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ARTICLE

Controlling symmetry and localization with an
artificial gauge field in a disordered quantum
system
Clément Hainaut1, Isam Manai1, Jean-François Clément1, Jean Claude Garreau1, Pascal Szriftgiser1,

Gabriel Lemarié2,3, Nicolas Cherroret4, Dominique Delande4 & Radu Chicireanu1

Anderson localization, the absence of diffusion in disordered media, draws its origins from

the destructive interference between multiple scattering paths. The localization properties of

disordered systems are expected to be dramatically sensitive to their symmetries. So far, this

question has been little explored experimentally. Here we investigate the realization of an

artificial gauge field in a synthetic (temporal) dimension of a disordered, periodically driven

quantum system. Tuning the strength of this gauge field allows us to control the parity–time

symmetry properties of the system, which we probe through the experimental observation of

three symmetry-sensitive signatures of localization. The first two are the coherent back-

scattering, marker of weak localization, and the recently predicted coherent forward scat-

tering, genuine interferential signature of Anderson localization. The third is the direct

measurement of the β(g) scaling function in two different symmetry classes, allowing to

demonstrate its universality and the one-parameter scaling hypothesis.
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Symmetry, disorder, and chaos are ubiquitous in both clas-
sical and quantum physics. These concepts are intimately
intertwined: In a disordered crystal for instance, disorder

stems from the absence of translational symmetry. But this does
not mean that symmetries are absent in disordered/chaotic sys-
tems; on the contrary, they play a central role, as systems pre-
senting the same symmetries display analogous properties. This
idea led to the fundamental concept of universality class,
grounding the famed random matrix theory1. In a dirty metal for
instance, breaking the time-reversal symmetry (T-symmetry) has
a profound effect on transport observables like electrical and
thermal conductivities2. A common way to break the T-symmetry
for charged particles is to apply a magnetic field. For neutral
systems, where magnetic fields are inoperative, the concept of
artificial gauge field3–5 has been introduced. It consists in building
Hamiltonians that behave as if a gauge field were present. Arti-
ficial gauge fields have been realized in inhomogeneous or lattice
systems, and very recently in the presence of disorder6.

In the present work, we exploit the simplicity and flexibility of
driven cold-atom systems to generate such an artificial gauge
field. For this purpose, we build on the well-known atomic kicked
rotor7, a paradigm of both classical and quantum Hamiltonian
chaos, which can be mapped onto an Anderson-like Hamiltonian
in any dimension8,9. This system is realized experimentally by
submitting laser-cooled atoms to short pulses (kicks) of a far-
detuned laser standing wave.

By engineering the periodic driving, we obtain an experimental
knob providing complete control of the relevant symmetry of the
system, here the product of parity and time-reversal (PT-sym-
metry)10–12. Furthermore, the accumulated phase of a quantum
particle along a closed multiple-scattering path is independent of
the sense in which the loop is traveled when PT-invariance holds
(defining the so-called orthogonal symmetry class), but not when
it is broken (defining, for spinless systems, the unitary class), an
effect that strongly affects quantum interference in localization
phenomena. This allows us to directly observe the impact of this
symmetry changing on interference signatures of localization in
disordered media, and to study the universal transport properties
in the two symmetry classes.

Results
Artificial gauge fields in disordered Floquet systems. We first
show how to engineer the driving of Floquet systems to manip-
ulate their fundamental symmetry properties. For this purpose,
we consider a generalized kicked rotor Hamiltonian, to which we
add a temporal dependence of the amplitude KðtÞ and of the
spatial phase a(t) in the potential term, both periodic in time:

Ĥ ¼ p̂2

2
þKðtÞ cos x̂ � aðtÞ½ �

X
n

δðt � nÞ; ð1Þ

The position x̂ and momentum p̂ are expressed in dimension-
less units, and satisfy the canonical commutation relation
½x̂; p̂� ¼ i�he, with �he playing the role of an effective Planck’s
constant (see Methods for definition of units). When K ¼ const.
and a= 0, we recover the standard kicked rotor, which can be
mapped onto an Anderson-like tight-binding model in momen-
tum space7,8 with diagonal pseudo-disorder.

When KðtÞ is temporally modulated at a period 2π/ω2

incommensurate with the kick period, it has been shown9,13,14

that the temporal modulation can be taken into account by
adding an effective spatial coordinate x2= ω2t+ φ along a
synthetic dimension labeled “2” (“1” refers to the physical
dimension along which all measurements are performed).
Here, we study the situation where the driving modulations have

a period which is an integer multiple of the kick period
(ω2= 2π/N), i.e. Kðt þ NÞ ¼ KðtÞ and a(t+N)= a(t) with N
an integer. In this case, the synthetic dimension is also periodic
with twisted boundary conditions (see below). Such a system
maps onto a synthetic nanotube threaded by an artificial gauge
field. The flux of this artificial gauge field through the transverse
section of the nanotube can be easily controlled by changing the
initial phase φ of the temporal modulation.

