
HAL Id: hal-01781504
https://hal.science/hal-01781504v1

Preprint submitted on 30 Apr 2018 (v1), last revised 25 Aug 2019 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Closed form Maximum Likelihood Estimator for
Generalized Linear Models in the case of categorical
explanatory variables: Application to insurance loss

modelling
Alexandre Brouste, Christophe Dutang, Tom Rohmer

To cite this version:
Alexandre Brouste, Christophe Dutang, Tom Rohmer. Closed form Maximum Likelihood Estimator
for Generalized Linear Models in the case of categorical explanatory variables: Application to insurance
loss modelling. 2018. �hal-01781504v1�

https://hal.science/hal-01781504v1
https://hal.archives-ouvertes.fr


Closed form Maximum Likelihood Estimator

for Generalized Linear Models in the case

of categorical explanatory variables:

Application to insurance loss modelling

Alexandre Brouste*, Christophe Dutang** & Tom Rohmer*,1

*Institut du Risque de l’Assurance & Laboratoire Manceau de Mathématiques
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Abstract

Generalized Linear Models with categorical explanatory variables are considered and param-
eters of the model are estimated with an original exact maximum likelihood method. The
existence of a sequence of maximum likelihood estimators is discussed and considerations
on possible link functions are proposed. A focus is then given on two particular positive
distributions: the Pareto 1 distribution and the shifted log-normal distributions. Finally,
the approach is illustrated on a actuarial dataset to model insurance losses.
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1. Introduction

The assumption of identical distributions for random variables in an observation sample
is relaxed for regression models by considering explanatory variables. Generalized Linear
Models (GLMs) were introduced by Nelder and Wedderburn (1972) and popularized in Mc-
Cullagh and Nelder (1989). GLMs rely on probability distribution functions of exponential
type for the response variable which include most of the light and medium tailed distribu-
tions (such as normal, gamma or inverse Gaussian). Asymptotic properties of sequences of
maximum likelihood estimators for GLMs were studied by Fahrmeir and Kaufmann (1985).

Regression models for heavy-tailed distributions have been mainly studied through the
point-of-view of extreme value analysis, see Beirlant et al. (2004) for a review. A regression
model for the generalized Pareto distribution (GPD) where the scale parameter depends
on covariates are described in Davison and Smith (1990) with a least square estimation
procedure and a model checking method. Beirlant et al. (1998) propose a Burr model by
regressing the shape parameter with an exponential link on explanatory variables. In the
aforementioned article, a simulation study with one explanatory variable is detailed as well
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as an application to fire insurance. Residual plots and asymptotic convergence towards the
normal distribution are also discussed. Similarly, Ozkok et al. (2012) propose a regression
model for Burr distribution where the scale parameter depends on covariates.

An estimation of the extremal tail index (used in generalized extreme value (GEV) dis-
tributions and GPD) by considering a class of distribution function with an exponential
link on explanatory variables is also described in Beirlant and Goegebeur (2003). Using
generalized residuals of explanatory variable makes possible the estimation of the tail index.
Still by the extreme value theory approach, Chavez-Demoulin et al. (2015) and Hambuckers
et al. (2016) both propose a semi-parametric regression model for GEV and GPD where
the explanatory variables are time or known factor levels. They assume that all parameters
depend on covariates and also use exponentially distributed residuals.

Few papers seem to study this topic outside the extreme value theory framework. Mainly,
Rigby and Stasinopoulos (2005) propose a general regression framework where all parameters
are modeled by explanatory variable and the distribution is not restricted to exponential
family. The only restriction that the authors impose is the twice differentiability of the
density function w.r.t. parameters. However, there is no clear convergence result of the
proposed estimators. Among the proposed distributions, authors use 1-parameter Pareto,
log-logistic (a special case of the Pareto 3 distribution) and GEV distributions.

In this paper, we propose closed-form estimators for generalized linear models in the
case of categorical variables. The expression is valid for any distribution belonging to the
one-parameter exponential family. Then, the paper will continue by the application of such
formulas not on classical distributions, but on distributions such as the log-transformed
variable has a distribution in the exponential family. Therefore, the choice of probability
distributions of this paper is led by two aspects: distributions with positive values and dis-
tributions as the log-transformed variable belongs to the exponential family. The considered
distributions have heavier tails than the exponential distribution. We choose to study two
distributions: the Pareto 1 distribution and the shifted lognormal distribution with fixed
threshold parameters. We could have considered log-logistic and GEV distributions being
also appropriate in many situations but these distributions do not belong to the exponential
family.

