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Abstract. This paper presents a secure multiparty computation proto-
col for the Strassen-Winograd matrix multiplication algorithm. We focus
on the setting in which any given player knows only one row (or one block
of rows) of both input matrices and, after the computation, only has ac-
cess to the corresponding row (or block of rows) of the resulting product
matrix. Neither the player initial data, nor the intermediate values, even
during the recurrence part of the algorithm, are ever revealed to other
players. After presenting some building block protocols, we describe how
to perform a secure multiparty execution of Strassen-Winograd recursive
algorithm, as well as an iterative base case. This is made possible thanks
to the combination of partial homomorphic encryption schemes and of
masking with shared pseudo-random streams as well as with the design
of novel dedicated schedules of arithmetic operations preserving privacy.
Next, we compare the performance of our protocol with an implementa-
tion based on a secure dot-product protocol. We show that asymptoti-
cally, the communication volume is reduced from O(n3) to O(n2.81), as
expected. Furthermore, we then compare our new algorithms with state
of the art implementations and show that the improvement in terms of
the volume of communication happens already for matrices with dimen-
sion as small as n = 81.

1 Introduction

Secure multiparty computations (MPC) allows n players to compute together
the output of some function, using private inputs without revealing them. In the
end, the players only know the result and did not learn any other information.
As some players can be malicious in several ways, there exists different setups for
the security of such protocols: for instance, resistance against a collusion of two
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or more players, or against attackers who modify their input. Several tools exist
to design MPC protocols, like Shamir’s secret sharing scheme [32], homomorphic
encryption [18], oblivious transfer [6] or using a Trusted Third Party [11].

Amongst known applications of MPC, one can cite for example the dis-
tributed evaluation of trust, as defined in [21,13]. In this context, players compute
confidence by combining their mutual degrees of trust. The aggregation of trust
amongst players can be represented as a matrix product C = A × B, where
each player knows one row of the matrix containing their partial trust towards
their neighbours and the network has to compute a distributed matrix squaring.
Hence, in this particular application, it is necessary to be able to efficiently and
securely compute products of matrices with several parties. Each party owns one
row or a block of rows. In this paper we thus focus on this particular layout of
data, for multiparty matrix multiplication of dimension n×n with n players.

Several MPC implementations do exist1. Some of them are for two parties
only [9,31,7,20,26] and most of the others are generic and transform programs
into circuits or use oblivious transfer. For instance the symmetric system solving
phase of the Linreg-MPC software is reported in [15] to take about 45 minutes
for n = 200 with a circuit based iterative gradient approach and about one hour
and a half for a circuit based Cholesky approach [29] (requiring 6 times fewer
operations than matrix multiplication). Both of these methods have an asymp-
totic computational cost of O(n3). Differently, to reduce the overhead of circuit
transformation or complex homomorphic operations, in [14], a secure multiparty
specific algorithm, Y TP -SS, was developed for matrix multiplication. It uses
only Paillier-like somewhat homomorphic routines and reduces to dot products
computations. Overall this protocol also runs in O(n3) in both, arithmetic and
communication complexity. This latter approach requires about a hundred sec-
onds to perform an n = 200 matrix multiplication.

These timings, however, do not take into account communications. In our
setting, the volume of communication and the number of operations should be
within the same order of magnitude. We therefore want to improve on existing
algorithms, primarily in terms of this volume (we do not to minimize the number
of messages, as in [19], but instead consider eventually their overall bit complex-
ity): indeed, algorithms exist with a lower time and communication complexity
for matrix multiplication. Strassen’s algorithm [33] was the first subcubic time
algorithm, with an exponent log2 7 ≈ 2.81. After this breakthrough, a stream of
improvements and new algorithms followed leading to the best value known to
date, due to LeGall’s [25], of approximately 2.3728639. However most of these
algorithms are not suited for practical use as their hidden constant in the big-
O notation is huge, making these algorithms only competitive for instances of
unrealistically large dimensions. Only a few sub-cubic time algorithms are com-
petitive in practice and used in software [12,3,22] (see also [23] and references
therein), among which Strassen’s algorithm and its variants stand out as the most
effective one in practice. We hence construct an MPC protocol based upon Wino-
grad’s variant of Strassen’s algorithm (referred to MP -SW ) [16, Alg. 12.1][1,

1 http://www.multipartycomputation.com/mpc-software
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Exercice 6.5 p.247], with a complexity of O(n2.81). Our strategy for this con-
struction is the following: As the volume of communications and computations
have the same order of magnitude, whenever trade-offs are possible in terms of
constant factor, thereafter we always choose to favor communication costs.

The security level of the algorithm presented here is the same as [14] without
additional security measures. By exposing how to apply it in the aforementioned
MPC framework, we show that speed-up in arithmetic cost carries over for the
communication cost. For this, we rely on a partial homomorphic encryption
scheme [4] (namely Naccache-Stern protocol [28]) and its ability to perform
homomorphic addition and subtraction of matrices, together with additive and
multiplicative masking.

Contrarily to [14], Strassen-Winograd algorithm involves numerous additions
and subtractions on parts of the A and B matrices that are held by different
players. Security concerns require then that these entries should be encrypted
from the start. As a consequence, the classic matrix multiplication can no longer
be used as stated in the former algorithm, even for the base case of Strassen-
Winograd algorithm. We therefore propose an alternative base case. Its arith-
metic cost is higher, but it involves an equivalent amount of communication.
We shall show that this choice combined with the multiparty recursive Strassen-
Winograd algorithm compares favorably to existing implementations in commu-
nication cost for matrices of dimensions larger than n = 81.

