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BIJECTIONS OF GEODESIC LAMINATION SPACE

PRESERVING LEFT HAUSDORFF CONVERGENCE

KEN’ICHI OHSHIKA AND ATHANASE PAPADOPOULOS

Abstract. We prove a rigidity result for the action of the mapping
class group on the space of geodesic laminations of a closed hyperbolic
surface of genus g ≥ 2 equipped with the left Hausdorff topology.

Classification AMS: 37E30, 57M99.

1. Introduction

Let S be a closed orientable surface with a hyperbolic metric m. We
let Mod(M) the mapping class group of S, that is, the group of homotopy
classes of orientation-preserving homeomorphisms of M and Mod∗(M) the
extended mapping class group of S, that is, the group of all homotopy classes
of homeomorphisms of M .

We denote by dm the distance function on S induced from m.

Definition 1.1. For an ordered pair of compact sets K,L in S, the left
Hausdorff distance d ~H

(K,L) between them is defined by

d ~H
(K,L) = inf{ǫ | K ⊂ Nǫ(L)},

where Nǫ denotes the ǫ-neighbourhood with respect to dm.

We denote by GL(S) the space of geodesic laminations of S. This space
was introduced by Thurston in his lecture notes [3] (see Chapter 8, and in
particular §8.1) and it plays a major role in his theory of 3-manifolds and
Kleinian groups. It is classically equipped with more than one topology, and
we mention in particular the so-called Thurston topology and the Hausdorff
topology. In this paper, we are interested on a new topological structure on
this space, namely, being a set of compact subspaces of S, GL(S) is equipped
with an induced left Hausdorff distance function which we also denote by
d ~H

.
Before stating the main theorem, we introduce a definition. We consider

a bijection f : GL(S) → GL(S).

Definition 1.2. We say that f preserves left Hausdorff convergence when
for any sequence {λi ∈ GL(S)} and µ ∈ GL(S), we have

d ~H
(λi, µ) → 0 ⇔ d ~H

(f(λi), f(µ)) → 0.

It is easy to see the following equivalence :

d ~H
(λ, µ) = 0 ⇔ d ~H

(f(λ), f(µ)) = 0.
1
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We let Aut(GL(S)) be the group of bijections of GL(S) that preserve left
Hausdorff convergence. We have a natural homomorphism

Mod∗(M) → Aut(GL(S)).

The aim of this paper is to prove the following.

Theorem 1.1. The natural homomorphism

Mod∗(M) → Aut(GL(S))

is an isomorphism.

Our results should be compared with analogous results by Charitos-
Papadoperakis-Papadopoulos [1] on GL(S) equipped with the Thurston
topology. The arguments there are different but one can find a similar
analysis of the action of a homeomorphism of GL(S) on various points of
this space depending on the dynamics of the leaves of the lamination repre-
senting these points.

We note that it is possible to define a topology associated to the left
Hausdorff distance by using the sets of the form Uǫ = {µ | d ~H

(µ, λ) < ǫ} as
a basis for a fundamental system of neighbourhoods of a lamination λ. The
result of this paper can then be formulated in terms of homeomorphisms of
GL(S) with respect to this topology.

2. Actions on curves

In this section, and until Section 5 included, we assume that f is a bijec-
tion of GL(S) preserving left Hausdorff convergence.

Lemma 2.1. For any simple closed geodesic c, its image f(c) is again a
simple closed geodesic.

This is derived from the following characterisation of simple closed
geodesics in terms of d ~H

.

Lemma 2.2. Let c be a simple closed geodesic, and suppose that d ~H
(λi, c) →

0 for {λi} ⊂ GL(S). Then λi = c for large i.
Conversely if d ~H

(λi, µ) → 0 implies that λi = µ for large i, then µ is a
simple closed geodesic.