Without loss of generality, it is convenient to illustrate the
fundamental mechanism of creation and control of the artificial
gauge field by using the specific example of a period-N amplitude
modulation (see Fig. 1a, b):

KðtÞ ¼ K 1þ cos
2πt
N

þ φ

� �� �
and aðtÞ ¼ 0: ð2Þ

The temporal dynamics of an arbitrary initial state χ(x)
can be mapped on that of a two-dimensional pseudo-rotor
with Hamiltonian14: H ¼ p21=2þ 2πp2=N þ K cosx1 1þ cosx2½ �P

n δðt � nÞ, with initial condition χ(x1)δ(x2− φ). Here, “1”
represents the physical dimension (x1= x, p1= p), and the
synthetic dimension “2” is an ancillary space with 0 ≤ x2 < 2π,
where the period-N dynamics is simply given by x2= φ+ 2πt/N
(mod. 2π). This equivalent 2D Hamiltonian is time-periodic with
period 1. Its Floquet states—eigenstates of the evolution operator
over one period with eigenvalue eiω—are also solutions of a tight-
binding model: ϵmΨm þ

P
r WrΨm�r ¼ 0 where m≡ (m1, m2)

and r label the sites of a 2D square lattice which correspond to
momenta in units of the effective Planck’s constant �he, and Ψm

are the components of the Floquet quasi-states. The site energy
ϵm is ϵm = tan ω� �hem2

1=2þ 2πm2=N
� �� 	

=2

 �

and the hopping
amplitudes Wr are coefficients of the twofold Fourier expansion
of Wðx1; x2Þ ¼ tan K cos x1ð1þ cos x2Þ=2�he½ �9.

When �he is incommensurate with 2π, the site energies
constitute a pseudo-random sequence in the direction “1”, which
accounts for the disordered character of our system in
momentum space, leading to dynamical localization, i.e.,
Anderson localization in momentum space. The site energies
ϵm1;m2 form a pseudo-random set which is periodic along the
direction “2” with period N. Thus, we can use the Bloch theorem
along the direction 2 and write any Floquet state as
Ψm1;m2 ¼ e�im2ϕ2 ψm1;m2

, where ϕ2 is the Bloch phase and
ψm1;m2þN ¼ ψm1;m2

is periodic in direction 2. This is equivalent
to having twisted boundary conditions along m2. The initial state
Ξj i of the 2D pseudo-rotor—whose wavefunction is x1; x2jΞh i ¼
χðx1Þδðx2 � φÞ can be expanded in the momentum basis:
Ξj i ¼

P
m1;m2

Ξm1;m2 m1;m2j i. The initial condition in direction
2 can be expanded in the momentum eigenbasis as:
δðx2 � φÞ ¼

Pþ1
m2¼�1 e�im2φeim2x2 14 which implies Ξm1;m2þN ¼

e�iNφΞm1;m2þN Thus, the choice of the initial condition imposes
the Bloch phase ϕ2= φ.

The Hilbert space thus reduces to a synthetic nanotube along
direction 1, with N sites in the transverse section along direction 2
(Fig. 1c, d). The initial phase φ of the temporal modulation
controls the flux through the nanotube. Indeed, the Floquet
eigenequation can be rewritten for the periodic function ψ as:

ϵm1;m2ψm1;m2
þ
X
r1;r2

Wr1;r2 e
iφr2 ψm1�r1;m2�r2

¼ 0 ð3Þ

The hopping matrix elements in Eq. (3) have caught a phase
φr2. This is somewhat similar to a 2D system exposed to a
uniform magnetic field15,16. However, the geometry here is not
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that of a planar system, but rather a quasi-1D system or a
nanotube infinite along direction 1 and with N transverse sites
along direction 2. Indeed, a closed loop m2= 0 → 1 → 2… →N−
1 → 0 will pick a total phase Φ2=Nφ, while the counter-
propagating loop will pick the opposite phase −Nφ. In contrast,
no phase is picked along a plaquette (m1, m2) → (m1+ 1, m2) →
(m1+ 1, m2+ 1) → (m1, m2+ 1) → (m1, m2). Thus, the effective
gauge field flux Φ2 is analogous to a magnetic flux, with the
magnetic field along the axis “1” of the nanotube.

If the modulation period N is ≥3, a generic value of φ
corresponds to a non-vanishing (mod. π) flux Φ2. In such a
situation, it is not possible to unwind all the phases in Eq. (3) and
the system is expected to be in the unitary symmetry class, where
all anti-unitary symmetries—product of time-reversal by a
geometrical unitary operation—are broken. (The case N= 2 is
special, as the nanotube then degenerates in a two-leg ladder with
a single transverse hopping matrix element, hence the system is in
the orthogonal class whatever φ). In contrast, if Φ2= 0 (mod. π),
all hopping terms can be made real and the system is expected to
be in the orthogonal class:

Nφ ¼ 0 mod:πð Þ : orthogonalclass
Nφ≠0 mod:πð Þ : unitaryclass:

ð4Þ

This simple condition can also be deduced from a direct
analysis of the kick sequences (Fig. 1a, b). For the kicked rotor
(1), the relevant anti-unitary symmetry is the product of time-
reversal by parity (PT-symmetry)10,11. The Hamiltonian being
explicitly time-dependent, there exists a family of operators T τ :
t → 2τ− t; x →−x; p → p, depending on the temporal origin of the
time reversal. The condition for T τ to be a symmetry operation

requires that the sequence of kick amplitudes KðtÞ be symmetric
around some time τ (Fig. 1a). For the kick sequence in Eq. (2), it
is easy to show that this happens only when φ is an integer
multiple of π/N, in complete agreement with Eq. (4).