The article proceeds as follows: Section 2 presents Strassen-Winograd and
the Y TP -SS algorithms. There, we also define the dedicated data layout and
encryption setting and present the automated verification tool used for security
proofs. Next, in Section 3, we first describes our building block protocols, with
their security analysis. Second, we present in this Section a novel cubic-time ma-
trix multiplication algorithm to be used as a base case. Section 4 describes the
complete new sub-cubic MPC Strassen-Winograd algorithm and details its theo-
retical communication cost. Finally, Section 5 closes with practical comparisons
with our C++ implementation. We first compare our implementation against
Y TP -SS and its relaxed version, showing that we improve on the communica-
tion volume in both cases. Then, we compare it with the recent general purpose
library SPDZ2k [5] and exhibit a major communication volume improvement.

2 Preliminaries

2.1 Strassen-Winograd algorithm

The principle of Strassen-Winograd algorithm is to compute the product C =
A × B by splitting the input matrices in four quadrants of equal dimensions:
A =

[
A11 A12

A21 A22

]
and B =

[
B11 B12

B21 B22

]
. Each recursive call consists in 22 block

operations:
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– 8 additions:
S1 ← A21 +A22 T1 ← B12 −B11

S2 ← S1 −A11 T2 ← B22 − T1

S3 ← A11 −A21 T3 ← B22 −B12

S4 ← A12 − S2 T4 ← T2 −B21

– 7 recursive multiplications:

R1 ← A11 ×B11 R5 ← S1 × T1

R2 ← A12 ×B21 R6 ← S2 × T2

R3 ← S4 ×B22 R7 ← S3 × T3

R4 ← A22 × T4

– 7 final additions:
U1 ← R1 +R2 U5 ← U4 +R3

U2 ← R1 +R6 U6 ← U3 −R4

U3 ← U2 +R7 U7 ← U3 +R5

U4 ← U2 +R5

– The result is the matrix: C =
[
U1 U5

U6 U7

]
.

Although the recursion could be run down to products of 1×1 matrices, it is
commonly stopped at a fixed dimension threshold, where a classical cubic time
algorithm is then used, in order to reduce the overhead of recursion on small
dimension instances.

2.2 Data layout and encryption

We consider the setting where the two input matrices A and B have dimension
n × n and each of the n players stores one row of A and the corresponding
row of B and learns the corresponding row2 of C = A × B. In this setting, the
Y TP -SS Algorithm [14, Algorithm 15] manages to compute C by encrypting
the rows of A but keeping the rows of B in plaintext: players owning rows of
A, encrypt those rows before sending them, then players owning elements of B
homomorphically multiply those by their plaintext values (the use of a partial
homomorphic encryption scheme enables one to compute the encryption of a
product from one encrypted and one plain multiplicand).

Differently, Strassen’s algorithm, under consideration here, requires adding
and subtracting submatrices of B of distinct row index sets. These operations on
non-ciphered rows of B would automatically leak information. We therefore im-
pose that, during the execution of the algorithm, the rows of B are also encrypted
following the same distribution as that of A. That is, during the computation,
each player Pk:

2 Using padding and peeling methods, as well as blocked dot-products base case, ex-
tending this to rectangular matrices, with players knowing a block of rows of A, a
block of rows of B and learning the corresponding block of rows of C is straightfor-
ward.
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1. can hold another row of A and the corresponding row of B,
2. and can discover the corresponding row of the result C = A×B
3. only if these other rows of A, B and C are encrypted with the same public

key of another player.

We therefore introduce the notion of location and key sequences for matrix,
to identify the roles of the players in this data and encryption layout:

Definition 1. An n × n matrix A, has location sequence L = (l1, l2, . . . , ln)
and key sequence K = (k1, k2, . . . , kn) if row i of A is stored by player Pli and
encrypted with the public key PKki of player Pki for all 1 ≤ i ≤ n.

Example 1. For n = 3, consider the location sequence L = (2, 3, 1) and key
sequence K = (3, 1, 2). This means that player P2 stores row 1 of A encrypted
with the public key of player P3; player P3 stores row 2 of A encrypted with the
public key of player P1 and finally player P1 stores row 3 of A encrypted with
the public key of player P2.

In the following, the initial location sequences of the three operands A,B,C
are identical, as well as their key sequences, but not necessarily all along the
course of the recursive algorithm, as shown next.

We focus on two types of operations: matrix additions or subtractions and
matrix multiplications. By the recursive structure of Strassen’s algorithm, the
latter type is either achieved by Strassen’s algorithm or by a classic matrix prod-
uct algorithm, used as a base case for the recursion. For the sake of simplicity,
we consider henceforth that the initial input matrices are of dimension n×n,
with n = m2k, so that up to k recursive calls can be made without having to
deal with padding with zeroes nor with peeling thin rows or columns.

A recursive step in Strassen-Winograd algorithm splits the input matrices A
and B into four quadrants of equal dimensions. Hence the key sequence K and
the location sequence L is split into sub-sequences KU , LU for the upper half of
the rows KL and LL for the lower half of the rows. Figure 1 summarizes these
notations. Note that the output matrix C is formed by the 4 blocks U1, U5, U6, U7

defined in Strassen-Winograd algorithm.

LU AU

LL AL U6

U1 U5

U7BL

BU× = KU

KL

sequences sequences
Location Key

Fig. 1. Recursive splitting of the location and key sequences of the input and output
operands in Strassen-Winograd algorithm.
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In order to avoid information leakage, we ensure that any intermediate result
is stored by a player distinct from the one for which this result is encrypted for.
This condition writes:

∀i, ki 6= li. (1)

Moreover, we impose the following condition, that in any recursive call Ri
of Strassen’s algorithm, including the calls to base case classical products at the
leaves of the recursion tree, the left multiplicand is located and encrypted for
a set of players SA which does not intersect the set of players SB locating and
encrypting the right operand. This implies that:
1. the base case algorithm (for m×m matrices) uses 2m players,
2. each recursive call in Strassen’s algorithm has to use operands located on

non-intersecting set of players.
We propose to use the following values for the location and key sequences,

which satisfy all these requirements:{
ki = i for 0 ≤ i < n
lim+j = kim+(j+1 mod m) for 0 ≤ i < n/m, and 0 ≤ j < m