Proof. The former half is evident. For the latter half, let µ be a geodesic
lamination satisfying the condition in the statement. Let µ0 be a minimal
component of µ. Then we have d ~H

(µ0, µ) = 0. Therefore by the condition,
µ0 = µ. If µ is not simple geodesic, the minimal component can be approxi-
mated by a sequence of simple closed geodesics ci in the Hausdorff topology,
and hence we have d ~H

(ci, µ) → 0, again contradicting the condition. Thus
the only possibility is that µ is a simple closed geodesic. �

We next show that the inclusion relation between geodesic laminations is
preserved by f .
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Lemma 2.3. Suppose that λ ⊂ µ for two geodesic laminations. Then f(λ) ⊂
f(µ).

Proof. This is because λ ⊂ µ ⇔ d ~H
(λ, µ) = 0. �

A geodesic lamination consisting of a collection of disjoint simple closed
geodesics on S whose number of components is ≥ 1 will be called a multic-
urve. (We regard a closed geodesic also as a multicurve.) We can characterise
multicurves as follows.

Lemma 2.4. A geodesic lamination µ is a multicurve, but not a simple
closed geodesic if and only if the following holds.

(a) If d ~H
(λi, µ) → 0, then λi is contained in µ for large i.

(b) µ coincides with the union of geodesic laminations properly contained in
µ.

Remark 2.1. The second condition is necessary. The first condition is also
satisfied by a union of a simple closed geodesic and one single non-compact
isolated leaf spiralling around it from one side.

Proof. Again, it is evident that multicurves which are not simple closed
geodesics satisfy these two conditions. If µ satisfies these two conditions,
then as was shown in the proof of Lemma 2.2, µ cannot have a minimal
component which is not a simple closed geodesic. Condition (b) implies
that µ is the union of its minimal components, and that there are more
than one components. Therefore µ is a multicurve which is not a simple
closed geodesic. �

By Lemmas 2.2 and 2.4, f takes any multicurve to a multicurve.
Now we show that f preserves the number of components for multicurves.

Lemma 2.5. A multicurve µ with two components is characterised by the
property that ‘if µ contains λ then either λ is a simple closed geodesic or
µ = λ’. Therefore f preserves this property.

Inductively, a multicurve µ with n components is characterised by the
property that ‘if µ contains λ, then λ is a multicurve with at most n − 1
components or λ = µ.’ This is also preserved by f .

We note also that n simple closed geodesics are pairwise disjoint if and
only if there exists a multicurve containing all of them. Therefore the dis-
jointness is also preserved by f . Combining these, we see that f induces an
automorphism on the curve complex C(S) of A. By Ivanov’s theorem [2],
this implies that there is a homeomorphism of S inducing the same map as
f on C(S). Thus we have the following.

Corollary 2.6. Let f be a bijection on GL(S) preserving left Hausdorff
convergence. Then there is a homeomorphism g : S → S such that f and g
induce the same simplical automorphism on C(S).
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Ivanov’s theorem also shows that this homeomorphism g is unique up to
isotopy provided that genus(S) ≥ 3. When genus(S) = 2, there are two
choices of isotopy classes whose difference is represented by a hyperelliptic
involution. Indeed, the hyperelliptic involution ι acts on C(S) trivially, and
hence g and ι ◦ g induce the same action on C(S).

3. Approximable laminations

From now on, f is as before a bijection of GL(S) preserving left Hausdorff
convergence, and g denotes an automorphism of S inducing the same map as
f on the curve complex C(S). For any geodesic ℓ on S, we abuse the symbol
g(ℓ) to denote the geodesic homotopic to g(ℓ). In this way, we regard g as
acting on GL(S).

Definition 3.1. We say that a geodesic lamination µ is approximable when
there is a sequence of multicurves ci which converges to µ in the (ordinary)
Hausdorff topology. We denote by AL(S) the subset of approximable lami-
nations.

Lemma 3.1. If λ is a union of its minimal components, then it is approx-
imable.

