instance)

(16) P (K = k) = EP (K = k | Sp) =
n!

[pθ]n

p∏

q=1

[θ]kq

kq!
.
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Here K | Sp
d
∼ multin(n,Sp) and Sp

d
∼ Dp (θ) . It is an exchangeable distribution,

each margin being identically distributed, but of course, owing to
∑p

q=1K (q) = n,

the K (q)’s are not independent. We observe that, equivalently, with all uq ∈ (0, 1),
the joint probability generating function of K is

(17) E

(
p∏

q=1

uK(q)
q

)
= E

[(
p∑

q=1

uqSq

)n]

from which joint statistical information can be extracted using moment identities
of the Dirichlet distribution. The simplest one is the (negative) covariance between
any two pairs (K (1) ,K (2)) of equilibrium species abundances which can easily be
found to be from (17) and using (15)

Cov (K (1) ,K (2)) = −
σ2 (K (1))

p− 1
= −

n

p

(
n

p
−

(n− 1) θ

pθ + 1

)
= −

(
n

p

)2
1

1 + ν (n− 1)
.

Coming back to (16), it is convenient to introduce the related joint probability

(18) P (K (1) = k1, ...,K (q) = kq;Q = q) =

(
p

q

)
n!

[pθ]n

q∏

q′=1

[θ]kq′

kq′ !

where 1 ≤ q ≤ p and then with
∑q

q′=1 kq′ = n and all kq′ ≥ 1. It is the joint

probability that there are q ∈ {1, ..., p} filled species cells and that (k1, ..., kq) are
their effective abundance occupancies. Letting σn (θ) := n! [xn]Zθ (x) = [θ]n where

Zθ (x) = eθφ(x) and φ (x) = − log (1− x), with N := {1, 2, ...}, kq := (k1, ..., kq) and
|kq| =

∑q
q′=1 kq′ , we have

(19) P (Q = q) =

(
p

q

)
n!

σn (pθ)

∑

kq∈Nq : |kq|=n

q∏

q′=1

σkq′
(θ)

kq′ !
, q = 1, ..., p.

The expression (18) turns out to be the canonical Gibbs distribution on the simplex
{kq ∈ N

q : |kq| = n}, the finite size-p partitions of n into q distinct clusters (the
filled species). In this language, the normalizing quantity σn (pθ) /n! is called the
canonical Gibbs partition function.

Now, from (19), with (p)q := p!/ (p− q)!

(20) P (Q = q) =
(p)q

σn (pθ)
Bn,q (σ• (θ)) , q ∈ {1, ..., p ∧ n} ,

where

(21) Bn,q (σ• (θ)) :=
n!

q!

∑

kq∈Nq : |kq|=n

q∏

q′=1

σkq′
(θ)

kq′ !
=
n!

q!
[xn] (Zθ (x)− 1)q

are the Bell polynomials in the polynomial variables σ• (θ) := (σ1 (θ) , σ2 (θ) , ...),

[1]. Here again Zθ (x) = (1− x)
−θ

and σn (θ) = n! [zn] e−θ log(1−z) = [θ]n .

Conditioning the canonical Gibbs distribution on the number of filled species being
equal to q yields the corresponding micro-canonical distribution as

(22) P (K (1) = k1, ...,K (q) = kq | Q = q) =
n!

q!

1

Bn,q (σ• (θ))

q∏

q′=1

σkq′
(θ)

kq′ !
.
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The new normalizing constant Bn,q (σ• (θ)) /n! may be called the microcanonical
partition function. The special feature of the occupancy distributions (18), (20)
and (22) is that θ = n

p ν/ (1− ν) depends on n, p and ν.

Let us now first characterize the full distribution of Q which depends on n, p and
ν (via θ) before any asymptotics is considered. We have:

(a) Assume n ≥ p. With u ∈ [0, 1], the probability generating function of Q is
given by

(23) E
(
uQ
)
=

p−1∑

q=0

(
p

q

)
up−q (1− u)

q σn ((p− q) θ)

σn (pθ)
, with

(24) P (Q = q) =

(
p
q

)

σn (pθ)

q∑

q′=1

(−1)q−q′
(
q

q′

)
σn (q

′θ) , q ∈ {1, ..., p} .