Applications of this distribution can be found in various disciplines such as finance, in-
surance, reliability theory, etc. Here, we are interested with an application to large insurance
loss modeling. Indeed, pricing non-life insurance relies on estimating the claim frequency
and the claim severity distributions. The former is generally estimated by a regression model
such as Poisson or zero-inflated models. However for modeling claim severity, we commonly
split the claim dataset between attritional and atypical claims. A threshold µ is chosen either
from the extreme value theory or by expert judgments. A classical GLM such as gamma or
inverse-Gaussian is fitted on attritional claim amounts below µ, see e.g. Ohlsson and Johans-
son (2010). Atypical claim amounts above µ are not necessarily modeled at all. An empirical
rule of the insurance pricing is used to mutualize atypical claims over the portfolio, i.e. the
aggregate sum of atypical claims is shared equally among all policies. We aim at providing
a regression model for those claims above µ in order to refine this empirical rule.

The threshold µ can also be interpreted in another insurance context. Generally in non-
life insurance, contracts are underwritten with a deductible. This has two consequences:
the policyholder will retain the risk of claims below the deductible; and the insurer will only
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know and be interested in claims above the deductible. In the numerical section, we consider
only the example of large claim modeling.

The paper is organized as follows. In Section 2, we present the Generalized Linear
Models. Section 3 provide exact formulas for maximum likelihood estimators in the case
of categorical explanatory variables. Section 4 is dedicated to the Pareto 1 GLM, while
Section 5 is dedicated to the shifted lognormal GLM. Finally, an application to an actuarial
dataset is carried out in Section 6, before Section 7 conludes.

2. Preliminaries on Generalized Linear Models

In this section, we consider the estimation problem in GLMs. We consider deterministic
exogenous variables y1, . . .yn, with yi = (y

(1)
i , . . . , y

(p)
i ) ∈ Rp for i = 1, . . . , n. In the follow-

ing, for the sake of clarity, bold notations are reserved for vector of Rp and bold notations
with an underline are reserved for vector of Rn.

The index i ∈ I = {1, . . . , n} is reserved for the observations, while the indexes j, k, l are
used for the explanatory variables.

In this setting, the sample X = (X1, . . . , Xn) is composed of real-valued independent
random variables; each one belongs to a family of probability measures of one-parameter
exponential type with respective parameters λ1, . . . , λn valued in Λ ⊂ R.

Precisely, the likelihood L associated to the statistical experiment generated by Xi, i ∈ I
verifies

logL(ϑ |xi) =
λi(ϑ)xi − b (λi(ϑ))

a(φ)
+ c(xi, φ), xi ∈ X ⊂ R, (1)

and −∞ if xi /∈ X, where a : R → R, b : Λ → R and c : X × R → R are known real-valued
measurable functions and φ is the dispersion parameter, e.g. McCullagh and Nelder (1989,
Section 2.2).

In Equation (1), the parameters λ1, . . . , λn depend on a finite-dimensional parameter
ϑ ∈ Θ ⊂ Rp. Direct computations lead to

b′(λi(ϑ)) = EϑXi and b′′(λi(ϑ))a(φ) = VarϑXi. (2)

Using a twice continuously differentiable and bijective function g from b′(Λ) to R, the GLM
are defined by assuming the following relation between the expectation and the predictor

g(b′(λi(ϑ))) = 〈yi,ϑ〉 = ηi, for all ϑ ∈ Θ,

where ηi are the linear predictors and 〈, 〉 denotes the scalar product. In other words, the
bijective function ` = (b′)−1 ◦ g−1 is setted; then we have

λi(ϑ) = `(ηi). (3)

We summarize with the following relations

Y ×Θ
〈.,.〉−→ D

`−1

�
`

Λ
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where D is the space of linear predictor and Y the possible set of value of yi for i ∈ I. Here
` is chosen and, consecutively Θ, Λ and D must be set.