Proof. First suppose that λ is minimal. Take a leaf l of λ. For each positive
integer n, we choose an arc an on l with length greater than n whose end-
points can be joined by a geodesic arc bn transverse to l of length less than
1/n and such that the endpoints of the arc an arrive on different sides of bn.
Since l is dense in λ, the closed geodesic cn homotopic to an ∪ bn converges
to λ in the Hausdorff topology.

In the general case, we can take a sequence of closed geodesics {cji} as

above for each minimal component λj so that the cji ∩ cj
′

i if j 6= j′. Then

the union ∪jc
j
i converges to λ as i → ∞ in the Hausdorff topology. �

Since inclusion is preserved by f by Lemma 2.3, any minimal lamination
is mapped to a minimal lamination by f .

Lemma 3.2. If µ is an approximable lamination, then there is a sequence
of multicurves {ci} with the following properties.

(i) d ~H
(ci, µ) → 0.

(ii) Any λ such that d ~H
(ci, λ) → 0 contains µ.

Proof. Let {ci} be a sequence of multicurves converging to µ in the Hausdorff
topology. Then by the definition of the Hausdorff topology and d ~H

, we have
(i) and (ii). �

Corollary 3.3. If µ is an approximable lamination, then f(µ) = g(µ).

Proof. Take ci as in Lemma 3.2. Then d ~H
(f(ci), f(µ)) → 0 since f preserves

left Hausdorff convergence. By Lemma 2.3, if d ~H
(f(ci), λ) → 0, then λ

contains f(µ). Since g(ci) = f(ci), we have d ~H
(f(ci), g(µ)) → 0, and hence
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g(µ) contains f(µ). Since g is a homeomorphism of S, it also preserves left
Hausdorff convergence and inclusion. Thus, by exchanging the roles of f
and g, f(µ) contains g(µ). �

4. Non-compact isolated leaves

Definition 4.1. Let l be a non-compact isolated leaf of a geodesic lamina-
tion λ. There are one or two minimal components onto which the two ends
of l spiral. We call these components the limit components of l and denote
them by L+(l), L−(l). These two limit components may coincide. We note
that limit components are minimal components, and hence are contained in
AL(S).

Lemma 4.1. Let f be a bijection of GL(S) preserving left Hausdorff conver-
gence. Let λ be a geodesic lamination and suppose that λ has a non-compact
isolated leaf ℓ. Let L+(ℓ), L−(ℓ) (possibly the same) be the limit components
of ℓ. Then f(λ) contains f(L+(ℓ)), f(L−(ℓ)) as minimal components and
an isolated leaf having f(L+(ℓ)), f(L−(ℓ)) as its limit components.

Proof. Suppose that ℓ has two limit components L+(ℓ), L−(ℓ), and consider
the geodesic lamination L+(ℓ) ∪ L−(ℓ) ∪ ℓ, which we denote by L. Then L
is a sublamination of λ. By Lemma 2.3, f(λ) contains f(L). On the other
hand, since f is induced by a homeomorphism g of S on AL(S), f(L+(ℓ) ∪
L−(ℓ)) = g(L+(ℓ)) ∪ g(L−(ℓ)) is the union of two minimal components,
which we denote by L+

f , L
−

f . Since L
+(ℓ)∪L−(ℓ) is the union of all minimal

components of L and since this property is preserved by f , L+

f , L
−

f are the

minimal components of f(L).
By our definition, L contains L+(ℓ) ∪ L−(ℓ) properly and it is minimal

among all laminations containing L+(ℓ) ∪ L−(ℓ). This property must be
preserved by f . Therefore f(L) \ (L+

f ∪ L−

f ) contains only one leaf, and it

is a non-compact isolated leaf, which we denote by ℓf . If ℓf has only one

of L+

f , L
−

f , say L+

f , as its limit component, then we have proper inclusions

f(L+

f ) ( f(L+

f ) ∪ ℓf ( f(L). By applying f−1 to these inclusions, we

have a geodesic lamination L′ such that L+

f ( L′ ( L. This implies that

L′ = L+(ℓ) ∪ L−(ℓ) by our definition of ℓ. This is a contradiction since we
would have then L+

f ∪ L−

f = f(L′) = f(L+

f ) ∪ ℓf .