In the more general case of the Hamiltonian (1), it requires
additionally that the kick phases a(t) be antisymmetric (as T τ

changes x to −x). Note that, in this general case, the mapping of
the system on a nanotube is slightly more complicated, but
the universality class is determined by the symmetric (resp.
antisymmetric) character of the kick amplitudes (resp. phases).
The Hamiltonian (5) used in the next section can be mapped on a
bilayer nanotube with a magnetic field, and the Hamiltonian used
in the last section on a nanotube with a more complicated
artificial gauge field (the details of these mappings will be
published elsewhere).

Coherent back and forward scattering. Interference phenomena,
which are at the core of Anderson localization, are very sensitive
to symmetry breaking. Coherent backscattering (CBS)17 is a
simple example: a consequence of the PT-symmetry is that pairs
of scattering paths associated with the same geometrical loop, but
traveled in opposite senses, accumulate the same quantum phase
and thus interfere constructively. When the symmetry is broken,
these pairs of paths become out of phase and CBS disappears.
However, in the presence of (strong) Anderson localization, other
non-trivial quantum interference effects exist, such as the
coherent forward scattering (CFS), recently predicted theoreti-
cally18 (see also ref. 19 in the context of the kicked rotor). Con-
trary to CBS, the CFS is insensitive to the symmetry breaking and,
for unbound systems, requires the onset of Anderson localization
in order to show up20–23. While experimental observations of
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Fig. 1 Artificial gauge fields engineering via periodically modulated driving. By tailoring the temporal dependence of the driving parameters—either the
amplitude KðtÞ or the phase a(t)—we are able to create an artificial gauge field which controls the time-reversal symmetry properties of a periodically
driven (Floquet) system. For example, for a time-symmetric kick sequence a the system belongs to the orthogonal symmetry class, whereas a kick
sequence without any particular symmetry axes b puts the system in the unitary symmetry class (broken T-symmetry). c, d Our kicked-rotor system with
periodic amplitude (or phase) modulations (1) maps on a disordered synthetic nanotube in momentum space threaded by an artificial Aharonov–Bohm flux
Φ2. For the symmetric sequence a this flux is zero, whereas a non-symmetric sequence b corresponds to the presence of a non-zero Aharonov–Bohm flux
Φ2 (sketched as the light blue area). Experimentally, two distinct interference signatures can be used to characterize symmetry and localization: the
disappearance of the CBS peak is a clear-cut signature of the symmetry breaking, while the emergence of a CFS peak is a direct interference signature of
the onset of Anderson localization, in both symmetry classes
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CBS have been achieved in many different systems24–29, to the
best of our knowledge no experimental observation of the CFS
had been reported up till now.

In spatially disordered systems, CBS and CFS manifest in the
reciprocal space as two peaks centered around −k0 (backward)
and +k0 (forward) directions of the velocity distribution of a
wave packet initially launched with a well-defined wave vector
k018. Alternatively, the constructive interference between time-
reversed loops also manifests in the direct (configuration) space
by an enhanced probability to return to the original position17.

This interference is visible, in our system, in a mixed
momentum/configuration space representation (p1,x2), in which
the initial state is localized. Starting with the initial conditions
p1(t= 0) ≈ 0 and x2(t= 0)=+φ, a CBS peak should be observed
around p1= 0 at x2=−φ (in the presence of the PT-symmetry)
and a CFS peak around p1= 0 at x2=+φ19. Because of the time-
dependence of x2(t)= x2(0)+ 2πt/N, we thus expect to observe
CBS and CFS at different times, depending on the initial phase φ
of the modulation (see Methods). Both CBS and CFS are
measurable in the physical dimension p1 as peaks around the
initial momentum p1 ≈ 0. The temporal modulation is thus
essential to separate them, so that they appear at different
moments during the kick sequence.

We experimentally studied the CBS and CFS effects by using a
thermal, ultra-cold cloud of Cs atoms kicked by a series of short
pulses of a far-detuned standing wave (see Methods) created by a
pair of counter-propagating laser beams. The amplitude and
relative phase of the beams can be changed from one kick to
another in order to create arbitrary sequences KðtÞ and a(t). After
the application of the kicks, we perform a time-of-flight
measurement of the probability density in momentum space
Πðp1; tÞ ¼ Ψðp1; tÞj j2 vs. time t. This gives us access to the

temporal dynamics of the return probability17, i.e. the zero-
momentum probability density Π0ðtÞ ¼ Ψðp1 ¼ 0; tÞj j2. Using
this observable, we are able to distinctly observe the CBS and CFS
effects, and to study their dynamics and behavior with respect to
the relevant symmetries of the system.