(2)

For instance, for a product of dimension 12, with base case dimension m = 3,
this gives;

L = (1, 2, 0, 4, 5, 3, 7, 8, 6, 11, 9, 10)
K = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)

2.3 Homomorphic encryption and initial shift

Notations. Given some scalar u and a player A, we denote by {u}A, as a
shortcut to {u}pkA , i.e., a received message that is the encryption of data u with
the public key of A. Similarly, we also denote by EA(u) the action of encrypting
the data u using the public key of A (this means that the player generating this
cipher-text knows the plaintext u, see for instance Figure 2). We also denote by

r
$← D the operation of drawing uniformly at random r from a domain D.
Here, our goal is to preserve the inputs privacy during the computation of a

matrix multiplication. Hence, the use of homomorphic encryption schemes ap-
pears to be natural, since they allow to perform operations on ciphers. A matrix
multiplication is defined over a ring, therefore it requires additive and multi-
plicative operations over the scalars. On the one hand, we could use a fully
homomorphic encryption scheme, (and potentially get an optimal communica-
tion commplexity of n2+o(1) for linear algebra [27]), but this would slow down
the protocol unreasonably. On the other hand, we notice that we are dealing
with protocols requiring interaction of players. Thus, as described in Section 3,
additions and multiplications over ciphers are achievable from a partially ho-
momorphic encryption scheme by using interactive protocols. More precisely, it
is sufficient for us that the encryption scheme (G,E,D) satisfies the following
properties:

1. Dk(Ek(m1)× Ek(m2)) = m1 +m2 (Additive homomorphism)

6



2. Dk(Ek(m1)m2) = m1 ×m2

Several cryptosystems do satisfy these, e.g., the ones designed by Naccache-
Stern [28] or Paillier [30]. On the one hand, in terms of complexity, Naccache-
Stern is usually costlier than Paillier: decryption requires to compute small dis-
crete logarithms whereas for Paillier, this is realized with a modular exponenti-
ation. On the other hand, in the context of multiparty protocols, the Naccache-
Stern cryptosystem allows players to agree on a common message block size.
This solves the problem of defining a consistent message space between players,
which was necessary with the Paillier’s cryptosystem. Thus, in the following, we
use a Naccache-Stern like cryptosystem.

Naccache-Stern cryptosystem. Briefly, Naccache-Stern [28] cryptosystem,
with security parameter 1λ, is set up and used as follows:

Setup(1λ) : Select 2k small primes p1, . . . , p2k; compute u =
∏k
i=1 pi and v =∏2k

i=k+1 pi; let σ = u·v; uniformly select two large prime numbers a and b
of size λ/2; find f1 and f2 such that p = f1·a·u + 1 and q = f2·b·v + 1 are
primes; let n = p·q and randomly choose g of order aubv in Z∗n. The private
key is SK = (p1, . . . , p2k, p, q), the public key is PK = (σ, g, n).

EncryptPK(m) : for m ∈ Zσ, randomly choose x ∈ Zn and encrypt m as
c = EPK(m) ≡ xσ · gm mod n.

DecryptSK(c) : let φ = (p − 1)(q − 1), ci ≡ cφ/pi mod n and recover, by ex-
haustive search (pi is small), mi mod pi such that mi = loggφ/pi (ci) mod n.
Finally reconstruct m with the Chinese remaindering, m ≡ CRT ({mi, pi})
mod σ.

Shifting for multiplicative masking. We use additive masking to protect

the privacy of some data, that is we replace x by x+ r mod N for r
$← ZN [17,

Proposition 2]. We also sometimes need to use a multiplicative masking. Then,
the main difficulty comes from the multiplicative masking of the zero value in a
finite field. In our case we use an ad-hoc solution simpler than that of [17]. We
consider two matrices A ∈ Zm×kp and B ∈ Zk×np with p prime and p > kn. In
order to be able to safely mask B multiplicatively, the players first agree on a

public s
$← Zp and then shift all of their shares of B values by s:

B′ = B + s

[
1 ... 1
...

...
...

1 ... 1

]
.

At most kn values for s produce a zero in B′, thus the probability that B′

has no zero coefficient is greater than 1 − mn
p . If p has only, say, 160 bits and

m, n are such that the matrices are storable in an actual computer then this
probability is completely negligible. Finally the protocol can be ran on A and B′,
multiplicatively masking B′, to get C ′ = AB′. To recover C = AB, one has just
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to compute C = C ′−sA

[
1 ... 1
...

...
...

1 ... 1

]
. If each player owns some rows AI,∗ of A, then

it is easy to locally compute the dotproduct by the vector s · AI,∗ · [1, . . . , 1]T

and update the obtained shares of C ′.

2.4 Automated security verification and attacker models

We use an automatic protocol verification tool to analyze the protocols security.
Among existing tools, we use ProVerif [2] which allows us to model protocols
using specifically defined equational theories. In our case, we aim to model the
encryption scheme properties on ciphertexts. However, as shown in [8], the ver-
ification of protocols involving homomorphic functions over abelian groups is
undecidable. As a consequence, we define our own equational theories related to
the properties defined in Section 2.3. Moreover, as shown in [24], simple theories
such as Exclusive-Or can already exceed the tool’s capacities. Thus, the theories
we model shall be carefully crafted for our protocols.

In the following, we analyze the protocols presented in Sections 2.5 and 3.
For each protocol, we explain the equational theories introduced to model the
used homomorphic encryption primitives. Then, in Section 3.7, we present and
describe a table summarizing all results yielded by ProVerif. We first consider
a semi-honest adversary: such an attacker follows the protocol specifications
but tries to learn information from previous computations. In ProVerif, they are
modelled as passive adversaries, meaning a Dolev-Yao intruder [10] that can only
listen to any public communication channel but cannot tamper with them. We
then consider a malicious adversary, i.e., an active Dolev-Yao intruder which can
freely control a player (this means that the specifications of the protocol might
not necessarily be followed).