Thus, we have shown that ℓf has both L+

f and L−

f as limit components.

Since ℓf is contained in f(L) ⊂ f(λ), we are done in this case. The same kind
of argument works also in the case when ℓ has only one limit component. �

5. Finite laminations

Definition 5.1. A geodesic lamination is called finite when all its minimal
components are simple closed geodesics.
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We next refine Lemma 4.1 in the case when λ is a finite lamination to show
that f(λ) contains a leaf ‘homotopic’ to g(ℓ) (or ι◦g(ℓ) when genus(S) = 2)
as unique non-compact isolated leaf.

Definition 5.2. Let ℓ be a non-compact isolated leaf of a finite lamination
λ ∈ GL(S) with limit components L+, L−, which may coincide. Then the
homotopy class of ℓ is defined to be the homotopy class of ℓ\(A(L+)∪A(L−))
on S\(A(L+)∪A(L−)) where A denotes a thin annular neighbourhood which
is taken to be pairwise disjoint for the minimal components of λ.

Lemma 5.1. Let ℓ be a non-compact isolated leaf of a finite lamination λ ∈
GL(S). Then there is a leaf of f(λ) which has the same limit components and
the same homotopy class as g(ℓ) when genus(S) ≥ 3. When genus(S) = 2
the leaf is homotopic to either g(ℓ) or ι ◦ g(ℓ), where ι is a hyperelliptic
involution.

Proof. Construct a pants decomposition by disjoint simple closed geodesics
in S \ (L+ ∪ L− ∪ l), so that L+ ∪ L− is contained in only one pair of
pants if genus(S) ≥ 3, and denote it by C. We have f(C ∪ L+ ∪ L−) =
g(C ∪L+∪L−). Since C ∪L+∪L−∪ ℓ is a geodesic lamination, f(C ∪L+∪
L−∪ℓ) is also a geodesic lamination, which implies that f(λ) contains a non-
compact isolated leaf l′ disjoint from g(C ∪L+∪L−) with limit components
g(L+), g(L−). In the case when genus(S) ≥ 3, since there is only one pair
of pants in S \ g(C ∪ L+ ∪ L−) whose frontier contain g(L+) ∪ g(L−), this
pair of pants must contain l′, and hence is homotopic to g(ℓ).

In the case when genus(S) = 2, it is possible that l′ is contained in the
pair of pants lying on the opposite side of g(L+ ∪ L− ∪ c) from the one
containing g(ℓ). In this case ι(l′) is homotopic to g(ℓ). �

Next, we shall take into account the direction to which a non-compact
isolated leaf spirals around simple closed geodesics.

Definition 5.3. We call a non-compact isolated leaf ℓ of a finite lamination
unapproachable when it has only one limit component and if it spirals around
this component from its two sides in the same direction. Otherwise, ℓ is
called approachable.

Lemma 5.2. Let ℓ be an approachable non-compact isolated leaf of a finite
geodesic lamination λ. Then there is an approximable finite lamination λ′

containing ℓ but no other non-compact isolated leaf homotopic to ℓ.

Proof. Let L+, L− be the limit components of ℓ, which may coincide. We
can regard ℓ as obtained from an arc a with endpoints lying on L+ ∪L− by
spiralling it around L+ and L−. We extend a to a simple closed curve c so
that the endpoints of a constitute essential intersection of c with L+ ∪ L−,
without adding an arc parallel to a. By performing Dehn twists around L+

and L− on c infinitely many times and taking the Hausdorff limit to the
same direction as the spiralling of ℓ, we get an approximable lamination as
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we wanted. (Since ℓ is approachable, we can realise ℓ by an infinite iteration
of Dehn twists.) �

In the case when genus(S) = 2 we shall need another lemma.