In addition,

(25) E (Q) = p

(
1−

σn ((p− 1) θ)

σn (pθ)

)
and

(26) σ2 (Q) = p

(
σn ((p− 1) θ)

σn (pθ)
+ (p− 1)

σn ((p− 2) θ)

σn (pθ)
− p

(
σn ((p− 1) θ)

σn (pθ)

)2
)
.

(b) If n < p, (23) and (24) still hold, but now with a modified support for Q’s law:

(27) P (Q = q) =

(
p
q

)

σn (pθ)

q∑

q′=1

(−1)q−q′
(
q

q′

)
σn (q

′θ) , q ∈ {1, ..., n} .

Statement (a) follows from Bn,q (σ• (θ)) =
n!
q! [x

n] (Zθ (x)− 1)
q
. Indeed, from (20)

E
(
uQ
)
=
∑p

q=0 u
q (p)q

Bn,q(σ•(θ))
σn(pθ)

= n!
σn(pθ)

∑p
q=0

(
p
q

)
[xn] (u (Zθ (x)− 1))

q

= n!
σn(pθ)

[xn] (1− u+ uZθ (x))
p
= n!

σn(pθ)

∑p
q=0

(
p
q

)
up−q (1− u)

q
[xn]Zθ (x)

p−q

=
∑p−1

q=0

(
p
q

)
up−q (1− u)

q σn((p−q)θ)
σn(pθ)

.

The alternating sum expression ofP (Q = q) follows from extracting [uq]E
(
uQ
)
and

the mean and variance of Q from the evaluations of the first and second derivatives
of E

(
uQ
)
with respect to u at u = 1.

Statement (b) follows from similar considerations. Indeed, in principle, we should

start with E
(
uQ
)
=
∑n

q=0 u
q (p)q

Bn,q(σ•(θ))
σn(pθ)

where the q−sum now stops at q =

n = p ∧ n. But the upper bound of this q−sum can be extended to p because
Bn,q (σ• (θ)) = 0 if q > n.

In the particular mutation case discussed here, σn (θ) = [θ]n = θ (θ + 1) ... (θ + n− 1) =
Γ (θ + n) /Γ (θ) (the Ewens-Dirichlet model, [4]). From (24), (25), for instance,

P (Q = 1) = p
σn (θ)

σn (pθ)
= p

[θ]n
[pθ]n

= p
Γ (θ + n)

Γ (θ)

Γ (pθ)

Γ (pθ + n)
.
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E (Q) = p

(
1−

[(p− 1) θ]n
[pθ]n

)
= p

(
1−

Γ ((p− 1) θ + n)

Γ ((p− 1) θ)

Γ (pθ)

Γ (pθ + n)

)

We now illustrate some of the consequences of the latter expressions under three
asymptotic regimes discussed earlier.

Regime 1. If n and p → ∞ while n/p → µ∗ as in the balanced regime 1, then
θ = n

p ν/ (1− ν) → θ∗ = µ∗ν/ (1− ν) and, from (25), in a consistent way with

previous results,

E (Q) ∼ p
(
1− Γ(p(θ∗+µ∗)−θ∗)

Γ(p(θ∗+µ∗))
Γ(pθ∗)

Γ(pθ∗−θ∗)

)

∼ p
(
1− (p(θ∗+µ∗))−θ∗

(pθ∗)−θ∗

)
= p

(
1−

(
θ∗

θ∗+µ∗

)θ∗
)

= p
(
1− νθ

∗
)
.

Proceeding similarly, from (26) σ2 (Q) ∼ p
(
νθ

∗

− ν2θ
∗
)
, suggesting (Q−E (Q)) /σ (Q)

is asymptotically normal in regime 1 as well.