Although it is possible to observe CBS and CFS using the
Hamiltonian (2) discussed above, it turns out (Methods) that the
two peaks can be better separated temporally by using a
combined modulation of amplitude and phase. For this reason,
in our experiment we utilize the following period-10 Hamilto-
nian, which also belongs to the class of models (1):

KðtÞ ¼ K 1þ cos
2πðt � 1Þ

5

� �� �
and aðtÞ ¼ �a; t even

KðtÞ ¼ K 1þ cos
2πðt � 1Þ

5
þ ~φ

� �� �
and aðtÞ ¼ a; t odd:

ð5Þ

As explained above, the symmetry properties of the Hamilto-
nian (5) are controlled by tuning the parameter ~φ, while the
additional phase modulation a(t), with period 2, makes CBS and
CFS observable only at even kicks. The CFS peak is observed at
kicks multiples of the period N= 10 of the system: 10, 20, 30…
(see Methods). The CBS peaks, on the other hand, can exist only
if the Hamiltonian is PT-symmetric. This is the case if ~φ is an
integer multiple of 2π/5, when the kick sequence displays PT-
symmetry axes τ, as illustrated in Fig. 2a. The CBS is then
observed at kicks which are symmetric to the initial kick with
respect to these axes, that is at times 6, 16, 26… (see Methods). In
contrast, when ~φ is not multiple of 2π/5 (see Fig. 2b) the sequence
has no symmetry axis, and no CBS shows up. We thus see that a
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Fig. 2 Experimental observation of CBS and CFS peaks in two symmetry classes. Using two periodically modulated kick sequences with different
symmetry properties, we measure the time-evolution of the zero-momentum probability density Π0(t). a The kick sequence with ~φ ¼ 0 in Eq. (5) has
symmetric amplitudes KðtÞ and antisymmetric phases a(t) by reversing time around τ= 3.5 (and 8.5) kicks, so that the system is in the orthogonal
symmetry class. b For ~φ ¼ �3π=5, the sequence has no symmetry, putting the system in the unitary class. c In the orthogonal class, we observe two
distinct enhancements of Π0(t), at times t= 6 (mod. 10) and t= 0 (mod. 10), associated to CBS (green) and CFS (red) peaks, respectively. The CBS
peaks have maximum contrast early during the kick sequence, and decrease due to stray decoherence, whereas the CFS peaks start by slowly
increasing in contrast, and equalize the CBS at longer times. This constitutes a genuine interferential signature of the emergence of Anderson
localization. d The time evolution of Π0 obtained with a Hamiltonian with broken PT-symmetry clearly shows the disappearance of the CBS peaks in
the unitary class. The CFS peaks, insensitive to the symmetry breaking, continue to be present, with a contrast following the same increasing trend at
short times
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suitable choice of the symmetry properties allows for a clear
temporal separation of the two peaks.

The experimental results for ~φ ¼ 0 (Fig. 2c) display two
characteristic features: First, the general trend of Π0(t) is a decay
vs. t, due to the spreading of the initially narrow wave packet in
momentum space. This decay slows down at long times, when
localization sets in. Second, we observe pronounced peaks at kicks
20, 26, 30, 36, etc. From this series of peaks, one can however
distinguish two subsequences with different properties: The CBS
series at t= 6 (mod. 10) has a maximal contrast at the beginning,
which slowly decreases with time, while the contrast of the CFS
series at t= 0 (mod. 10) increases at short times. On a longer time
scale (set by the localization time tloc), the CFS amplitude
asymptotically converges toward the CBS one, and the two peaks
become twins after localization has set in. This constitutes a direct
interferential proof of the occurrence of Anderson localization.
Adding a phase ~φ to the modulation should break the PT-
symmetry, as explained above. Indeed, this manifests (Fig. 2d) in

the disappearance of the CBS peaks at t= 6 (mod. 10), whereas at
pulses t= 0 (mod. 10) the CFS peaks survive and follow the
increasing trend, until saturating at t ~ tloc.

To test their dependence on ~φ, we monitor the contrasts of the
CBS and CFS peaks (see the Methods section for details on
contrast definition and measurement procedure). The results are
shown in Fig. 3a: at ~φ ¼ �2π=5 (which preserves the PT-
symmetry) we observe a pronounced maximum of contrast for
the CBS peaks, present here at kicks 2 (mod. 10) (see Methods).
The decrease of the CBS contrast around this value is a clear
signature of the symmetry breaking (an analogous control, albeit
not breaking the symmetry, was developed in refs. 30,31 for CBS in
spatially disordered ultracold experiments). Although the geo-
metry is not strictly identical, this is qualitatively similar to the
magneto-resistance effect32 induced in a solid-state sample when
time-reversal symmetry is broken by an external magnetic field.
On the other hand, the contrast of the CFS peak is insensitive to
~φ, showing its robustness vs. the PT-symmetry breaking. These
effects are well reproduced by numerical simulations of wave
packet evolution (solid lines in Fig. 3a) based on a Fourier
transform method33.