Our main goal is to prove that in the case where one player is corrupted,
there is no leak about the other players’ inputs. In other words, we are interested
in showing that the protocols respect the secrecy property. In ProVerif, this is
modelled with the knowledge of the intruder: at the end of the protocol execution,
the latter has not learned any of the other player’s inputs.

Finally, we assume that players communicate through secure channels, and
that a public key infrastructure is available for all the players. This assumption
allows us to simplify the proofs. Indeed, since wiretapping a channel does not
give any information to the adversary, these data are not added to the adversary
knowledge.

2.5 Relaxing an existing algorithm: Y TP -SS

A recent algorithm on matrix multiplication with the same setup as ours is
the secure dot-product protocol Y TP -SS of [14, Algorithm15], which was used
as the main routine in a classical matrix product. As described in the reference
above, this protocol is secure against semi-honest adversaries over unsecure com-
munication channels. However, in our setup, channels are assumed secure, hence
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we can relax Y TP -SS to make it cheaper in order to compare it fairly with our
proposition (MP -SW ). In this new version, Bob players do not need to protect
their inputs with random values. Therefore, the communications performed to
derandomize no longer exists. This new version, called here MP -PDP , is given
in Figure 2.

Alice (PA) Bob (P1) . . . Dan (Pn)

Input u1...n v1 . . . vn

{ui}A = EA(ui), i ∈ [1, n]

{u1}A //
... {un}A //

α1 = ({u1}A)v1

α1 // α2 = ({u2}A)v2 ∗ α1

...

αn−1 //

αn = ({un}A)vn ∗ αn−1
αn = {

∑n
i=1 uivi}Aoo

S = DA(αn) / ∗ here S = uv ∗ /

Output u.v − . . . −

Fig. 2. Secure dot-product protocol MP -PDP , relaxed from [14, Algorithm 15]

Theorem 1. Protocol 2 by n+ 1 players requires 2n communications. It can be
used to compute a classic matrix product by n players, and this product has an
overall cost of n3 + n(n− 1).

Proof. During execution of Protocol 2, Alice first needs to send her value ui to
Pi for i ∈ [1, n]. Then, for i ∈ [1, n − 1], player Pi send their value αi to Pi+1.
Finally, Pn sends αn to Alice, hence the communication volume of 2n.

First, in the context of matrix multiplication by n player, Alice is one of the
other Pi players. Hence only (n − 1) communications are required for sharing
one row of A and n(n− 1) for sharing all of A. Then, the pipelined dot-product
phase takes n communication for each coefficient of the output matrix, hence
the overall communication volume is n3 + n(n − 1) a classical matrix product
with MP -PDP .
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2.6 Security Analysis

To model the homomorphic encryption primitives used in Figure 2, we propose
the following equational theories. We first define two constructors named add and
prod such that add(u, v) represents u+ v and prod(u, v) represents u× v. Then,
we propose destructors uadd1 and uadd2 (resp. uprod1 and uprod2) to model
addition with the opposite of a term (resp. multiplication with the inverse):

i. ∀u, v, uadd1(add(u, v), v) = u
ii. ∀u, v, uadd2(add(u, v), u) = v

We also propose the following destructor to model homomorphic exponenti-
ation:

iii. ∀u, v, k, pcr(Ek(u), v) = Ek(prod(u, v))

Finally, we add the following destructor to model the homomorphic multi-
plication of two terms:

iv. ∀u, v, x, y, k,
homth(Ek(prod(u, v)), Ek(prod(x, y))) = Ek(add(prod(u, v), prod(x, y)))

3 Toolbox

3.1 Initialization Phase

Before the actual computation, players need to agree on the location and key
sequences they use and generate and share their public keys.

Then, Algorithm 1 shows how the input data is ciphered and dispatched
between all players: each player gets a row of the matrix indicated by the key
sequence and encrypts it with its own public key. It can then send it to the appro-
priate player hosting the row, according to the location sequence. Algorithm 1
requires 2n2 communications.

3.2 Multiparty copy

In the different subroutines that compose our algorithm, we need to move coef-
ficients from one location to another and change their encryption accordingly.

Figure 3 describes protocol MP-COPY, moving an element x hosted by Bob
and encrypted for Dan, to its new location at player Alice and encrypted for
player Charlie.

Dan is in charge of performing the decryption and the re-encryption of the
element. To prevent him from learning the value of x, Bob masks it additively
with a random value. Bob therefore needs to clear out this random mask on the
value re-encrypted by Dan, with Charlie’s key, before sending it to Alice. This
protocol has a total cost of 3 communications.
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Algorithm 1 SWInitialization

Require: n players P1, . . . , Pn, Pi owns ai∗ = (ai1, . . . , ain) and bi∗ = (bi1, . . . , bin)
Require: a sequence L = (l1, . . . , ln) and a sequence K = (pk1, . . . , pkn)
Ensure: Setup is done for MP -SW algorithm
1: for i = 1 . . . n do
2: for j = 1 . . . n do
3: Pi computes {aij}pki = Epki(aij)
4: Pi computes {bij}pki = Epki(bij)
5: end for
6: end for
7: for i = 1 . . . n do
8: for j = 1 . . . n do
9: Pi sends {aij}pki to Pli

10: Pi sends {bij}pki to Pli

11: end for
12: end for

Alice Bob Dan Charlie

Input − {x}D − −

random r

α = {x}D × ED(r)

/ ∗ now α = {x+ r}D ∗ /
α,C //

β = DD(α)

γ = EC(β)

/ ∗ now γ = {x+ r}C ∗ /

γ
oo

δ = γ × EC(−r)

/ ∗ now δ = {x}C ∗ /

δ
oo

Output {x}C − − −

Fig. 3. MP-COPY : Multiparty copy
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3.3 Addition and subtraction

When two given elements, which are both encrypted for some given third player,
are known to a single different player, addition and subtractions are performed
using the homomorphic property of the encryption scheme : {x+ y}C = {x}C ×
{y}C and {x− y}C = {x}C/{y}C .

