Dynamics of interacting fermions under spin–orbit coupling in an optical lattice clock - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Nature Phys. Année : 2018

Dynamics of interacting fermions under spin–orbit coupling in an optical lattice clock

S.L. Bromley
  • Fonction : Auteur
S. Kolkowitz
  • Fonction : Auteur
T. Bothwell
  • Fonction : Auteur
D. Kedar
  • Fonction : Auteur
A. Safavi-Naini
  • Fonction : Auteur
M.L. Wall
  • Fonction : Auteur
A.M. Rey
  • Fonction : Auteur
J. Ye

Résumé

Quantum statistics and symmetrization dictate that identical fermions do not interact via s-wave collisions. However, in the presence of spin–orbit coupling (SOC), fermions prepared in identical internal states with distinct momenta become distinguishable. The resulting strongly interacting system can exhibit exotic topological and pairing behaviours, many of which are yet to be observed in condensed matter systems. Ultracold atomic gases offer a promising pathway for simulating these rich phenomena, but until recently have been hindered by heating and losses. Here we enter a new regime of many-body interacting SOC in a fermionic optical lattice clock (OLC), where the long-lived electronic clock states mitigate unwanted dissipation. Using clock spectroscopy, we observe the precession of the collective magnetization and the emergence of spin-locking effects arising from an interplay between p-wave and SOC-induced exchange interactions. The many-body dynamics are well captured by a collective XXZ spin model, which describes a broad class of condensed matter systems ranging from superconductors to quantum magnets. Furthermore, our work will aid in the design of next-generation OLCs by offering a route for avoiding the observed large density shifts caused by SOC-induced exchange interactions.

Dates et versions

hal-01781924 , version 1 (30-04-2018)

Identifiants

Citer

S.L. Bromley, S. Kolkowitz, T. Bothwell, D. Kedar, A. Safavi-Naini, et al.. Dynamics of interacting fermions under spin–orbit coupling in an optical lattice clock. Nature Phys., 2018, 14 (4), pp.399-404. ⟨10.1038/s41567-017-0029-0⟩. ⟨hal-01781924⟩
67 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More