The parameter ϑ ∈ Θ ⊂ Rp is to be estimated and g is called the link function in the
regression framework. We talk of canonical link function, when ` is the identity function.

Let us compute the log-likelihood of x = (x1, . . . , xn):

logL(ϑ |x) =
n∑
i=1

1

a(φ)
(xi`(ηi)− b (`(ηi))) +

n∑
i=1

c(xi, φ), (4)

with b, h and ` being respectively defined in (1) and (3). Here, the vector of the parameters
ϑ is unknown. If the model is identifiable, it can be shown that the sequence of maximum
likelihood estimators (ϑ̂n)n≥1 defined by ϑ̂n = arg maxϑ∈Θ L(ϑ |x) asymptotically exists and
is consistent (for example Fahrmeir and Kaufmann, 1985, Theorem 2, 4).

The maximum likelihood estimator (MLE) ϑ̂n, if it exists, is the solution of the non linear
system

Sj(ϑ) = 0, j = 1, . . . , p, (5)

with Sj(ϑ) are the component of the Score vector defined by

Sj(ϑ) =
1

a(φ)

n∑
i=1

y
(j)
i `′(ηi) (xi − b′ (`(ηi))) .

Note that the MLE ϑ̂n does not depend on the value of the dispersion parameter φ. Indeed,
the dispersion parameter is estimated in a second step using the sum of square residuals or
the log-likelihood, see e.g. (McCullagh and Nelder, 1989, Chap. 9).

In a general setting, the system (5) does not have a closed-form solution and generalized
linear models are generally fitted using a Newton-type method, such that an iteratively
re-weighted least square (IWLS) algorithm also refereed to Fisher Scoring algorithm, see
e.g. McCullagh and Nelder (1989).

Nevertheless, the choice of the initial value for the Newton-type method sometimes is
problematic. A misspecification of this initial value can lead to divergence of the algorithm.
Moreover, for a small data set (small n) or large number of explanatory variables, the (non-
asymptotic) existence of the MLE is not guaranteed.

In the case of categorical explanatory variables described later on, the non-asymptotic
existence of the MLE depends on the conditional distribution and the chosen link function
(see Examples 1, 2 and 3 on Section 4.2).

3. A closed form MLE for categorical explanatory variables

In any regression model, categorical or nominal explanatory variables have to be coded
since their value is a name or a category. When the possible values are unordered, it is
common to use a binary incidence matrix or dummy variables where each row has a single
unity in the column of the class to which it belongs. In the case of ordered values, a contrast
matrix has to be used, see e.g. Venables and Ripley (2002).
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3.1. A single explanatory variable

Let us first consider the case of a single categorical explanatory variable. That is p = 2
and for all i = 1, . . . , n, y

(1)
i = 1 is the intercept and y

(2)
i takes values in a set of d modalities

{v1, . . . , vd}. We define the incidence matrix (y
(2),j
i )i,j where y

(2),j
i = 1

y
(2)
i =vj

is the binary

dummy of the jth category for i ∈ I = {1, . . . , n} and j ∈ J = {1, . . . , d}. From this
incidence matrix, we compute the number of appearance mj > 0 of the jth category and
x(j)
n the mean value of x taking over the jth category by

mj =
n∑
i=1

y
(2),j
i , j ∈ J and x(j)

n =
1

mj

n∑
i=1

xiy
(2),j
i , j ∈ J.

By construction, this incidence matrix has rows that sum to 1. Therefore if we use the
combination of the incidence matrix with a 1-column for the intercept (y

(1)
i , y

(2),j
i )i,j: a

redundancy appears. We must choose either to use no intercept, to drop one column for a
particular modality of y

(2)
i , or to use a zero-sum condition on the parameters. We investigate

below these three options in a single framework.
Consider the following GLM for the explanatory variables y

(1)
i , y

(2),1
i , . . . , y

(2),d
i

g(EXi) = ϑ(1) +
d∑
j=1

y
(2),j
i ϑ(2),j, i = 1, . . . , n, (6)

where ϑ = (ϑ(1), ϑ(2),1, . . . , ϑ(2),d) is the unknown vector parameters. The model being not
identifiable, we impose exactly one linear equation on ϑ

〈R,ϑ〉 = 0, (7)

with R = (r(1), r(2),1, . . . , r(2),d) any real vector of size d + 1. A theorem and a corollary are
given below and corresponding proofs are postponed to Appendix A.