Now when x and y are located at players A and B and encrypted for play-
ers C and D, all four players being distinct, multiparty addition and subtrac-
tion, denoted by MP-ADD and MP-SUB, are directly obtained by composing an
MP-COPY operation with an homomorphic addition or subtraction. The com-
munication cost for these operations is therefore that of MP-COPY (namely 3
exchanges).

3.4 Security Analysis

To model the homomorphic encryption primitives used in protocol MP-COPY,
presented in Figure 3, we propose the following equational theories. We first
define two constructors named add and acmask such that add(u, v) represents
u+ v and acmask(Ek(u), Ek(v)) represents Ek(u)×Ek(v). Differently from 2.6,
we propose an equation describing the inner workings of homomorphic multipli-
cation (resulting in the encrypted sum of terms).

i. ∀u, v, k, acmask(enc(u, k), enc(v, k)) = enc(add(u, v), k)

We also provide the following destructors to apply homomorphic addition
with opposite of a term:

ii. ∀u, v, w, k, uacmaskr1(Ek(add(u, v)), Ek(v)) = Ek(u)
ii. ∀u, v, w, k, uacmaskr2(Ek(add(u, v)), Ek(u)) = Ek(v)

Finally, we add the following destructor to model homomorphic decryption:

iii. ∀u, v, k, decmask(acmask(Ek(u), Ek(u)), k) = add(u, v)

3.5 Classic Matrix Multiplication base case

We describe in this section an algorithm to perform classic matrix multiplications
in the data and encryption layout tailored for its use as a base case for MP -SW .
In particular, we assume that there are two non intersecting sets of n players
each, PA = {A1 . . . An} and PB = {B1 . . . Bn}, such that the location and key
sequences for A are permutations of PA and the location and key sequences for
B are permutations of PB . For the sake of simplicity, we denote in this section
by Ai the player in PA who stores row i of the matrix A encrypted for some
other player Di ∈ PA. Similarly Bi is the player in PB who stores row i of the
matrix B encrypted for some other player Ci ∈ PB .

Classic matrix multiplications consist in n2 scalar products. In each of them,
products of elements ai,k of A by elements bk,j of B are performed using the
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homomorphic multiplication between a ciphertext and a plaintext: {ai,k}
bk,j
PK =

{ai,kbk,j}PK . Therefore, the coefficient bk,j should first be deciphered, and to
avoid leaking information, it should also be masked beforehand by some random
value.

Algorithm 2 takes care of masking and decrypting a whole column of B.
There, player (Ck) is the only one able to decrypt the masked value βk,j =
{bk,jtk,j}Ck .

Algorithm 2 MaskAndDecryptB(k)

Require: (Bk) knows {bk,j}Ck for j = 1 . . . n
Ensure: (Ck) discovers uk,j = bk,jtk,j for j = 1 . . . n and random tk,j

1: (Bk) sk
$← F

2: (Bk) PRNG.seed(sk)
3: for j = 1 . . . n do
4: (Bk) tk,j ← PRNG.next()

5: (Bk) βk,j ← {bk,j}
tk,j
Ck

6: (Bk) sends βk,j to (Ck)
7: (Ck) uk,j ← DCk (βk,j)
8: end for

Instead of picking n random values to mask this column, which would yield
an overall cubic amount of communication to clear out the mask after the com-
putation, the noise is generated by one random value and n iterations of a
shared pseudo-random number generator. All players have agreed beforehand
on a choice for this cryptographic pseudo random number generator. Note also
that this mask is applied multiplicatively to the value (see Section 2.3).

Then, Algorithm 3 shows how player (Ai) discovers the ciphertext of one
product {ai,kbk,j}.

Algorithm 3 PointwiseProducts(i, k)

Require: (Ai) knows {ai,k}Di
Require: (Bk) knows sk a seed to generate tk,j for j = 1 . . . n
Require: (Ck) knows uk,j = bk,jtk,j for j = 1 . . . n
Ensure: (Ai) discovers εi,k,j = {ai,kbk,j}Di for j = 1 . . . n
1: (Bk) sends sk to (Ai)
2: (Ai) PRNG.seed(sk)
3: (Ai) sends {ai,k}(Di) to (Ck)
4: for j = 1 . . . n do
5: (Ck) δi,k,j ← {ai,k}

uk,j
Di

6: (Ck) sends δi,k,j to (Ai)
7: (Ai) tk,j ← PRNG.next()
8: (Ai) vk,j ← t−1

k,j

9: (Ai) εi,k,j ← δ
vk,j
i,k,j

10: end for

13



Player (Ai) sends its value {ai,k} to player (Ck) who then performs the
exponentiation, corresponding to a multiplication on the plaintexts, and sends
it back to (Ai). Meanwhile (Ai) has received the seed and generated the masking
values tk,j to clean out the product.

Finally each coefficient {ci,j}(Di) of the result is computed by Algorithm 4
where player (Ai) simply multiplies all corresponding pointwise products.

Algorithm 4 Reduction(i)

Require: (Ai) knows εi,k,j = {ai,kbk,j}Di for k, j = 1 . . . n
Ensure: (Ai) discovers {ci,j}(Di) for j = 1 . . . n, where ci,j =

∑n
k=1 ai,kbk,j

1: (Ai) {ci,j}(Di) ←
∏n

k=1 εi,k,j

Overall, Algorithm 5 schedules the calls to the three above subroutines.

Algorithm 5 BaseCase

Require: (Ai) knows {ai,k}(Di) for i, k = 1 . . . n
Require: (Bk) knows {bk,j}(Ck) for k, j = 1 . . . n
Ensure: (Ai) discovers {ci,j}(Di) for i, j = 1 . . . n, where ci,j =

∑n
k=1 ai,kbk,j

1: for k = 1 . . . n do
2: MaskAndDecryptB(k) . Alg. 2
3: for i = 1 . . . n do
4: PointwiseProducts(i, k) . Alg. 3
5: end for
6: end for
7: for i = 1 . . . n do
8: Reduction(i) . Alg. 4
9: end for

We give in Figure 4 an illustration of the scheduling of Algorithm 5 in a
scenario with 4 players.

