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ABSTRACT
This paper presents how to adapt Strassen-Winograd matrix

multiplication algorithm to the context of secure multiparty

computation. We consider that each player owns only one

row of both input matrices and learns one row of the product

matrix, without revealing their input to other players. After

presenting some building block protocols, we describe how

to perform a secure execution of Strassen-Winograd. Then, a

comparison is made with a variant of the best known algo-

rithm, relaxed to this setting. It first shows that, asymptotically,

the communication volume is reduced from O(n3) to O(n2.81),
as expected. Furthermore, a finer study on the amount of com-

munication shows that the improvement occurs for matrices

with dimension as small as n = 81.

1 INTRODUCTION
Secure multiparty computations (MPC) allows n players to

compute together the output of some function, using private

inputs without revealing them. In the end, the players only

know the result and did not learn any other information. As

some players can be malevolent in several ways, there exists

different setup for the security of such protocols: for instance,

resistance against a collusion of many players, or against at-

tackers who modify their input. Several tools exist to design

MPC protocols, like Shamir’s secret sharing scheme [15], ho-

momorphic encryption [10] or using a Trusted Third Party [6].

Amongst applications of MPC, one can cite the distributed

evaluation of trust, as defined in [7, 11]. In this context, players

compute confidence by combining theirmutual degrees of trust.

The aggregation of trust amongst players can be represented as

a matrix productC = A×B, where each player knows one row

of the matrix containing their partial trust towards their neigh-

bours and the network has to compute a distributed matrix

squaring. Hence, in this particular application, it is necessary

to be able to efficiently and securely compute matrix-matrix

products. Such an algorithm, YTP-SS , is described in [8] and

uses successive dot products computations. This algorithms

runs in O(n3), in both arithmetic and communication com-

plexity. In this paper, we follow-up on this result by showing

that is it possible to achieve a better complexity bound using

an MPC version of the Winograd’s variant of Strassen’s al-

gorithm (referred to MP-SW ) [16, Alg. 12.1][1, Exercice 6.5

p.247], which decreases the costs to O(n2.81). The security

level of the algorithm presented here is the same as [8] with-

out additional security measures. By exposing how to apply

it in the aforementioned MPC framework, we show that this

speed-up carries over for the communication cost. For this, we

rely on a partial homomorphic encryption scheme [3] (namely

Naccache-Stern protocol [13]) and its ability to perform homo-

morphic addition and subtraction of matrices, together with

additive and multiplicative masking.



As the volume of communications and computations have the
same order of magnitude, when trade-offs are possible in terms
of constant factor, we here choose to favor communications.

Contrarily to [8], Strassen-Winograd algorithm involves

numerous addition and subtraction on parts of the A and B
matrices held by distinct players. Security then requires that

these entries are encrypted beforehand. As a consequence, the

classic matrix multiplication of [8] can no longer be used as

is, even as a base case of Strassen-Winograd’s algorithm. We

therefore propose an alternative base case: its arithmetic cost

is higher, but it involves an equivalent amount of communi-

cation. Yet, combined with the recursive Strassen-Winograd

algorithm it compares favourably to [8] in communication cost

for matrices of dimensions larger than n = 81.

In Section 2, we recall Strassen-Winograd and YTP-SS al-

gorithm, define the data layout and encryption setting and

present the automated verification tool used for security proofs.

Then, Section 3 describes building block protocols and presents

a new cubic-time matrix multiplication algorithm to be used

as a base case. Finally, Section 4 describes the new sub-cubic

MPC whole Strassen-Winograd algorithm and Section 5 gives

a comparative analysis of its communication cost.

2 PRELIMINARIES
2.1 Strassen-Winograd algorithm
The principle of Strassen-Winograd algorithm is to compute

the product C = A × B by splitting the input matrices in four

quadrants of equal dimensions: A =
[
A11 A12

A21 A22

]
,B =

[
B11 B12

B21 B22

]
.

Each recursive call consists of 22 block operations:

• 8 additions:

S1 ← A21 +A22 S2 ← S1 −A11 S3 ← A11 −A21

T1 ← B12 − B11 T2 ← B22 −T1 T3 ← B22 − B12
S4 ← A12 − S2 T4 ← T2 − B21

• 7 recursive multiplications:

R1 ← A11 × B11 R2 ← A12 × B21
R3 ← S4 × B22 R4 ← A22 ×T4
R5 ← S1 ×T1 R6 ← S2 ×T2 R7 ← S3 ×T3

• 7 final additions:

U1 ← R1 + R2 U2 ← R1 + R6
U3 ← U2 + R7 U4 ← U2 + R5
U5 ← U4 + R3 U6 ← U3 − R4 U7 ← U3 + R5

• The result is the matrix: C =
[
U1 U5

U6 U7

]
.