Lemma 5.3. Suppose that genus(S) = 2, and let ℓ and ℓ′ be two approach-
able non-compact isolated leaves of a finite lamination which has the follow-
ing properties.

(a) ℓ has two distinct limit components L+ and L−.
(b) ℓ′ has either one or two limit components. If ℓ′ has only one limit

component, then its ends spiral around the limit component from the
same side.

(c) One of the limit components L+ of ℓ is also a limit component of ℓ′

whereas L− is not.
(d) The leaves ℓ and ℓ′ spiral around L+ from the same side.

Then, there is a approximable geodesic lamination λ′ containing µℓ ∪ µℓ′

and having a leaf which intersects both ι(ℓ) and ι(ℓ′) transversely, where ι
denotes a hyperelliptic involution.

Proof. If ℓ′ has two limit components, let L′ be the limit component other
than L+. If ℓ′ has only one limit component, choose a closed geodesic disjoint
from L+ ∪ ℓ ∪ L− ∪ ℓ′, and let it be L′. (By the property (b), such a closed
geodesic exists.) Then L+ ∪ L− ∪ L′ decompose S into two pairs of pants,
P and P ′. By the properties (b) and (d), ℓ and ℓ′ are contained in the same
pair of pants, say P . Now we can extend µℓ ∪ µℓ′ to a geodesic lamination
as we wanted by adding a leaf in P ′ which intersects ι(ℓ), ι(ℓ′) transversely
choosing the spiralling directions appropriately. �

Proposition 5.4. Let ℓ be an approachable non-compact isolated leaf whose
limit components L+, L− are simple closed geodesics, which may coincide.
Let µℓ be the geodesic lamination L+ ∪ ℓ ∪ L−. Then f(µℓ) = g(µℓ) when
genus(S) ≥ 3. In the case when genus(S) = 2, we have either f(µℓ) = g(µℓ)
or f(µℓ) = ι ◦ g(µℓ), and the alternative does not depend on ℓ.

Proof. By Lemma 5.2, there is an approximable finite lamination λ con-
taining µℓ which does not have a leaf other than ℓ homotopic to ℓ. By
Corollary 3.3, we have f(λ) = g(λ). On the other hand, if genus(S) ≥ 3, by
Lemma 5.1 shows that f(µℓ) consists of g(L

+) ∪ g(L−) and a non-compact
isolated leaf homotopic to g(ℓ). Since f(µℓ) is contained in f(λ) = g(λ), the
only isolated leaf of f(µℓ) must coincide with g(ℓ). Thus we have completed
the proof in the case when genus(S) ≥ 3.

Suppose that genus(S) = 2. Then the same argument as in the case of
genus(S) ≥ 3 implies that f(µℓ) is either g(µℓ) or ι ◦ g(µℓ). We need to
show that one of the alternatives holds for all µℓ. First consider two isolated
leaves ℓ and ℓ′ as in the statement of Lemma 5.3, and consider λ′ there.
Since λ′ has a leaf ℓ′′ intersecting ι(ℓ), ι(ℓ′) transversely, if f(µℓ) = g(µℓ),
we cannot have f(µℓ′′) = ι ◦ g(µℓ′′), for both f(µℓ) and f(µℓ′) are contained
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in f(λ′), and hence we have f(µℓ′′) = g(µℓ′′), and by the same argument
f(µℓ′) = g(µℓ′) holds. In the same way, we see that if f(µℓ) = ι◦g(µℓ), then
we have f(µℓ′) = ι ◦ g(µℓ′). Thus one of the alternatives holds for both µℓ

and µℓ′ .
If ℓ has only one limit component and spirals around it from its both sides,