Theorem 2. Algorithm 5 correctly computes the product C = A×B in the data
and encryption layout specified. It requires a communication of n3 +2n2 modular
integers.

Proof. Correctness stems first from the fact that ci,j =
∑n
k=1 ai,kbk,j is obtained

“in the exponents” by the homomorphic properties (2.3). Second the only masks
applied, in Algorithm 2, are all removed in Algorithm 3. Now, the communication
cost in number of modular integer coefficient is n for Algorithm 2 and n+ 1 for
Algorithm 3. Algorithm 3 also sends one seed which size will be neglected in what
follows. Overall this yields a communication cost of n3 + 2n2 modular integers
for Algorithm 5.
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Alice (A1) Bob (A2) Charlie (B1) Dan (B2)

Input: {a1,1}A2 , {a1,2}A2 {a2,1}A1 , {a2,2}A1 {b1,1}B2 {b2,1}B1

random s1 random s2

t1,1 = PRNG(s1).next() t2,1 = PRNG(s2).next()

β1,1 = {b1,1}
t1,1
B2

β2,1 = {b2,1}
t2,1
B1

β1,1 //

β2,1
oo

u2,1 = DB1(β2,1) u1,1 = DB2(β1,1)

s1
oo

t1,1 = PRNG(s1).next()
{a1,1}A2 //

δ1,1,1 = {a1,1}
u1,1

A2

δ1,1,1
oo

ε1,1,1 = δ
t−1
1,1

1,1,1

s1
oo

t1,1 = PRNG(s1).next()

{a2,1}A1 //

δ2,1,1 = {a2,1}
u1,1

A1

δ2,1,1
oo

ε2,1,1 = δ
t−1
1,1

1,1,1

s2
oo

t2,1 = PRNG(s2).next()
{a1,2}A2 //

δ1,2,1 = {a1,2}
u2,1

A2

δ1,2,1
oo

ε1,2,1 = δ
t−1
2,1

1,2,1

s2
oo

t2,1 = PRNG(s2).next()

{a2,2}A1 //

δ2,2,1 = {a2,2}u2,1

δ2,2,1
oo

ε2,2,1 = δ
t−1
2,1

2,2,1

{c1,1}A2 = ε1,1,1 × ε1,2,1 {c2,1}A2 = ε2,1,1 × ε2,2,1

Output: {a1,1b1,1 + a1,2b2,2}A2 {a2,1b1,1 + a2,2b2,2}A1 − −

Fig. 4. BASE-CASE protocol execution with 4 players
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3.6 Security Analysis

To model the homomorphic encryption primitives used in protocol BASE-CASE,
presented in Algorithm 5 and instantiated in Figure 4 we propose the following
equational theories. We first define the constructors add and acmask with the ex-
act same properties as in MP-COPY presented in Section 3.4. Then, we propose
two new constructors prng and prod such that prng(s) denotes a pseudo-random
number generated from seed s and prod(x, y) denotes x×y. We also propose the
following destructor to model homomorphic exponentiation:

i. ∀u, v, k, pcr(Ek(u), v) = Ek(prod(u, v))

We add a variant of this destructor where the exponent is a product:

i. ∀u, v, w, k, pcr2(Ek(u), prod(v, w)) = Ek(prod(u, prod(v, w)))

We provide a destructor to model homomorphic division:

i. ∀u, v, w, k, upcr(Ek(prod(u, prod(v, w))), w) = Ek(prod(u, v))

Finally, we provide the following destructor to model homomorphic multi-
plicative distributivity:

ii. ∀u, v, w, k,
distri(acmask(Ek(u), Ek(v)), w) = acmask(prod(u,w), prod(v, w))

3.7 Automated Verification Results

In this section, we summarize all results we found using ProVerif 3. We consid-
ered executability and secrecy properties according to the assumptions made in
Section 2.4 and with respect to equational theories presented for each protocol.
For protocol MP-COPY, we checked the secrecy of input x that shall be used in
the additions. For protocol BASE-CASE, we checked the secrecy of inputs a11,
a12, a21, a22, b11, and b21. Finally, on protocol MP -PDP , we checked secrecy of
inputs u1, u2, v1, and v2.

As we can see in Table 1, all protocols are executable and guarantee the se-
crecy of inputs for passive intruders (i.e., semi-honest adversary). Out of curios-
ity, we also considered active intruders. Such adversaries, called Dolev-Yao [10],
have a complete control on the network and can intercept, modify, replay and
forge any message according to their knowledge. We can see that all protocols
are again safe for such adversaries, except in case of Alice being corrupted for
protocol BASE-CASE. This protocol is quite large, with consumption-heavy
equational theories, and some proofs could take more than 5 minutes to run
on an Intel Xeon@2.20Ghz, while it took less than a second for the other pro-
tocols. In the case where Alice is corrupted, ProVerif even does not terminate
(denoted by ? in Table 1). The fact that Proverif does not terminate does not
mean that the protocol is correct or that there is a flaw. It can happen that due
to the modeling of our protocol and the associated equations the tool cannot
terminate.
3 ProVerif source files are available on request via the PC chair and will be made

publicly available if the paper is accepted.
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Table 1. Secrecy guarantees obtained with the automated verification tool ProVerif
where no player is corrupted (∅), or one player is corrupted (A: Alice, B: Bob, C:
Charlie, D: Dan). In the case of BASE-CASE (Fig. 4) there are only three players, we
therefore put N/A in the table.