2.2 Data layout and encryption
We consider the setting where the two input matrices A and B
of dimension n×n and each of the n players store one row ofA
and the corresponding row of B and learns the corresponding

row ofC = A×B. In this setting, [8, Algorithm 15] manages to

compute C by encrypting the rows of A but keeping the rows

of B in plaintext: players owning rows ofA, encrypt those rows
before sending them, then players owning elements of B homo-

morphically multiply those by their values (the use of Paillier

encryption scheme enables one to compute the encryption of

a product from one encrypted and one plain multiplicand).

However Strassen algorithm, under consideration here, re-

quires adding and subtracting submatrices of B of distinct row

index sets. These operations on non-ciphered rows of B would

automatically leak information. We therefore impose that the

rows of B are also encrypted following the same distribution

as that of A, which is, each player Pk :
(1) holds a row of A and the corresponding row of B,
(2) discovers the corresponding row of the resultC = A×B
(3) these rows of A, B and C are encrypted with the public

key of another player.

We therefore introduce the notion of location and key se-

quences for matrix, to identify the roles of the players in this

data and encryption layout:

Definition 2.1. An n × n matrix A, has location sequence

L = (l1, l2, . . . , ln ) and key sequence K = (k1,k2, . . . ,kn ) if
row i of A is stored by player Pli encrypted with the public

key PKki of player Pki for all 1 ≤ i ≤ n.

Example 2.2. For n = 3, consider the location sequence

L = (2, 3, 1) and key sequence K = (3, 1, 2). This means that

player P2 stores row 1 of A encrypted with the public key

of player P3; player P3 stores row 2 of A encrypted with the

public key of player P1 and finally player P1 stores row 3 of A
encrypted with the public key of player P2.

In the setting of the matrix multiplication problem to be

solved, the initial location sequences of the three operands

A,B,C are identical, as well as their key sequences (but not

necessarily all along the course of the recursive algorithm,

as shown next). We focus on two types of operations: matrix

additions or subtractions and matrix multiplications. By the

recursive structure of Strassen’s algorithm, the latter type is

either achieved by Strassen’s algorithm or by a classic matrix

product algorithm, used as a base case for the recursion. For

the sake of simplicity, we consider henceforth that the initial

input matrices are of dimension n×n, with n =m2
k
, so that up

to k recursive calls can be made without having to deal with

padding with zeroes nor with peeling thin rows or columns.

A recursive step in Strassen-Winograd algorithm splits the

input matrices A and B into four quadrants of equal dimen-

sions. Hence the key sequence K and the location sequence

L is split into sub-sequences KU , LU for the upper half of the

rowsKL and LL for the lower half of the rows. Figure 1 summa-

rizes these notations. Note that the output matrix C is formed

by the 4 blocks U1,U5,U6,U7 defined in Strassen-Winograd’s

algorithm.
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LU AU

LL AL U6

U1 U5

U7BL

BU× =
KU

KL

sequences sequences

Location Key

Figure 1: Recursive splitting of the location and key se-
quences of the input and output operands in Strassen-
Winograd’s algorithm.

In order to avoid information leakage, we ensure that any

intermediate result is stored by a player distinct from the one

for which this result is encrypted for. This condition writes:

ki , li∀i . (1)

Moreover, we impose the following condition, that in any

recursive call Ri of Strassen’s algorithm, including the calls

to base case classical products at the leaves of the recursion

tree, the left multiplicand is located and encrypted for a set

of players SA which does not intersect the set of players SB
locating and encrypting the right operand. This implies that:

(1) the base case algorithm (form ×m matrices) uses 2m
players,

(2) each recursive call in Strassen’s algorithm has to use

operands located on non-intersecting set of players.

We propose to use the following values for the location and

key sequences, which satisfy all these requirements:{
ki = i for 0 ≤ i < n
lim+j = kim+(j+1 mod m) for 0 ≤ i < n/m, 0 ≤ j < m

For instance, for a product of dimension 12, with base case

dimensionm = 3, this gives

L = (1, 2, 0, 4, 5, 3, 7, 8, 6, 11, 9, 10)
K = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)

.

2.3 Homomorphic encryption and initial
shift

Notations: for some scalar u and a player A, we denote by
{u}A a received message that is the encryption of data u with

the public key of A. We also denote EA(u) the encryption of

data u using the public key of A, it means that the player

that is generating this cipher-text knows u. We also denote by

r
$

← D the operation of drawing uniformly at random r from
a domain D.

Here, our goal is to preserve the inputs privacy during the

computation of a matrix multiplication. Hence, the use of ho-

momorphic encryption schemes appears to be natural, since

they allow to proceed operations on ciphers. A matrix multipli-

cation is defined over a ring, therefore it requires additive and

multiplicative operations over the scalars. On the one hand,

we could use a fully homomorphic encryption scheme, but this

would slow down the protocol too much. On the other hand,

we notice that we are dealing with protocols requiring interac-

tion of players. Thus, as described in Section 3, additions and

multiplications over ciphers are achievable from a partially

homomorphic encryption scheme by using interactive proto-

cols. More precisely, it is sufficient for us that the encryption

scheme (G,E,D) satisfies the following properties:

(1) Dk (Ek (m1) × Ek (m2)) = m1 +m2 (Additive homomor-
phism)

(2) Dk (Ek (m1)
m2 ) =m1 ×m2

Several cryptosystems do satisfy these, e.g., the ones de-

signed by Naccache-Stern [13] or Paillier [14]. On the one

hand, in terms of complexity, Naccache-Stern is usually costlier

than Paillier: decryption requires to compute small discrete

logarithms whereas for Paillier, this is realized with a modular

exponentiation. On the other hand, in the context of multi-

party protocols, the Naccache-Stern’s cryptosystem allows

players to agree on a common message block size. This solves

the problem of defining a consistent message space between

players, which was necessary with the Paillier’s cryptosystem.