we have ι(µℓ) = µℓ. Therefore both alternatives hold for such a case, and
this can be excluded from the argument. Since two pants decompositions of
S can be joined by iterating elementary moves, and two ideal triangulations
of a pair of pants has at least one common edge, for any given two non-
compact isolated leaves ℓ and ℓ̄ of different laminations having the property
(b) of Lemma 5.3, there is a sequence of non-compact isolated leaves ℓ =
ℓ1, ℓ2, . . . , ℓk = ℓ̄ such that ℓj and ℓj+1 satisfy the hypotheses of Lemma 5.3.
Therefore, by repeating the argument in the previous paragraph, we see that
if f(µℓ) = g(µℓ) then f(µℓ̄) = g(µℓ̄). Thus we have completed the proof. �

Corollary 5.5. For any finite geodesic lamination λ that does not contain
any unapproachable non-compact isolated leaf, we have f(λ) = g(λ) when
genus(S) ≥ 3. If genus(S) = 2, f(λ) = g(λ) for any such λ or f(λ) = ι◦g(λ)
for any such λ.

Proof. By Lemma 3.1 and Corollary 3.3, f and g coincide on the minimal
components of λ, and by Lemma 2.3, the number of the non-compact isolated
leaves of f(λ) is the same as that of λ. Let ℓ be a non-compact isolated leaf
of λ, which is approachable by assumption. By Proposition 5.4, we have
f(µℓ) = g(µℓ) (or f(µℓ) = ι ◦ g(µℓ) when genus(S) = 2), and since f(λ)
contains f(µℓ), it must have g(ℓ) (or ι ◦ g(ℓ) when genus(S) = 2) as a
non-compact isolated leaf. Since this holds for every non-compact isolated
leaf, f(λ) contains all non-compact isolated leaves of g(λ) (or ι ◦ g(λ) when
genus(S) = 2). Since f(λ) and g(λ) have the same number of such leaves,
which is equal to the number of non-compact isolated leaves of λ, we have
f(λ) = g(λ) (or f(λ) = ι ◦ g(λ) when genus(S) = 2).

In the case when genus(S) = 2, by Proposition 5.4 either f(µℓ) = g(µℓ)
for all λ and ℓ or f(µℓ) = ι ◦ g(µℓ) for all λ and ℓ. This shows the second
sentence of our corollary. �

Now we turn to unapproachable non-compact isolated leaves.

Lemma 5.6. Let ℓ be an unapproachable non-compact isolated leaf of a finite
geodesic lamination, and L its (unique) limit component Then for µℓ = L∪ℓ,
we have f(µℓ) = g(µℓ) if genus(S) ≥ 3. In the case when genus(S) = 2, we
have either f(µℓ) = g(µℓ) or f(µℓ) = ι ◦ g(µℓ), and the alternative does not
depend on ℓ, nor whether ℓ is unapproachable or approachable.

Proof. Take a simple closed geodesic d in S \ µℓ, and two approachable
non-compact isolated leaves ℓ1 and ℓ2 as follows.

1 ℓ1 and ℓ2 are disjoint, and are contained in S \ (µℓ ∪ d).
2 For j = 1, 2, the ends of ℓj spiral around d and L.
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3 ℓ1 and ℓ2 spiral around L from opposite sides of L.

Set νℓ to be µℓ ∪ d ∪ ℓ1 ∪ ℓ2, and ν ′ℓ to be d ∪ L ∪ ℓ1 ∪ ℓ2.
Suppose that genus(S) ≥ 3 for the moment. By Corollary 5.5, we have

f(ν ′ℓ) = g(ν ′ℓ). By Lemma 5.1, f(νℓ) has a non-compact isolated leaf ℓ′

homotopic to g(ℓ). Since ℓ′ is disjoint from f(ν ′ℓ), which must be contained
in f(νℓ), the direction of spiralling is the same as g(ℓ) at both ends, and
hence ℓ′ = g(ℓ). Thus we have f(νℓ) = g(νℓ).