Active Adversary Passive Adversary
Protocols ∅ A B C D ∅ A B C D

MP-COPY (Fig. 3) 3 3 3 3 3 3 3 3 3 3

BASE-CASE (Fig. 4) 3 ? 3 3 3 3 3 3 3 3

MP−PDP (Fig. 2) 3 3 3 N/A 3 3 3 3 N/A 3

4 Multiparty Strassen-Winograd

4.1 Operation schedule in MP -SW

The schedule of a recursive step of Strassen-Winograd is composed by 22 op-
erations on the 4 submatrices of each operand. At first, eight block additions,
then, seven matrix multiplications are performed, and finally, seven other block
additions are computed. Those operations, range in three kind of operations:

• simple homomorphic addition: denoted by +HOM. Takes as input two
matrices having the same location sequences (and consequently the same key
sequences) and returns their sum encrypted with the same key sequence. It
is achieved by a simple homomorphic addition. Subtraction is denoted by
−HOM and works similarly.

• multiparty addition: denoted by MP-MAT-ADD. Takes as input two ma-
trices having non-intersecting location sequences (and therefore non-intersec-
ting key sequences as well) and returns their sum located and encrypted with
location and key sequences of one of the operands. Subtraction is denoted by
MP-MAT-SUB. These operations are achieved by n2 instances of algorithm
MP-ADD or MP-SUB, each of which in turn is a composition of MP-COPY
and a homomorphic addition or subtraction.

• multiparty product: denoted by MP-MAT-MUL. Takes as input two ma-
trices with non-intersecting location sequences (and therefore encrypted with
non-intersecting key sequences) and return their product using the location
and key sequence of their left-hand side multiplicand. It is achieved by either
a recursive call to the same Strassen-Winograd algorithm or by the base case
presented in Algorithm 5.

Table 2 presents a schedule of all 22 block operations for a recursive level in
Strassen-Winograd algorithm, specifying for each operation the key and location
sequences of its operands. It also states which algorithm is used to perform the
operation.

Figure 5 also presents the data exchange between group of players in one
recursive level.

Note that the initial problem requires that both operands A and B share the
same key and location sequences (so that matrix squaring is possible). However,
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Table 2. Schedule of the secure multiparty Strassen-Winograd algorithm.

Operation Algorithm Input 1 Input 2 Output
Key Loc. Key Loc. Key Loc.

S1 = A21 +A22 +HOM KAL LAL KAL LAL KAL LAL

A′11 = A11 MP-MAT-COPY KAU LAU KAL LAL

S2 = S1 −A′11 −HOM KAL LAL KAL LAL KAL LAL

S3 = A′11 −A21 −HOM KAL LAL KAL LAL KAL LAL

S4 = A12 − S2 MP-MAT-SUB KAU LAU KAL LAL KAU LAU

T1 = B12 −B11 −HOM KBU LBU KBU LBU KBU LBU

B′22 = B22 MP-MAT-COPY KBL LBL KBU LBU

T2 = B′22 − T1 −HOM KBU LBU KBU LBU KBU LBU

T3 = B′22 −B12 −HOM KBU LBU KBU LBU KBU LBU

T4 = T2 −B21 MP-MAT-SUB KBU LBU KBL LBL KBU LBU

R1 = A′11 ×B11 MP-MAT-MUL KAL LAL KBU LBU KAL LAL

R2 = A12 ×B21 MP-MAT-MUL KAU LAU KBL LBL KAU LAU

R3 = S4 ×B22 MP-MAT-MUL KAU LAU KBL LBL KAU LAU

R4 = A22 × T4 MP-MAT-MUL KAL LAL KBU LBU KAL LAL

R5 = S1 × T1 MP-MAT-MUL KAL LAL KBU LBU KAL LAL

R6 = S2 × T2 MP-MAT-MUL KAL LAL KBU LBU KAL LAL

R7 = S3 × T3 MP-MAT-MUL KAL LAL KBU LBU KAL LAL

U1 = R1 +R2 MP-MAT-ADD KAL LAL LAU LAU KAU LAU

U2 = R1 +R6 +HOM KAL LAL KAL LAL KAL LAL

U3 = U2 +R7 +HOM KAL LAL KAL LAL KAL LAL

U4 = U2 +R5 +HOM KAL LAL KAL LAL KAL LAL

U5 = U4 +R3 MP-MAT-ADD KAL LAL KAU LAU KAU LAU

U6 = U3 −R4 −HOM KAL LAL KAL LAL KAL LAL

U7 = U3 +R5 +HOM KAL LAL KAL LAL KAL LAL
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LAU LAL LBU LBL

{A11}, {A12} {A21}, {A22} {B11}, {B12} {B21}, {B22}

{S1}AL {T1}BU
{A11}AU // {S2}AL , {S3}AL {T3}BU , {T2}BU

{B22}BLoo

{S4}AL
{S2}ALoo {T4}BU

{B21}BUoo

{R1}AL
{B11}BUoo

{R2}AU
{B21}Loo

{R3}AU
{B22}Loo

{R4}AL
{T4}BUoo

{R5}AL
{T1}BUoo

{R6}AL
{T2}BUoo

{R7}AL
{T3}BUoo

{U1}AU
{R1}ALoo

{U2}AL , {U3}AL , {U4}AL

{U5}AU
{U4}ALoo

{U6}AL , {U7}AL

Fig. 5. Protocol for Strassen-Winograd algorithm. Each column represents one of the
four sub-group of players where the submatrices AU , AL, BU , BL are stored.
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the base case algorithm (Algorithm 5) requires that these sequences are non-
intersecting. In order to satisfy these two constraints the recursive Strassen-
Winograd algorithm (Table 2) is presented with a location and key sequence
for A (LA and KA) and a location and key sequence for B (LB and KB). The
algorithm does not require that they are non intersecting, but ensures that from
the first recursive call, they will always be, so as to fit with the requirement of
Algorithm 5.

Theorem 3. The total communication cost of a recursive level of MP -SW fol-

lowing the schedule defined Table 2 is 18
(
n
2

)2
communications.