Thus, in the following, we use a Naccache-Stern like cryptosys-

tem.

We use additive masking to protect the privacy of some data,

that is replace x by x+r mod n for r
$

← ZN [9, Proposition 2].

We also sometimes need to use a multiplicative masking. Then,

the main difficulty comes from the multiplicative masking of

the zero value in a finite field. In our case we use an ad-hoc

solution simpler than that of [9]. We consider two matrices

A,B ∈ Zm×np with p prime and p > mn. In order to be able

to safely mask B multiplicatively, the players first agree on a

public s
$

← Zp and then shift all of their shares of B values

by s: B′ = B + s

[
1 ... 1
...
...
...

1 ... 1

]
. At mostmn values for s produce a

zero in B′, thus the probability that B′ has no zero coefficient

is greater than 1 − mn
p . If p has, say, 160 bits andm, n are such

that the matrices are storable in an actual computer then this

probability is negligible. Finally the protocol can be ran on

A and B′, multiplicatively masking B′, to get C ′ = AB′. To

recoverC = AB, one has just to computeC = C ′ − sA

[
1 ... 1
...
...
...

1 ... 1

]
.

If each player owns some rows AI,∗ of A, then it is easy to lo-

cally compute the dotproduct by the vector s ·AI,∗ · [1, . . . , 1]
T

and update the obtained shares of C ′.

2.4 Automated Verification and attacker
models

We use an automatic protocol verification tool to analyse the

protocols security. Among existing tools, we use ProVerif [2]

which allows us to model protocols using specifically defined

equational theories. In our case, we aim to model the encryp-

tion scheme properties on ciphertexts. However, as shown

in [4], the verification of protocols involving homomorphic

functions over abelian groups is undecidable. As a consequence,
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we define our own equational theories related to the proper-

ties defined in Section 2.3. Moreover, as shown in [12], simple

theories such as Exclusive-Or can already exceed the tool’s ca-

pacities. Thus, the theories we model shall be carefully crafted

for our protocols.

In the following, we analyse the protocols presented in Sec-

tions 2.5 and 3. For each protocol, we explain the equational

theories we introduce to model the used homomorphic encryp-

tion primitives. Then, in Section 3.7, we present and describe

a table summarizing all results yielded by ProVerif. We first

consider a semi-honest adversary. Such attacker follows the

protocol specifications but tries to learn information from pre-

vious computations. In ProVerif, they are modelled as passive
adversaries, meaning a Dolev-Yao intruder [5] that can only

listen to any public communication channel but not tamper

with them. We then consider a malicious adversary, i.e., an
active Dolev-Yao intruder which can freely control a player

(this means that the specifications of the protocol might not

necessarily be followed).

Our main goal is to prove that in the case where one player

is corrupted, there is no leak about the other players’ inputs. In

other words, we are interested in showing that the protocols

respect the secrecy property. In ProVerif, this is modelled

with the knowledge of the intruder: at the end of the protocol

execution, the latter has not learn any of the other player’s

inputs.

Finally, we assume that players communicate through se-

cure channels, and that a public key infrastructure is available

for all the players. This assumption allows us to simplify the

proofs. Indeed, since wiretapping a channel does not give any

information to the adversary, these data are not added to the

adversary view.

2.5 Relaxing an existing algorithm: YTP-SS
A recent algorithm on matrix multiplication with the same

setup as ours is the secure dot-product protocol YTP-SS of [8,

Algorithm15], which was used as the main routine in a classical

matrix product. As described in the reference above, this pro-

tocol is secure against semi-honest adversaries over unsecure

communication channels. However, in our setup, channels are

assumed secure, hence we can relaxYTP-SS to make it cheaper

in order to compare it fairly with our proposition (MP-SW ).

In this new version, Bob players do not need to protect their

inputs with random values. Therefore, the communications

performed to derandomize no longer exists. This new version,

called hereMP-PDP , is given in Figure 2.

Theorem 2.3. Protocol 2 by n+ 1 players requires 2n commu-
nications. It can be used to compute a classic matrix product by
n players, and this product has an overall cost of n3 + n(n − 1).

Proof. During execution of Protocol 2, Alice first needs to

send her value ui to Pi for i ∈ [1,n]. Then, for i ∈ [1,n − 1],
player Pi send their value αi to Pi+1. Finally, Pn sends αn to

Alice, hence the communication volume of 2n.