Next suppose that genus(S) = 2. By the same argument as in the case of
genus(S) ≥ 3, if f(ν ′ℓ) = g(ν ′ℓ), we have f(νℓ) = g(νℓ). Otherwise, we have
f(νℓ) = ι◦g(νℓ). Since one of the alternative holds for all ν

′

ℓ by Corollary 5.5,
we see that the alternative does not depend on ℓ. �

Now we can prove the following.

Proposition 5.7. We have f(λ) = g(λ) for all finite geodesic laminations
if genus(S) ≥ 3. We have f(λ) = g(λ) for all finite geodesic laminations or
f(λ) = ι ◦ g(λ) for all geodesic laminations if genus(S) = 2.

Proof. We first assume that genus(S) ≥ 3. Let λ′ be the union of the
minimal components and the approachable non-compact isolated leaves of
λ. By Corollary 5.5, f(λ′) = g(λ′), and hence f(λ) contains g(λ′). Now,
let ℓ be an unapproximable non-compact isolated leaf of λ. By Lemma 5.6,
f(λ), which contains f(µℓ) = g(µℓ), must contain g(ℓ). Since this holds for
every unapproximable non-compact isolated leaf of λ, f(λ) contains g(λ).
Since f preserves the inclusions, the number of the leaves of f(λ) is the
same as that of λ, hence as that of g(λ). Therefore, the only possibility is
f(λ) = g(λ).

Now we turn to the case when genus(S) = 2. In this case, we have
f(λ′) = g(λ′) or f(λ′) = ι ◦ g(λ′). If the first possibility holds, this must
hold for all λ′, and also we have f(µℓ) = g(µℓ). Therefore f(λ) = g(λ) for
every finite geodesic lamination λ. Similarly, if f(λ′) = ι ◦ g(λ′), then this
holds for all λ′, and hence f(λ) = ι◦g(λ) for every finite geodesic lamination
λ. �

6. Proof of the main theorem

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. We first show that if f : GL(S) → GL(S) is a bi-
jection preserving left Hausdorff convergence, then there is an extended
mapping class h inducing the same bijection on GL(S).

Let λ be a geodesic lamination. Since finite laminations are dense in
GL(S) with the Hausdorff topology, there is a sequence of finite laminations
{µi} converging to λ. By Proposition 5.7, we have f(µi) = h(µi) for a
homeomorphism h : S → S. (This is either g or ι ◦ g in Proposition 5.7.)
Since h is a homeomorphism, h(λ) coincides with the Hausdorff limit µ∞ of
h(µi) = f(µi). Since f preserves left Hausdorff convergence, f(λ) contains



10 KEN’ICHI OHSHIKA AND ATHANASE PAPADOPOULOS

the Hausdorff limit µ∞. As was seen before, f preserves the number of
minimal components and the number of non-compact isolated leaves. Thus,
the only possibility is f(λ) = µ∞, which is equal to h(λ).

Thus, the natural homomorphism Mod∗(S) → Aut(GL(S)) is surjective.
For genus(S) ≥ 3, this homomorphism is injective since if two extended

mapping classes induce the same bijection on GL(S), they induce the same
action on the curve complex C(S), and we know by Ivanov’s result [2] that
the natural homomorphism Mod∗(S) → C(S) is injective.

It remains to consider the case genus(S) = 2. We know that in this case,
if a homeomorphism h of S induces the identity map on the curve complex
C(S), then h is either homotopic to the identity of to the hyperelliptic invo-
lution ι of S. But the hyperelliptic involution does not induce the identity
map on GL(S). To see this, take a geodesic pair of pants decomposition
of S which is invariant by ι up to homotopy, and complete it to a geodesic
lamination by adding leaves which spiral along the three pants curves in a
way that is not invariant by the hyperelliptic involution ι. Thus, ι does not
induce the identity map on GL(S). This completes the proof.

�
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