Theorem 3.1. Suppose that for all i ∈ {1, . . . , n}, Xi takes values in b′(Λ). If the vector R
is such that

∑d
j=1 r(2),j − r(1) 6= 0, then there exists a unique, consistent and explicit MLE

ϑ̂n = (ϑ̂n,(1), ϑ̂n,(2),1, . . . , ϑ̂n,(2),d) of ϑ given by

ϑ̂n,(1) =

∑d
j=1 r(2),jg(X

(j)

n )∑d
j=1 r(2),j − r(1)

, ϑ̂n,(2),j = g(X
(j)

n )−
∑d

j=1 r(2),jg(X
(j)

n )∑d
j=1 r(2),j − r(1)

, j = 1, . . . , d. (8)

Note that if X
(j)

n does not belong to b′(Λ), g(X
(j)

n ) and hence ϑ̂n,(l),j are not defined.

We give below the three most common examples of linear constraint, some details of
these calculus are given in Appendix A.

Example 3.1. No-intercept model
The no-intercept model is obtained with R = (1, 0, . . . , 0) leading to ϑ(1) = 0. Therefore

the unique, consistent and explicit MLE ϑ̂n of ϑ is

ϑ̂n,(1) = 0, ϑ̂n,(2),j = g
(
X

(j)

n

)
, j ∈ J. (9)
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Example 3.2. Model without first modality
The model without first modality is obtained with R = (0, 1, . . . , 0) leading to ϑ(2),1 = 0.

Therefore, the unique, consistent and explicit MLE ϑ̂n of ϑ is

ϑ̂n,(1) = g
(
X

(1)

n

)
, ϑ̂n,(2),1 = 0, ϑ̂n,(2),j = g

(
X

(j)

n

)
− ϑ̂n,1, j ∈ J \ {1}.

Example 3.3. Zero-sum condition The zero-sum model is obtained with R = (0, 1, . . . , 1)

leading to
∑d

j=1 ϑ(2),j = 0. Therefore, the unique, consistent and explicit MLE ϑ̂n of ϑ is

ϑ̂n,(1) =
1

d

d∑
j=1

g
(
X

(j)

n

)
, ϑ̂n,(2),j = g

(
X

(j)

n

)
− ϑ̂n,1, j ∈ J.

Remark 3.1. In Theorem 3.1, it is worth noting that the value of ϑ̂n does not depend on
the distribution of the Xi.

Remark 3.2. The three different parametrizations (Examples 3.1, 3.2 and 3.3) depends on
the type of application and on the modeler choice. In statistical software, there is a default
choice: for instance in the statistical software R, the model without the first modality is
the default parametrization (see functions lm(), glm() by R Core Team (2017)). The first
option without intercept may be justified when no group can be chosen as the reference group.

Remark 3.3. When g is the identity function, the third option with a zero-sum condition
can be interpreted as a generalized analysis of variance (ANOVA) for Zi with respect to
groups defined by the explanatory variable y(2). Even for non-Gaussian random variables,
some applications may justify this option.

Theorem 3.1 has two interesting corollaries which give some clues on the choice of the
link function g. This corollary tempers the importance of the link function since it will not
affect the predicted moments in the case of a single explanatory variable.

Corollary 3.1. The value of the log-likelihood defined in (4) taken on the exact MLE ϑ̂n (if
it exists) given by (8), under constraint (7), does not depend on the link function g. More

precisely, we have ∀i ∈ I, `(η̂i) = (b′)−1(x(j)
n ) for j ∈ J such that y

(2),j
i = 1 and

logL(ϑ̂n |x) =
1

a(φ)

d∑
j=1

∑
i,y

(2),j
i =1

(
xi(b

′)−1
(
x(j)
n

)
− b
(

(b′)
−1 (

x(j)
n

)))
+

n∑
i=1

c(xi, φ).

The estimator of φ is obtained by maximizing logL(ϑ̂n |x) with respect to φ given a, b, c
functions.