First, in the context of matrix multiplication by n player,

Alice is one of the other Pi players. Hence only (n− 1) commu-

nications are required for sharing one row ofA and n(n−1) for
sharing all of A. Then, the pipelined dot-product phase takes n
communication for each coefficient of the output matrix, hence

the overall communication volume is n3 + n(n − 1) a classical
matrix product withMP-PDP . □

2.6 Security Analysis
To model the homomorphic encryption primitives used in

Figure 2, we propose the following equational theories. We

first define two constructors named add and prod such that

add(u,v) representsu+v andprod(u,v) representsu×v . Then,
we propose destructors uadd1 and uadd2 (resp. uprod1 and

uprod2) to model addition with the opposite of a term (resp.

multiplication with the inverse):

(i) ∀u,v, uadd1(add(u,v),v) = u
(ii) ∀u,v, uadd2(add(u,v),u) = v
We also propose the following destructor to model homo-

morphic exponentiation:

(iii) ∀u,v,k, pcr (Ek (u),v) = Ek (prod(u,v))

Finally, we add the following destructor to model the homo-

morphic multiplication of two terms:

(iv) ∀u,v,x ,y,k, homth(Ek (prod(u,v)),Ek (prod(x ,y))) =
Ek (add(prod(u,v),prod(x ,y)))

3 TOOLBOX
3.1 Initialization Phase
Before the actual computation, players need to agree on the

location and key sequences they will use and share generate

and share their public keys.

Then, Algorithm 1 shows how the input data is ciphered

and dispatched between all players: each player gets a row

of the matrix indicated by the key sequence and encrypts it

with its own public key. It can then send it to the appropriate

player hosting the row, according to the location sequence.

Algorithm 1 requires 2n2 communication.

Algorithm 1 SWInitialization

Require: n players P1, . . . , Pn , Pi owns ai∗ = (ai1, . . . ,ain )
and bi∗ = (bi1, . . . ,bin )

Require: a sequence L = (l1, . . . , ln ) and a sequence K =
(k1, . . . ,kn )

Ensure: Setup is done forMP-SW algorithm

for i = 1 . . .n do
for j = 1 . . .n do
Pi computes {ai j }Pki = EPki (ai j )

Pi computes {bi j }Pki = EPki (bi j )

for i = 1 . . .n do
for j = 1 . . .n do
Pi sends {ai j }Pki to Pli
Pi sends {bi j }Pki to Pli

4



Alice (PA) Bob (P1) . . . Dan (Pn )

Input u1...n v1 . . . vn

{ui }A = EA(ui ), i ∈ [1,n]

{u1}A //
... {un }A //

α1 = ({u1}A)
v1

α1
//
...

αn−1
//

αn = ({un }A)
vn ∗ αn−1Ω = αn = {

∑n
i=1 uivi }Aoo

S = DA(Ω) /∗here S = ®u ®v ∗ /

Output ®u .®v − . . . −

Figure 2: Secure dot-product protocolMP-PDP , relaxed from [8, Algorithm 15]

3.2 Multiparty copy
In order to fulfill the specifications of other algorithms, we

need to move coefficients from one location to another and

change their encryption accordingly.

Figure 3 describes protocol MP-COPY, moving an element

x hosted by Bob and encrypted for Dan, to its new location at

player Alice and encrypted for player Charlie.

A B D C

Input − {x}D − −

random r

α = {x}D × ED (r )

/∗now α = ED (x + r ) ∗ /
α //

β = DD (α)

γ = EC (β)

/∗now γ = EC (x + r ) ∗ /

γ
oo

δ = γ × EC (−r )

/∗now δ = {x}C ∗ /

δ
oo

Output {x}C − − −

Figure 3: MP-COPY : Multiparty copy

Dan is in charge of performing the decryption and the re-

encryption of the element. To prevent him from learning the

value of x , Bob masks it additively with a random value. Bob

therefore needs to clear out this random mask on the value

re-encrypted by Dan, with Charlie’s key, before sending it to

Alice. This protocol has a total cost of 3 communications.

3.3 Addition and subtraction
When two elements are located at the same player and en-

crypted for the same other player, addition and subtractions are

performed using the homomorphic property of the encryption

scheme : {x +y}C = {x}C × {y}C and {x −y}C = {x}C/{y}C .
Now when x and y are located at players A and B and en-

crypted for players C and D, all four players being distinct,

multiparty addition and subtraction, denoted by MP-ADD and

MP-SUB, are directly obtained by composing an MP-COPY

operation with an homomorphic addition or subtraction. The

communication cost for these operations is therefore that of

MP-COPY (namely 3 exchanges).

3.4 Security Analysis
To model the homomorphic encryption primitives used in

protocol MP-COPY, presented in Figure 3, we propose the fol-

lowing equational theories. We first define two constructors

named add and acmask such that add(u,v) represents u + v
and acmask(Ek (u),Ek (v)) represents Ek (u) × Ek (v). Then, we
propose an equation describing the inner workings of homo-

morphic multiplication (resulting in the encrypted sum of

terms).