The time-dynamics of the CFS contrast has been theoretically
predicted in ref. 22, using a non-perturbative, fully time-resolved
analytical description of a quantum quench in an Anderson-
localized unitary system. Unlike the CBS peak, which is present at
short times with maximal contrast, the CFS peak requires (strong)
Anderson localization in order to show up, on a time scale set by
the localization time tloc.

In our experiment (Fig. 3b), the slow decay of both peaks at
longer times is due to stray decoherence. The CBS contrast
follows an exponential decay CB(t)= C0 exp(−t/tdec)34 and is an
excellent benchmark for decoherence in our system. A fit gives
the decoherence time tdec ≈ 190 and the initial amplitude of
the CBS contrast C0 ≈ 0.45 (lower than unity, due to a finite
initial momentum width effect). In the unitary class, the CFS
dynamics is very well fitted by the analytical formula of ref. 22

multiplied by the same exponential decay due to decoherence:
CF(t)= C0I0(2tloc/t)exp(−2tloc/t)exp(−t/tdec) with tloc ≈ 40 the
only fitting parameter (Iν is the modified Bessel function of
order ν). Very recently, an analytical formula for the CFS
dynamics in the orthogonal class has been given in ref. 35,
which, when including decoherence effects, gives:
CF(t)= C0[I0(2tloc/t)+ I1(2tloc/t)]exp(−2tloc/t)exp(−t/tdec). A
one-parameter fit using this expression is found to be in very
good agreement with our experimental data, and gives tloc ≈ 37.
Our measurements clearly confirm that the CFS contrast
dynamics is faster in the Orthogonal class, because of the
presence of simple loops favoring Anderson localization on a
shorter time scale.

These observations demonstrate that the CFS is a marker of the
non-trivial quantum interferences needed to build Anderson
localization in quantum disordered systems. The fact that we can
observe a destruction of CBS in the presence of a surviving CFS is
a clear-cut proof of the PT-symmetry breaking, and that other
effects, such as decoherence, are not at stake for the destruction of
the CBS (Methods). Hence, this represents an unambiguous
evidence of the changing of our system from the orthogonal to
the unitary class under the effect of the artificial gauge field.

Symmetry and transport—universal one-parameter scaling law.
The interference phenomena leading to Anderson localization
also dramatically influence the bulk transport in disordered
quantum systems. First corrections to the classical (incoherent)
diffusion coefficient D0, known as weak localization, come from
CBS-type interferences which enhance the return probability of a
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Fig. 3 Symmetry-breaking and temporal characteristics of the CBS and CFS
peaks. a The experimental CBS (green) and CFS (red) contrasts were
measured vs. the parameter ~φ, which controls the symmetry class. The data
are taken at t= 70 kicks, when the CFS contrast approaches that of the
CBS. The CBS contrast is maximum at ~φ ¼ �2π=5, where there is a perfect
PT-symmetry. When ~φ varies, the CBS contrast decreases, and eventually
vanishes when the symmetry is completely broken. Contrary to CBS, the
CFS contrast is almost insensitive to the value of ~φ. The error bars indicate
the typical experimental uncertainty. The solid lines are ab initio numerical
simulations33 using experimentally measured parameters. b The time
evolutions of the CBS (orthogonal, green) and CFS (orthogonal—red circles,
and unitary—red squares) contrasts corresponding to Fig. 2. The CBS
follows an exponential decay (dashed green line, fit), due to decoherence,
with a fitted time constant tdec≈ 190. The CFS contrasts are fitted using the
equations in refs. 22 and35 (red lines) with decoherence effects included.
This yields tloc≈ 40 in the unitary class and tloc≈ 37 in the orthogonal class
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quantum particle17. This quantum corrections are directly linked
to the presence of the PT-symmetry. In absence of this symmetry,
more complex CFS-type interferences induce a slower deviation
from diffusive behavior, with a distinct form.

An instrumental progress in the theory of metal-insulator
transitions was the so-called one-parameter scaling theory
introduced by Abrahams et al.36. It shows that, irrespective of
the microscopic details of the system, transport properties should
obey a universal scaling behavior, characterized by a single
quantity, β � d lnðgÞ=d lnðLÞ, the logarithmic derivative of the
dimensionless conductivity g with respect to the size L of the
system, which is a measure of transport. Expressed only as a
function of the conductivity g itself, the resulting β(g) function is
universal, that is, independent of microscopic details. This
function has played a central role in the study of disordered
systems. Based on the momentum spreading of a kicked wave
packet, we here present a direct and simple experimental
measurement of the β(g) scaling function, for both orthogonal
and unitary classes, as well as a test of its universality within each
symmetry class.