Proof (of Theorem 3). All +HOM operation are free of communication. Be-
sides the recursive calls, there remains 2 calls to MP-MAT-COPY, 2 calls to
MP-MAT-ADD and 2 calls to MP-MAT-SUB, each accounting for 3(n/2)2 com-
munication. Overall, the communication cost of one recursive level is therefore

18
(
n
2

)2
.

4.2 Cost Analysis

From Theorems 3 and 2, the recurrence relation for communication complexity
of MP -SW writes: {

C(n) = 7C
(
n
2

)
+ 18

(
n
2

)2
for n > m

C(m) = m3 + 2m2 for the base case

The threshold at which the recursive algorithm should switch to the base case
algorithm is set by finding at which dimension does the base case algorithm start
to perform worse than one recursive level. In terms of communication cost, this
means the following equation: 7((n2 )3 + 2(n2 )2) + 18(n2 )2 = n3 + 2n2 which comes
from injecting the base case cost into the recurrence formula. It gives a threshold
of n = 48.

We now compare the cost of MP -SW with the cost of MP -PDP , which
is CMP-PDP(n) = n3 + n(n − 1). We also recall that we have the cost of the
initialization step of MP -SW , Cinit = 2n2 and the cost of the final step of
MP -SW , Cfinal = n2. In order to find the matrix size for which MP -SW has
a lower communication cost than MP -PDP , we solve the following equation:
C(n) + 3n2 ≤ n3 + n(n − 1) which yields n > 80, with one recursive call. This
means that for any instance of dimension larger than 80, the proposed MP -SW
algorithm has a better communication cost than MP -PDP .

5 Experiments

We implemented the algorithms under study4 to demonstrate their behaviour in
practice and compared them to the state of the art implementation of [14]. In the

4 C++ source files, including benchmarks for Y TP -SS and SPDZ2k , are available on
request via the PC chair and will be made publicly available if the paper is accepted.
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following Y TP -SS refers to n2 applications of [14, Algorithm 15]; MP -PDP
refers the relaxation and improvement of this algorithm to the current setting,
as proposed in Figure 2; MP-SW refers to our implementation of Algorithm 2
using Algorithm 5 as a basecase with threshold set to n = 48. The Naccache-
Stern cryptosystem is set with public keys of size 2048 bits and message space
of 224 bits (using 14 primes of 16 bits).

Figure 6 presents the volume of communication performed by these three
variants. Note that the cross-over point of n = 80 is confirmed experimentally.
The improvement in communication volume is about 27.8% for n = 528 players
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Fig. 6. Comparing communication volume for multiparty matrix multiplications.

between algorithms MP -SW and MP -PDP .
However the running time of Naccache-Stern decryption remains the main

bottleneck. Table 3 compares the computation time per player of our implemen-
tation of MP -SW versus the implementation of Y TP -SS provided in [14]5. For
instance, it takes about 49.22s per player for the MP -SW protocol with matrices
of size n = 32 and keys of 2048 bits, instead of 18.05s for Y TP -SS.

Furthermore, we compared our implementation with the general purpose li-
brary SPDZ2k [5]6. This library also uses somewhat homomorphic encryption or
oblivious transfer, but combined with secret sharing, to perform computations.
More specifically, players secret-share their inputs amongst each other, and use
these shares to locally perform arithmetic operations. The results of these local
operations are used to compute the final result, by arithmetic circuit evaluation.
Here, we implemented a matrix multiplication in SPDZ2k , using the data lay-
out presented in Section 2.2, with resistance to malicious colliding adversaries.
Then we ran benchmarks for a message space size of t = 224 bits and public
keys of size s = 2048 bits. The results are shown in Figure 7: we can see that

5 https://casys.gricad-pages.univ-grenoble-alpes.fr/matmuldistrib
6 https://github.com/bristolcrypto/SPDZ-2

21

https://casys.gricad-pages.univ-grenoble-alpes.fr/matmuldistrib
https://github.com/bristolcrypto/SPDZ-2


Table 3. Computation time (in s) per player of Multiparty Strassen-Winograd (MP -
SW ) compared to Y TP -SS[DLOP17] on an Intel Xeon E7-8860 2.2Ghz.

Key size Matrix size Y TP -SS MP -SW

1024
16 0.58 2.87
32 2.68 6.19
64 11.01 13.27

2048
16 4.54 23.63
32 18.05 49.22
64 69.80 196.24

there is a major difference between SPDZ2k and our implementation. Indeed,
SPDZ2k requires a communication volume of order O(t2n3) (mostly O(t2) per
multiplication gate [5]), where we for the small considered matrices need only
s(n3 +o(n3)). Note that here we performed computations for small matrices only
as SPDZ2k requires much more computing power: on a workstation with 16 GB
of RAM and an Intel i5-7300U @2.60GHz, computations stalled for matrices
larger than 37 by 37.
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Fig. 7. Communication volume (log scale) for MP -SW compared to SPDZ2k [5]

6 Conclusion and Perspective

We have presented in this paper a novel secure multiparty matrix multiplica-
tion where each player owns one row of the different matrices. For this we use
Strassen-Winograd algorithm and reduce for the first time the total MPC com-
munication volume from O(n3) to O(nlog2(7)). The improvement in communi-
cation cost over state of the art algorithms takes effect for dimension as small
as 81.
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The version of Strassen-Winograd we presented here is secure against semi-
honest adversaries. However, as many of its building blocks have a stronger
security level anyway, it would be interesting to see if it is possible to increase the
security of the wholeMP -SW protocol and how it would impact its performance.

Even if this paper is a about improving the communication cost while pre-
serving security, several arithmetic cost improvements could be envisioned. For
instance, removing the need for players to encrypt their own Bk data before-
hand. While this is required in order to preserve security, a large part of the
computing cost lies in the operations required to decipher and re-cipher that
data. Another possibility would be to replace the Naccache-Stern by a faster
cryptosystem. The difficulty is to be able to combine the masking schemes with
the homomorphic encryption.
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