(i) ∀u,v,k, acmask(enc(u,k), enc(v,k)) = enc(add(u,v),k)

We also provide the following destructors to apply homo-

morphic addition with opposite of a term:
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(ii) ∀u,v,w,k, uacmaskr1(Ek (add(u,v)),Ek (v)) = Ek (u)
(ii) ∀u,v,w,k, uacmaskr2(Ek (add(u,v)),Ek (u)) = Ek (v)

Finally, we add the following destructor to model homomor-

phic decryption:

(iii) ∀u,v,k, decmask(acmask(Ek (u),Ek (u)),k) = add(u,v)

3.5 Classic Matrix Multiplication base case
We describe in this section an algorithm to perform classic

matrix multiplications in the data and encryption layout tai-

lored for its use as a base case for MP-SW . In particular, we

assume that there are two non intersecting sets of n players

each, PA = {A1 . . .An } and PB = {B1 . . . Bn }, such that the

location and key sequences for A are permutations of PA and

the location and key sequences for B are permutations of PB .
For the sake of simplicity, we denote in this section by Ai the
player in PA who stored row i of the matrix A encrypted for

some other player Di ∈ PA. Similarly Bi is the player in PB
who stored row i of the matrix B encrypted for some other

player Ci ∈ PB .
Classic matrix multiplications consist in n2 scalar products.

In each of them, an element ai,k of A is multiplied by an ele-

ment bk, j of B, with the homomorphic multiplication between

a cipher with a keyK and a plaintext: {ai,k }
bk, j
K = {ai,kbk, j }K .

First, the coefficient bk, j should be deciphered. In order to

avoid leaking information, it should be masked by some ran-

dom value.

Algorithm 2 MaskAndDecryptB(k)

Require: (Bk ) knows {bk, j }Ck for j = 1 . . .n
Ensure: (Ck ) discovers uk, j for j = 1 . . .n

(Bk ) sk
$

← F

(Bk ) PRNG.seed(sk )
for j = 1 . . .n do
(Bk ) tk, j ← PRNG.next()

(Bk ) βk, j ← {bk, j }
tk, j
Ck

(Bk ) sends βk, j to (Ck )

(Ck ) uk, j ← DCk (βk, j )

Algorithm 2 takes care of masking and decrypting a whole

column of B. There, Player (Ck ) is the only one able to decrypt

the masked value βk, j = {bk, j tk, j }Ck . Instead of picking n
random values to mask this column, which would yield an

overall cubic amount of communication to clear out the mask

after the computation, the noise is generated by one random

value and n iterations of a deterministic pseudo-random num-

ber generator. All players have agreed beforehand on a choice

for this pseudo random number generator. Note also that this

mask is applied multiplicatively to the value.

Then, Algorithm 3 shows how player (Ai ) discovers the ci-

phertext of one product {ai,kbk, j }. Player (Ai ) sends its value

{ai,k } to player (Ck ) who then performs the exponentiation,

corresponding to a multiplication on the plaintexts, and sends

Algorithm 3 PointwiseProducts(i,k)

Require: (Ai ) knows {ai,k }Di

Require: (Bk ) knows sk
Require: (Ck ) knows uk, j for j = 1 . . .n
Ensure: (Ai ) discovers ϵi,k, j = {ai,kbk, j }Di for j = 1 . . .n
(Bk ) sends sk to (Ai )

(Ai ) PRNG.seed(sk )
(Ai ) sends {ai,k }(Di ) to (Ck )

for j = 1 . . .n do
(Ck ) δi,k, j ← {ai,k }

uk, j
Di

(Ck ) sends δi,k, j to (Ai )

(Ai ) tk, j ← PRNG.next()

(Ai ) vk, j ← t−1k, j
(Ai ) ϵi,k, j ← δ

vj
i,k, j

it back to (Ai ). Meanwhile (Ai ) has received the seed and

generated the masking values tk, j to clean out the product.

Algorithm 4 Reduction(i)

Require: (Ai ) knows ϵi,k, j = {ai,kbk, j }Di for k, j = 1 . . .n
Ensure: (Ai ) discovers {ci, j }(Di ) for j = 1 . . .n
(Ai ) {ci, j }(Di ) ←

∏n
k=1 ϵi,k, j

Finally each coefficient {ci, j }(Di ) of the result is computed

by Algorithm 4 where player (Ai ) simply multiplies all corre-

sponding pointwise products.

Algorithm 5 BaseCase

Require: (Ai ) knows {ai,k }(Di ) for i,k = 1 . . .n
Require: (Bk ) knows {bk, j }(Ck ) for k, j = 1 . . .n
Ensure: (Ai ) discovers {ci, j }(Di ) for i,k = 1 . . .n

for k = 1 . . .n do
MaskAndDecryptB(k)
for i = 1 . . .n do

PointwiseProducts(i,k)
for i = 1 . . .n do

Reduction(i)

Overall, Algorithm 5 schedules the calls to the three above

subroutines. Figure 4 illustrates it in a scenario with 4 players.