As it maps on a pseudo-random Anderson model (see
above), the kicked rotor should obey a one-parameter scaling
law. It is however a dynamical system, so that one has to build
dynamical quantities—which are the equivalent of the system

size L and the dimensionless conductance g. The natural choice
for the system size L is the number of lattice sites effectively
populated. In momentum space, the lattice sites are momentum
eigenstates separated by Δp ¼ �he, so that we can define
L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p21ðtÞh i

p
=�he. Following ref.37, we also define g ¼

N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p21ðtÞh i

p
=t�he as the effective conductance. In the classical

regime where the dynamics is diffusive, this leads to
g ¼ 2ND0=�heL, a perfectly reasonable result, as the conductance
decreases like the inverse of the system size (Ohm’s law) and is
proportional to the diffusion coefficient D0 (Einstein’s law). The
prefactor N takes into account the fact that our synthetic quasi-
1D system consists of N transverse channels (see above), so that
its conductance is N times larger than for a purely 1D system.
Note that this definition immediately leads to β=−1, as
expected for a classical diffusive quasi-1D system.

As a logarithmic derivative, the β(g) function is extremely
sensitive to experimental noise. A proper estimation of β(g) also
requires to average over a sufficiently large number of disorder
realizations, chosen accordingly with the desired PT-symmetry
properties defining the universality class. Achieving this goal is
not possible with the Hamiltonian (5), which does not provide
enough degrees of freedom. In the frame of Hamiltonian (1), the
best strategy turns out to be an average over a periodic series of N
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Fig. 4 Symmetry-class dependence of the one-parameter scaling function β(g). a, b Time-evolution of p21
 �

in the weak-localization regime in the two
symmetry classes. In the orthogonal class (a), closed-loop corrections lead to a rapid deviation from classical diffusion (dashed line). In the unitary class
(b), these corrections are absent, which qualitatively translates in a much slower departure from classical diffusion. In both cases, D0 is the same within
~20%. c Experimental dependence of the β(g) function on the dimensionless conductance g ¼ N

ffiffiffiffiffiffiffiffiffi
p21
 �q

=ð�hetÞ, measured following the 1D spreading of a
wave packet in momentum space. The error bars represent the typical uncertainty coming from the experimental determination of p21

 �
. The different

symbols (circles, diamonds and squares) correspond to three sets of different microscopic parameters (K and N) of the system: (K, N)∈ {(4, 3), (4.5, 4),
(3.5, 5)} (orthogonal, orange) and respectively (K, N)∈ {(2.5, 3), (4, 4), (1.6, 5)} (unitary, blue), for a value of �he ¼ 1 . All data in each class collapse onto
two distinct universal β(g) functions, characteristic of each symmetry class, indicated by the shaded regions. The asymptotic behavior at large g is correctly
predicted by Eq. (6) (continuous lines) inside their domain of validity
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randomly chosen phases AN ¼ a1; a2; ¼ ; aNf g i.i.d. in [0, 2π],
with KðtÞ ¼ K ¼ const. Then, the AN series is PT-symmetric if
ak=−aN−k+1, ∀k integer (1 ≤ k ≤N).

Using this prescription, we measured p21ðtÞ
 �

by averaging the
experimental momentum distributions over a large number (100)
of realizations of these random phases, with the microscopic
parameters K, N, and �he fixed. In the absence of quantum
interference, p21

 �
evolves diffusively with time: p21

 �
¼ 2D0t. In

the orthogonal class, self-intersecting single-loop (CBS-like)
interference paths, which are already present from very short
times, lead to a rapid deviation from classical diffusion (Fig. 4a).
In the unitary class, where the one-loop corrections are absent,
this has a dramatic effect on transport properties, leading to a
slower deviation from classical diffusion (Fig. 4b).

The leading corrections to p21ðtÞ
 �

due to loops have been
calculated for the kicked rotor in ref. 38, both in the orthogonal
and unitary classes (the unitary-class correction is given with the
wrong sign in ref. 38—C. Tian, private communication). They
allow us to compute the lowest-order correction to the β(g)
function, valid in the limit of large conductivities:

βðgÞ ¼ �1� 4
ffiffi
2

p

3
ffiffi
π

p
g : orthogonalclass;

βðgÞ ¼ �1� 1
2g2 : unitaryclass:

ð6Þ

In order to test these predictions, and the universality of β(g),
we studied a series of different values for the microscopic
parameters K and N, in the two symmetry classes. The measured
β-functions are shown in Fig. 4c. A remarkable feature of these
results is that all data collapse on two distinct scaling functions, as
evidenced by the shaded zones, characteristic for each universality
class. This constitutes an experimental demonstration of the
validity of the one-parameter scaling law. It also shows that the
shape of the β(g) function constitutes a clear marker of the
presence or absence of the PT-symmetry.

The experimental results in the unitary class are in excellent
agreement with (6). This is also true in the orthogonal class, in the
limit of large g (typically for 1/g < 0.5). For smaller values of g, we
notice deviations from (6), which we confirmed through
numerical simulations. This probably indicates that higher-
order interference diagrams should be taken into account in the
orthogonal class. These observations will hopefully stimulate
further theoretical investigations in this direction.