Corollary 3.2. The predicted mean and predicted variance for the ith individual is estimated

by ÊXi = b′(`(η̂i)) and V̂arXi = a(φ̂)b′′(`(η̂i)) respectively using (2). Both estimates do not
depend on the link function g and the predicted mean does not depend on the function b.
More precisely, when vj is the modality of the ith individual (i.e. y

(2),j
i = 1), the predicted

mean and predicated variance are given by

ÊXi = x(j)
n , V̂arXi = a(φ̂)b′′ ◦ (b′)−1(x(j)

n ).
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Corollary 3.2 may be surprising because the predicted mean does not depend on the
conditional distribution of X1, . . . , Xn. The predicted mean is just the mean of the response
variable taken over the class j i.e. observations xi such that the covariate y

(2)
i takes the

modality vj.

The formula (8) of the MLE ϑ̂n can be reformulated as

ϑ̂n =

(
Q
R

)−1(
g(X̄)

0

)
with Q is the d× (1 + d) matrix defined by Q = (A0, A1), with A0 is the ones vector of size

d, A1 the identity matrix of size d, and g(X̄) the vector (g(X̄
(1)
n ), . . . , g(X̄

(d)
n )). We have

d∑
j=1

r(2),j − r(1) 6= 0⇔ rank

(
Q
R

)
= d+ 1.

With this formulation, the estimator of ϑ is ϑ̂n = (Q′Q+R′R)−1Q′g(X̄). This general form
is particularly useful in the case of two categorical variables of the next subsection.

3.2. Two explanatory variables

Now, we consider the case of two explanatory categorical variables. That is p = 3 and
for all i = 1, . . . , n, y

(1)
i = 1 is the intercept and y

(2)
i , y

(3)
i take values in {vj1, . . . , vjdj}

with d2, d3 modalities respectively. We define by y
(2),k
i and y

(3),l
i , k ∈ K = {1, . . . , d2} and

l ∈ L = {1, . . . , d3} the binary dummies of the kth and lth resp. categories, m
(j)
k > 0 the

number of appearance of the kth modality of the jth variable, j = 1, 2, mkl the number of
appearance of the kth and lth category simultaneously and x(k,l)

n the mean value of x taking
over the kth and lth categories. That is

dummy frequency mean

y
(2),k
i = 1(y

(2)
i = v2k) m

(2)
k =

∑n
i=1 y

(2),k
i k ∈ K x

(2),k
n = 1

m
(2)
k

∑n
i=1 xiy

(2),k
i k ∈ K

y
(3),l
i = 1(y

(3)
i = v3l) m

(3)
l =

∑n
i=1 y

(3),l
i l ∈ L x

(3),l
n = 1

m
(3)
l

∑n
i=1 xiy

(3),l
i l ∈ L

y
(k,l)
i = y

(2),k
i y

(3),l
i mkl =

∑n
i=1 y

(k,l)
i (k, l) ∈ K × L x

(k,l)
n = 1

mkl

∑n
i=1 y

(k,l)
i xi (k, l) ∈ KL?

with KL? = (K × L) \ {(k, l) ∈ K × L;mkl = 0}. Set d?2,3 = #KL?, for l ∈ L, K?
l =

{(k, l) ∈ K?×{l};mkl > 0}, d?(3),l = #K?
l and for k ∈ K?, L?k = {(k, l) ∈ {k}×L?;mkl > 0},

d?(2),k = #L?k.

Note that (mkl)kl are absolute frequencies of the contingency table resulting from cross-
classifying factors and can be computed very easily. Be careful that KL? is not equal to K×L
but

⋃
l∈LK

?
l =

⋃
k∈K L

?
k = KL?, and d?2,3 = d2d3− r, where r = #{(k, l) ∈ K ×L;mkl = 0}.

Let Q be the d?2,3× (1 + d2 + d3 + d?2,3) real matrix defined by Q = (A0, A1, A2, A12) with
A0 = 1d?2,3 the d?2,3 × 1 ones matrix; A1 = (diag(1d?