Theorem 3.1. Algorithm 5 computes the product C = A × B
in the data and encryption layout specified. It requires a commu-
nication of n3 + 2n2 integers.

Proof. The communication cost in number of integer co-

efficient is n for Algorithm 2 and n + 1 for Algorithm 3. Algo-

rithm 3 also sends one seed which size will be neglected in the

remaing of the paper. Overall this yields a communication cost

of n3 + 2n2 integers for Algorithm 5. □
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A1 A2 B1 B2

Input {a1,1}A2
, {a1,2}A2

{a2,1}A1
, {a2,2}A1

{b1,1}B2
{b2,1}B1

random s1 random s2

t1,1 = PRNG(s1).next() t2,1 = PRNG(s2).next()

β1,1 = {b1,1}
t1,1
B2

β2,1 = {b2,1}
t2,1
B1β1,1 //

β2,1
oo

u2,1 = DB1
(β2,1) u1,1 = DB2

(β1,1)

s1
oo

t1,1 = PRNG(s1).next()
{a1,1 }A

2 //

δ1,1,1 = {a1,1}
u1,1
A2

δ1,1,1
oo

ε1,1,1 = δ
t−1
1,1

1,1,1

s1
oo

t1,1 = PRNG(s1).next()

{a2,1 }A
1 //

δ2,1,1 = {a2,1}
u1,1
A1

δ2,1,1
oo

ε2,1,1 = δ
t−1
1,1

1,1,1

s2
oo

t2,1 = PRNG(s2).next()
{a1,2 }A

2 //

δ1,2,1 = {a1,2}
u2,1
A2

δ1,2,1
oo

ε1,2,1 = δ
t−1
2,1

1,2,1

s2
oo

t2,1 = PRNG(s2).next()

{a2,2 }A
1 //

δ2,2,1 = {a2,2}
u2,1

δ2,2,1
oo

ε2,2,1 = δ
t−1
2,1

2,2,1

{c1,1}A2
= ε1,1,1 × ε1,2,1 {c2,1}A2

= ε2,1,1 × ε2,2,1

Output {a1,1b1,1 + a1,2b2,2}A2
{a2,1b1,1 + a2,2b2,2}A1

− −

Figure 4: Base-case 4 players
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3.6 Security Analysis
To model the homomorphic encryption primitives used in

protocol BASE-CASE, presented in Algorithm 5 and instanti-

ated in Figure 4 we propose the following equational theories.

We first define the constructors add and acmask with the ex-

act same properties as in MP-COPY presented in Section 3.4.

Then, we propose two new constructors prnд and prod such

that prnд(s) denotes a pseudo-random number generated from

seed s and prod(x ,y) denotes x × y. We also propose the fol-

lowing destructor to model homomorphic exponentiation:

(i) ∀u,v,k, pcr (Ek (u),v) = Ek (prod(u,v))

We add a variant of this destructor where the exponent is a

product:

(i) ∀u,v,w,k, pcr2(Ek (u),prod(v,w)) =
Ek (prod(u,prod(v,w)))

We provide a destructor to model homomorphic division:

(i) ∀u,v,w,k, upcr (Ek (prod(u,prod(v,w))),w) =
Ek (prod(u,v))

Finally, we provide the following destructor to model ho-

momorphic multiplicative distributivity:

(ii) ∀u,v,w,k, distri(acmask(Ek (u),Ek (v)),w) =
acmask(prod(u,w),prod(v,w))

3.7 Automated Verification Results
In this section, we summarize all results we found using ProVerif.

We considered executability and secrecy properties accord-

ing to assumptions made in Section 2.4 and with respect to

equational theories presented for each protocol. On protocol

MP-COPY, we checked secrecy of input x that shall be summed.

On protocol BASE-CASE, we checked secrecy of inputs a11,
a12, a21, a22, b11, and b21. Finally, on protocol MP-PDP , we
checked secrecy of inputs u1, u2, v1, and v2.

Active Adversary Passive Adversary

Protocols

∅ A B C D ∅ A B C D

MP-COPY (Fig. 3) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

BASE-CASE (Fig. 4) ✓ ? ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

MP−PDP (Fig. 2) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Table of the results obtained with the auto-
mated verification tool ProVerif

As we can see in Table 1, all protocols are executable and

guarantee the secrecy of inputs for passive intruders (i.e., semi-

honest adversary). Out of curiosity, we also considered active

intruders. Such adversaries, call Dolev-Yao [5], have a complete

control on the network and can intercept, modify, replay and

forge any message according to their knowledge. We can see

that all protocols are again safe for such adversary except in

case of Alice being corrupted for protocol BASE-CASE, where

ProVerif does not terminate (denoted by ? in Table 1). This

is not surprising since BASE-CASE is a large protocol with

consumption-heavy equational theories.