Discussion
The striking observations reported in the present work highlight
the importance of symmetries for the localization and transport
properties of disordered media, and the possibility to control
them using an artificial gauge field—generated here by appro-
priately tailoring the driving parameters of a Floquet system. Our
method presents a remarkable experimental simplicity, and
avoids both the complexity and limitations in more involved
schemes (using, e.g., close-to-resonance Raman-dressing of
internal states). We characterized the Anderson localization from
a different perspective, by directly probing interferential building
blocks such as the coherent back- and forward-scattering phe-
nomena. We also measured, in perfectly controlled conditions,
the β(g) scaling function—a universal characteristic measure of
transport in disordered media. Moreover, we demonstrated the
different sensitivity of these effects with respect to the artificial
gauge field flux, which controls the PT-symmetry properties of
the system.

Interference signatures (such as the CFS) could provide valu-
able tools to observe the Anderson transition and probe its critical
properties in higher dimensions and different symmetry classes.

Engineering spin-orbit-coupled dynamical Floquet systems (e.g.,
using internal-state-dependent optical potentials) would allow,
for example, to study the symplectic symmetry class, where the
Anderson metal-insulator transition is expected to occur in
dimensions as low as two. This also opens an avenue for the study
of fascinating phenomena, like quantum Hall effect39, Floquet
topological insulators and artificial magnetism.

Methods
Experiment. In the experiment, we start from a laser-cooled Cesium atomic
sample, prepared in a thermal state (T ’ 1:5 μK). The cloud is kicked along the
vertical x axis by a far-detuned, pulsed (period T1) optical standing wave (SW),
which is created by two independent lasers beams. This allows us to control the
amplitude and phase of the potential (via the RF signal sent to two different
AOMs) and to shape the modulation sequences KðtÞ and a(t) as in Eq. (1). The
laser parameters are: the detuning Δ=−13 GHz (at the Cs D2 line, wavelength λ
= 852.2 nm), the waist w0= 800 μm and the maximum intensity I= 30W cm−2

per beam. The pulse duration is τ= 200 ns, while T1 is typically varied between 10
and 30 μs. After the desired number of kicks, the cloud is allowed to expand and
the momentum probability density Πðp; tÞ ¼ Ψðp; tÞj j2 is measured using a time-
of-flight (TOF) technique34.

The TOF expansion time t= 170 ms corresponds to a dropping distance of
gt2=2 ¼ 14 cm along the vertical z direction. The atomic cloud is detected at this
location using absorption imaging in a homodyne detection scheme. We utilize a
10 mW probe beam with corresponding waists wz= 300 μm and wx= 3.3 mm in
the vertical and horizontal directions, respectively. The probe passes through a 45
MHz phase modulator, one of the sidebands being resonant with the atomic
transition. The transmitted power of the probe is then detected using a fast
photodiode, whose signal is demodulated in real-time using a spectrum analyzer.
Residual magnetic field effects are negligible, as the currents in the MOT coils are
switched-off at the beginning of the molasses phase, typically 50 ms before starting
the kick sequence.

For the CBS/CFS measurements (Section “Coherent Back and Forward
Scattering”), it is crucial to utilize a sample with an initial momentum distribution
narrower than the width of a Brillouin zone. Indeed, the CBS and CFS peaks have
widths given by that of the initial state, and their respective contrasts (equal to one
in the ideal case) is strongly reduced otherwise. In order to decrease the mean
kinetic energy of the sample, the atoms are loaded in a very shallow 1D optical
lattice (vertical direction), whose depth is less than the initial temperature. This
filters out the most energetic atoms. Subsequently, we realize 1D adiabatic cooling
by switching off the lattice in ~ 1 μs, reaching a momentum distribution width
<0.67 × 2ħkL, which corresponds to an equivalent 1D temperature <400 nK (this
value is limited by the resolution of the time-of-flight detection). The filtering
technique used for studying the CBS and CFS peaks is less suitable for the β(g)
measurements, where starting from a narrow momentum distribution is less crucial
whereas having a larger atom number is important to increase the detection signal-
to-noise ratio. We thereby used a standard molasses (1.5 μK) as a starting point for
these experiments (Section “Symmetry and transport: universal one-parameter
scaling law”).

Units. We have chosen scaled variables in order to express the Hamiltonian in the
dimensionless form Eq. (1): distances along the x axis are measured in units of
(2kL)−1 (where kL is the SW wave number), time in number of kicks (or units of
T1), the particle mass is unity. The Hamiltonian (1) is associated with the Schrö-
dinger equation i�he∂ψ=∂t ¼ Ĥψ, where �he � 4�hk2LT1=M plays the role of an
effective Planck constant, which can be adjusted at will by modifying, e.g., the kick
period T1 (M is the Cs atomic mass). The canonical commutation relation reads
½x̂; p̂� ¼ i�he.

The Hamiltonian (1) is spatially 2π-periodic, so that the solutions of the
Schrödinger equation can always be expanded on a discrete lattice in momentum
space pm ¼ ðmþ βÞ�he, where m is an integer and −1/2 < β ≤ 1/2 is the
quasimomentum, varying in the first Brillouin zone. Due to the spatial periodicity
of the system, β is a constant of motion, so that the whole analysis can be
performed for β= 0.