From (17) and (15), with 1 ≤ q < p, a = ν/ (1− ν) and pθ ∼ na and θ ∼ θ∗ = µ∗a

E

(∏q
q′=1 u

K(q′)
q

)
= E

[(
1 +

∑q
q′=1 (uq′ − 1)Sq′

)n]

=
∑

k1+...+kq+1=n

(
n

k1...kq+1

)∏q
q′=1 (uq′ − 1)

kq′ E
(∏q

q′=1 S
kq′

q′

)

=
∑

k1+...+kq+1=n

(
n

k1...kq+1

)∏q
q′=1 (uq′ − 1)

kq′

∏q

q′=1
[θ]k

q′

[pθ]∑q

q′=1
k
q′

=
∑n

k′

q+1
=0

1

(n−k′

q+1)!
∑

k1+...+kq=k′

q+1

(
n

k1...kq

)∏q
q′=1 (uq′ − 1)kq′

∏q

q′=1
[θ]

k
q′

[pθ]
k′

q+1

∼
∑n

k′

q+1
=0

(
n

k′

q+1

)
(na)

−k′

q+1
∑

k1+...+kq=k′

q+1

( k′

q+1

k1...kq

)∏q
q′=1

(
[θ∗]kq′

(uq′ − 1)
kq′

)

∼
∑∞

k′

q+1
=0 a

−k′

q+1

∑
k1+...+kq=k′

q+1

∏q
q′=1

(
[θ∗]kq′

(uq′ − 1)
kq′

)
/kq′ !,

the pgf of the multivariate negative binomial distribution of (K (q′) ; q′ = 1, ..., q).
Note that if q = 1, this pgf reduces, as required from Section 3, to

E
(
u
K(1)
1

)
=

∞∑

k=0

a−k [θ
∗]k
k!

(u1 − 1)
k
=

(
ν

1− (1− ν)u1

)θ∗

.

Regime 2. (infinitely many possible types in the population). First fix population
size n. If now as in regime 2, we let p→ ∞ and β → 0 (small mutation probability)
while pβ = ν > 0 is fixed, then θ = n

p ν/ (1− ν) → 0 while pθ ∼ nν/ (1− ν) =: γ.

Recall σn (θ) := n! [xn]Zθ (x) = [θ]n where Zθ (x) = eθφ(x), φ (x) = − log (1− x)

and φi =
[
xi
]
φ (x) = (i− 1)!. We have Bn,q (φ•) =

n!
q! [x

n]φ (x)
q
= sn,q, the first

kind absolute Stirling numbers, [1].

When θ → 0, , from (21), Bn,q (σ• (θ)) =
n!
q! [x

n] (Zθ (x)− 1)
q
∼ n!

q! θ
q [xn]φ (x)

q
=

θqBn,q (φ•) = θqsn,q. Thus, recalling pθ ∼ γ, (20) becomes

(28) P (Q = q) =
(p)q

σn (pθ)
Bn,q (σ• (θ)) ∼

(pθ)
q
sn,q

σn (pθ)
=
γqsn,q
σn (γ)

, q = 1, ..., n,
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giving the simple asymptotic shape of the law of Q for a size n population with
infinitely many types. It depends on ν, via γ = nν/ (1− ν). The probability
generating function of this limiting Q is

E
(
uQ
)
=
σn (γu)

σn (γ)
=

[γu]n
[γ]n

= u

n−2∏

q=1

(
γu+ q

γ + q

)
,

showing that Q
d
= 1 +

∑n−2
q=1 Bq where the Bq’s are independent Bernoulli random

variables with success parameters γ
γ+q where γ = nν/ (1− ν). Recalling ψ (z) ∼

z→∞

log z and because

n−1∑

q=0

γ

γ + q
=

nν

1− ν

(
ψ

(
n

1− ν

)
− ψ

(
nν

1− ν

))
,

∑n−1
q=0

γ
γ+q ∼ nν

1−ν log (1/ν) and by strong law of large numbersQ/n →
n→∞

ν log (1/ν) / (1− ν)

almost surely (completing (9)).1

Owing now to σkq′
(θ) = [θ]kq′

∼ θΓ (kq′ ) = θ (kq′ − 1)!, with the kq’s positive

summing to n, from (18),

P (K (1) = k1, ...,K (q) = kq;Q = q) =
(
p
q

)
n!

[pθ]
n

∏q
q′=1

[θ]
k
q′

kq′ !

∼ n!
q!

γq

[γ]
n

∏q
q′=1

1
kq′ !

,

and from (22)

P (K (1) = k1, ...,K (q) = kq | Q = q) = n!
q!

1
Bn,q(σ•(θ))

∏q
q′=1

σk
q′

(θ)

kq′ !