4 MULTIPARTY STRASSEN-WINOGRAD
4.1 Operation schedule inMP-SW
The schedule of a recursive step of Strassen-Winograd is com-

posed by 22 operations on the 4 submatrices of each operand.

At first, eight block additions, then, seven matrix multiplica-

tions are performed, and finally, seven other block additions

are computed. Those operations, range in three kind of opera-

tions:

• simple homomorphic addition: denoted by +HOM. Takes

as input two matrices having the same location sequences (and

consequently the same key sequences) and returns their sum

encrypted with the same key sequence. It is achieved by a sim-

ple homomorphic addition. Subtraction is denoted by −HOM
and works similarly.

•multiparty addition: denoted by MP-MAT-ADD. Takes as

input two matrices having non-intersecting location sequences

(and therefore non-intersecting key sequences as well) and re-

turns their sum located and encrypted with location and key

sequences of one of the operands. Subtraction is denoted by

MP-MAT-SUB. These operations are achieved by n2 instances
of algorithm MP-ADD or MP-SUB, each of which in turn is

a composition of MP-COPY and a homomorphic addition or

subtraction.

•multiparty product: denoted by MP-MAT-MUL. Takes as

input two matrices with non-intersecting location sequences

(and therefore encrypted with non-intersecting key sequences)

and return their product using the location and key sequence

of their left-hand side multiplicand. It is achieved by either a

recursive call to the same Strassen-Winograd algorithm or by

the base case presented in Algorithm 5.

Table 2 presents a schedule of all 22 block operations for a

recursive level in Strassen-Winograd algorithm, specifying for

each operation the key and location sequences of its operands.

It also states which algorithm is used to perform the operation.

Figure 5 also presents the data exchange between group of

players in one recursive level.

Note that the initial problem requires that both operands A
and B share the same key and location sequences (so that ma-

trix squaring is possible). However, the base case algorithm (Al-

gorithm 5) requires that these sequences are non-intersecting.

In order to satisfy these two constraints the recursive Strassen-

Winograd algorithm (Table 2) is presented with a location and

key sequence for A (LA and KA) and a location and key se-

quence for B (LB and KB ). The algorithm does not require that

they are non intersecting, but ensures that from the first recur-

sive call, they will always be, so as to fit with the requirement

of Algorithm 5.

Theorem 4.1. The total communication cost of a recursive
level ofMP-SW following the schedule defined Table 2 is 18

( n
2

)
2

communication.

Proof. All +HOM operation are free of communication. Be-

side recursive calls, there remain 2 calls to MP-MAT-COPY,

2 calls to MP-MAT-ADD and 2 calls to MP-MAT-SUB, each

8



Operation Algorithm Input 1 Input 2 Output

Key Loc. Key Loc. Key Loc.

S1 = A21 +A22 +HOM KAL LAL KAL LAL KAL LAL

A′
11
= A11 MP-MAT-COPY KAU LAU KAL LAL

S2 = S1 −A
′
11

−HOM KAL LAL KAL LAL KAL LAL

S3 = A′
11
−A21 −HOM KAL LAL KAL LAL KAL LAL

S4 = A12 − S2 MP-MAT-SUB KAU LAU KAL LAL KAU LAU
T1 = B12 − B11 −HOM KBU LBU KBU LBU KBU LBU
B′
22
= B22 MP-MAT-COPY KBL LBL KBU LBU

T2 = B′
22
−T1 −HOM KBU LBU KBU LBU KBU LBU

T3 = B′
22
− B12 −HOM KBU LBU KBU LBU KBU LBU

T4 = T2 − B21 MP-MAT-SUB KBU LBU KBL LBL KBU LBU

R1 = A′
11
× B11 MP-MAT-MUL KAL LAL KBU LBU KAL LAL

R2 = A12 × B21 MP-MAT-MUL KAU LAU KBL LBL KAU LAU
R3 = S4 × B22 MP-MAT-MUL KAU LAU KBL LBL KAU LAU
R4 = A22 ×T4 MP-MAT-MUL KAL LAL KBU LBU KAL LAL

R5 = S1 ×T1 MP-MAT-MUL KAL LAL KBU LBU KAL LAL

R6 = S2 ×T2 MP-MAT-MUL KAL LAL KBU LBU KAL LAL

R7 = S3 ×T3 MP-MAT-MUL KAL LAL KBU LBU KAL LAL

U1 = R1 + R2 MP-MAT-ADD KAL LAL LAU LAU KAU LAU
U2 = R1 + R6 +HOM KAL LAL KAL LAL KAL LAL

U3 = U2 + R7 +HOM KAL LAL KAL LAL KAL LAL

U4 = U2 + R5 +HOM KAL LAL KAL LAL KAL LAL

U5 = U4 + R3 MP-MAT-ADD KAL LAL KAU LAU KAU LAU
U6 = U3 − R4 −HOM KAL LAL KAL LAL KAL LAL

U7 = U3 + R5 +HOM KAL LAL KAL LAL KAL LAL

Table 2: Schedule of the secure multiparty Strassen-Winograd algorithm.