Decoherence and choice of experimental Hamiltonians. Decoherence in our
setup comes mainly from residual spontaneous emission and fluctuations in the
SW phase, and is one of the major limitations of all the experiments presented here.
To keep it under control, we use rather small average values of K, which somewhat
conflicts both with the observation of the CBS and CBS peaks and with precisely
measuring the β(g) scaling function, as explained below.

CBS/CFS peaks from Hamiltonian (5) In the Section corresponding to the CBS/
CFS measurements, we use a relatively large (N= 10) modulation period, which is
suitable for achieving a proper temporal separation between the CBS and CFS
peaks. Moreover, in order to properly resolve the CFS dynamics, one also needs a
sufficiently large tloc. For the kicked rotor this is usually obtained by increasing the
kick amplitude K, which unfortunately decreases the decoherence time tdec in the
experiment. On the other hand, it turns out that adding a period-two phase
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modulation increases (for certain values of the phase-shift a) the diffusion
coefficient D0, and thus tloc, without affecting tdec. This is why, for optimizing the
experimental conditions for the measurements of the CBS and CFS dynamics, we
opted for the combination of phase and amplitude modulations (5), choosing the
value a= 0.21 × π, found to maximize D0.

β(g) measurements. The scaling function β � d lnðgÞ=d lnðLÞ is extremely sen-
sitive to spurious effects such as experimental noise. In particular, at low values of
the kick amplitude K (used to keep decoherence under control), short-time cor-
relations between kicks are known to occur, and lead for instance to well-known
oscillations in the diffusion coefficient13,40). These temporal correlations are
responsible for large-amplitude oscillations of p2ðtÞh i, which are magnified when
computing the β(g) function (defined as a logarithmic derivative).

In order to eliminate these effects and properly measure β(g), it is therefore
required to average over as many disorder realizations as possible. For this purpose,
the best strategy, as confirmed by numerical simulations, is to average over a large
number of realizations of the random phase sequence a(t). This method was used
for our β(g) measurements: Each experiment is repeated 500 times, with a total of
100 different random realizations of a(t), and resulting momentum distributions
Ψðp; tÞj j2 are averaged. To determine p2ðtÞh i, we fit the measured distribution of
squared-momenta pΨðp; tÞj j2 using the Lobkis-Weaver expression of the
momentum distribution41.

Symmetry and times of occurrence of CBS and CFS peaks. The pulse sequence
is modulated using a combination of amplitude and phase modulations, as in (1).
The kick amplitude sequence KðtÞ has a period of 5, whereas the phase a(t) is
modulated with a period of 2 (represented in Fig. 4 by the different colors used for
the even and odd kicks), with an overall period N= 10. A consequence of the
period-two phase modulation a(t) is that PT-symmetry axes only occur in-between
kicks (and never during a kick) which explains why CBS peaks do not occur for
odd values of the kick number. A simple analysis of (5) shows that the corre-
sponding Hamiltonian is PT-symmetric (belonging thus to the orthogonal class)
when the phase ~φ 2 2π ´ 0; 15 ;

2
5 ;

3
5 ;

4
5


 �
. Each of these values of the ~φ leads to a

different time of occurrence of the CBS peak—corresponding to kicks {6, 10, 4, 8,
2}, respectively.

Take for instance the modulation sequence shown in Fig. 5, corresponding to
experimental data in Fig. 2. When ~φ ¼ 0 (Fig. 5a), the sequence has PT-symmetry
axes (vertical dashed lines labeled, τ), and the system belongs to the orthogonal
class. In this case, CBS peaks are expected to appear periodically, at kicks 6
(mod. 10), i.e., at times equal to twice the occurrence time of each τ. On the other
hand, when ~φ =2 2π ´ 0; 15 ;

2
5 ;

3
5 ;

4
5


 �
no symmetry axes exist (e.g. in (Fig. 5b), for

~φ ¼ �3π=5). In both universality classes the symmetry-insensitive CFS peaks
occur at integer multiples of the period of the system, i.e., at kicks 0 (mod. 10).

The CBS and CFS contrast measurements. Analyzing the experimental data in
Fig. 2, we can extract the contrasts CB(t) and CF(t), of the CBS and CFS peaks
respectively, vs. time. The contrasts, for either case, are defined as: CB,F(t)= (Π0(t)
−Π0,incoh.(t))/Π0,incoh.(t), and are evaluated at the occurrence times of their
respective peaks, tCBS and tCFS (corresponding respectively to red and and green
points in Fig. 2). Here, Π0ðtÞ ¼ Ψðp1 ¼ 0; tÞj j2 is the total zero-momentum
probability density (also defined in the main text), while Π0,incoh.(t) corresponds to
the incoherent (classical) contribution to Π0(t). Outside tCBS and tCFS (i.e., at times
corresponding to the black points in Fig. 2), the two contributions are identical:
Π0(t)=Π0,incoh.(t). In order to evaluate CB,F(t), we interpolate the Π0,incoh.(t) values
at tCBS and tCFS. This method was used for the data shown in Fig. 3.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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