∼ n!
q!

1
θqsn,q

∏q
q′=1

θ(kq′−1)!
kq′ !

= n!
q!

1
sn,q

∏q
q′=1

1
kq′
,

the Ewens sampling formula, [4], [18]. This gives the asymptotic shape of the joint
equilibrium species abundance vector, given q of them are represented at equilib-
rium. A curious feature of this last distribution is that it is independent of ν.

Regime 3. If as here n→ ∞ and ν → 0 while nν = λ, then γ ∼ γ∗ = λ and we are
now in the asymptotic region akin to the Chinese restaurant process. For instance

(29)

n−1∑

q=0

γ

γ + q

∗
∼

n−1∑

q=0

λ

λ+ q
∼ λ logn

and Q/ logn →
n→∞

λ almost surely (completing (11)). The analogy is thus with

a ‘chinese’ restaurant with infinitely many indistinguishable tables, each of which
has infinite capacity. In the table filling process, the first customer sits at some
table while the next one either sits at the same table or at a different one. The
process continues, with each customer choosing either to sit at an occupied table
with a probability proportional to the number of customers already there or at
some already unoccupied table. Under the condition of Regime 3, after step n, the

1This formalism resembles the one of the asymptotic number Q of filled tables in the Chinese
restaurant problem with n customers (see Sections 3.1 and 3.2 of [14]). However its asymptotic
behavior is of a different nature because here γ depends on n (and ν), leading to Q of order n

rather than logn.
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occupancies of the tables are given by (18) and the n customers will be partitioned
among Q ≤ n filled tables (or blocks of the partition) with Q of order logn. The
outcomes of this process are exchangeable as the order in which the customers sit
does not affect the probability of the final distribution.

If, as in regime 4, n → ∞ and ν → 0 while nν ∼ c/ logn for some c > 0, then

γ ∼ γ∗ = c/ logn and E (Q) =
∑n−1

q=0
γ

γ+q

∗
∼ 1 + c. It is easy to check that here

Q− 1
∗
→Poi(c) , a Poisson random variable with mean c.

Regime 5. (Finitely many types and very large population size). Finally, from (17),

with Xq, q = 1, ..., p iid Gamma(θ) random variables and X̃q := Xq/
∑p

q=1Xq and
exploiting the Gamma structure of Dirichlet distributions,

E
(∏p

q=1 u
K(q)/n
q

)
= E

[(∑p
q=1 u

1/n
q Sq

)n]
= 1

[pθ]n
E
[(∑p

q=1 u
1/n
q Xq

)n]

∼
n↑∞

1
[pθ]n

E
[(∑p

q=1Xq

)n (
1 + 1

n

∑p
q=1 X̃q log uq

)n]

∼
n↑∞

E
(∏p

q=1 u
X̃q

q

)
= E

(∏p
q=1 u

Sq

q

)
.

Thus, generalizing (13),

(30) K/n
d
→ Sp as n→ ∞.

Applying the strong law of large numbers (conditionally given Sp), the above con-
vergence in law also holds almost surely.

With the main results being from (18-27), the present study can perhaps be sum-
marized for the different regimes as follows:

\
Range of the
parameters

Q
d
∼ E (Q) ∼ K (1)

d
∼ K

d
∼

1
n, p→ ∞, n

p = µ∗

ν fixed
(28)

n 1−νθ∗

µ∗

θ∗ = µ∗ν
1−ν

negative
binomial

multivariate
neg. binomial

2
n, p→ ∞, n

p → 0

ν fixed

(28)
γ = nν

1−ν

n ν log(1/ν)
1−ν

| K (1) ≥ 1 :
log -series

Ewens γ = nν
1−ν

3
n→ ∞, ν → 0
νn = λ, νp→ ∞

(28)
γ ∼ λ

λ logn (3) Ewens γ ∼ λ

4
n→ ∞, ν → 0
νn logn = c

1 + Poi (c) 1 + c (3) (16)

5
n→ ∞, ν → 0
p fixed, nν = λ

(23) (25)
nbeta (θ∗, λ− θ∗)
θ∗ = λ/p

nSp, (30)

Acknowledgments: The author acknowledges partial support from the labex
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