accounting for 3(n/2)2 communication. Overall, the communi-

cation cost of one recursive level is therefore 18

( n
2

)
2

. □

4.2 Cost Analysis
The recurrence relation for communication complexity ofMP-
SW writes:{

C(n) = 7C
( n
2

)
+ 18

( n
2

)
2

for n > m
C(m) = m3 + 2m2

The threshold at which the recursive algorithm should switch

to the base case algorithm is set by finding at which dimension

does the base case algorithm start to perform worse than one

recursive level. In terms of communication cost, this means the

following equation: 7((n
2
)3+2(n

2
)2)+18(n

2
)2 = n3+2n2 which

comes from injecting the base case cost into the recurrence

formula. It gives a threshold of n = 48.

We now compare the cost ofMP-SW with the cost ofMP-
PDP , which is CMP-PDP(n) = n3 + n(n − 1). We also recall

that we have the cost of the initialization step of MP-SW ,

Cinit = 2n2 and the cost of the final step ofMP-SW ,C
final
= n2.

In order to find the matrix size for whichMP-SW has a lower

communication cost than MP-PDP , we solve the following

equation: C(n) + 3n2 ≤ n3 + n(n − 1) which yields n > 80,

with one recursive call. This means that for any instance of

dimension larger than 80, the proposedMP-SW algorithm has

a better communication cost thanMP-PDP .

5 EXPERIMENTS
We implemented the algorithms under study

1
to demonstrate

their behaviour in practice and compare it to the state of the

art implementation of [8]. In the following YTP-SS refers to

n2 applications of [8, Algorithm 15];MP-PDP refers the relax-

ation and improvement of this algorithm to the current setting,

as proposed in Figure 2;MP-SW refers to our implementation

of Algorithm 2 using Algorithm 5 as a basecase with threshold

set to n = 48. The Naccache-Stern cryptosystem is set with

public keys of size 2048 bits and message space of 224 bits

(using 14 primes of 16 bits).

Figure 6 presents the volume of communication performed

by these three variants. Note that the cross-over point ofn = 80

is confirmed experimentally. The improvement in communi-

cation volume is about 27.8% for n = 528 players between

algorithmsMP-SW andMP-PDP .
However the running time of Naccache-Stern decryption

remains the main bottleneck. Table 3 compares the computa-

tion time per player of our implementation ofMP-SW versus

1C++ source files are available on request via the PC chair and will be made

publicly available if the paper is accepted.
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LAU LAL LBU LBL

{A11}, {A12} {A21}, {A22} {B11}, {B12} {B21}, {B22}

{S1}KAL {T1}KBU
{A11 }KAU// {S2}KAL , {S3}KAL {T3}KBU

, {T2}KBU

{B22 }KBLoo

{S4}
{S2 }oo {T4}KBU

{B21 }oo

{R1}KAL

{B11 }KBUoo

{R2}KAU

{B21 }KLoo

{R3}KAU

{B22 }KLoo

{R4}KAL

{T4 }KBUoo

{R5}KAL

{T1 }KBUoo

{R6}KAL

{T2 }KBUoo

{R7}KAL

{T3 }KBUoo

{U1}KAU

{R1 }KALoo

{U2}KAL , {U3}KAL , {U4}KAL

{U5}KAU

{U4 }KALoo

{U6}KAL , {U7}KAL

Figure 5: Protocol for Strassen-Winograd algorithm. Each column represents one of the four sub-group of players
where the submatrices AU ,AL ,BU ,BL are stored.
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multiplication.

the implementation of YTP-SS provided in [8]. For instance,

it takes about 49.22s per player for theMP-SW protocol with

matrices of size n = 32 and keys of 2048 bits, instead of 18.05s

for YTP-SS .

key size n×n: 16 32 64

1024 YTP-SS 0.58 2.68 11.01

1024 MP-SW 2.87 6.19 13.27

2048 YTP-SS 4.54 18.05 69.80

2048 MP-SW 23.63 49.22 196.24

Table 3: Computation time (in s) per player of Multi-
party Strassen-Winograd (MP-SW ) compared to [8]
(YTP-SS) on an Intel Xeon E7-8860 2.2Ghz.

6 PERSPECTIVE
The version of Strassen-Winograd we presented here is se-

cure against semi-honest adversaries. However, as many of its

building blocks have a stronger security level anyway, it would

be interesting to see if it is possible to increase the security

of the whole MP-SW protocol and how it would impact its

performance.

Even if this paper is a about improving the communication

cost while preserving security, several arithmetic cost could

be envisioned. For instance, removing the need for players to

encrypt their own Bk data beforehand. This is required for

now to preserve the security features but a large part of the

10



computing cost lies in the part when one has to decipher and

re-cipher that data. Another possibility would be to replace

the Naccache-Stern by a faster cryptosystem. The difficulty

there is to be able to combine the masking schemes with the

somewhat homomorphic properties.
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