(2),k
))k∈K , the d?2,3 × K diagonal block

matrix of ones vector of size d?(2),k; A2 = (I?,kd3 )k∈K , the d?2,3 × L matrix where I?,kd3 is the
identity matrix of size d3 without rows l for which mkl = 0; A12 = Id?2,3 the d?2,3×d?2,3 identity
matrix.
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Consider the following GLM for explanatory variables y
(1)
i , y

(2),j
i , y

(3),j
i

g(EXi) = ϑ1 +

d2∑
k=1

y
(2),k
i ϑ(2),k +

d3∑
l=1

y
(3),l
i ϑ(3),l +

∑
(k,l)∈KL?

y
(k,l)
i ϑkl, (10)

where ϑ(1), (ϑ(2),k)k∈K , (ϑ(3),l)l∈L, (ϑkl)(k,l)∈KL? are the d2 +d3 +d?2,3 + 1 unknown parameters.
Again at this stage, the model is not identifiable because of the redundancy on the vectors
(y

(2),k
1 , . . . , y

(2),k
n ), k ∈ K, the vectors (y

(3),l
1 , . . . , y

(3),l
n ), l ∈ L and the ones vector. As

previously, We need to impose q ≥ 1 +d2 +d3 linear constraints on the vector parameters ϑ

Rϑ = 0q, (11)

where R is a q×(1+d2 +d3 +d?2,3) real matrix of linear contrasts, with rank(R) = 1+d2 +d3

and 0q the zeros vector of size q.

Theorem 3.2. Suppose that for all i ∈ {1, . . . , n}, Xi takes values in b′(Λ). Under constraint
(11) and if R such that (Q′R′) is of rank d?2,3, there exists a unique, consistent and explicit

MLE ϑ̂n of ϑ given by
ϑ̂n = (Q′Q+R′R)−1Q′g(X̄), (12)

where the vector g(X̄) is ((g(X̄
(k,l)
n ))l∈L?

k
)k∈K.

Example 3.4. No intercept and no single-variable dummy
The model with no intercept and no single-variable dummy is ϑ1 = 0 and ϑ(2),k = ϑ(3),l = 0

∀k ∈ K ∀l ∈ L Therefore, the unique, consistent and explicit MLE ϑ̂n of ϑ is

ϑ̂n,kl = g
(
X

(k,l)

n

)
, (k, l) ∈ KL?.

Example 3.5. Zero-sum conditions The model with zero-sum conditions assumes∑
k∈K

m
(2)
k ϑ(2),k =

∑
l∈L

m
(3)
l ϑ(3),l = 0, ∀l ∈ L,

∑
k∈K?

l

mklϑkl = 0, ∀k ∈ K,
∑
l∈L?

k

mklϑkl = 0.

Therefore, the unique, consistent and explicit MLE ϑ̂n of ϑ is

ϑ̂n,(1) =
1

n

∑
(k,l)∈KL?

mklg
(
X

(k,l)

n

)
ϑ̂n,(2),k =

1

m
(2)
k

∑
l∈L?

k

mklg
(
X

(k,l)

n

)
− ϑ̂n,1, k ∈ K

ϑ̂n,(3),l =
1

m
(3)
l

∑
k∈K?

l

mklg
(
X

(k,l)

n

)
− ϑ̂n,1, l ∈ L

ϑ̂n,kl = g
(
X

(k,l)

n

)
− ϑ̂n,(2),k − ϑ̂n,(3),l − ϑ̂n,1, (k, l) ∈ KL?.

For simplicity, we consider only the cases of one and two explanatory categorical variables.
With a higher number of explanatory variables, we can perform a similar analysis to obtain
an explicit solution of the MLE.

As for one explanatory variable, Theorem 3.2 has two interesting corollaries on the value
of the log-likelihood and the predicted moments.
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Corollary 3.3. The value of log-likelihood defined in (4) taken on the exact MLE ϑ̂n (if it
exists) given by (12), under constraint (11), does not depend on the link function g. More

precisely, we have ∀i ∈ I, `(η̂i) = (b′)−1(x(k,l)
n ) for l ∈ L and k ∈ K such that y

(2),j
i =

1 and y
(3),k
i = 1 and

logL(ϑ̂n |x) =
1

a(φ)

∑
(k,l)∈KL?

∑
i|y(2),ki =y

(3),l
i =1

(
xi(b

′)−1
(
x(k,l)
n

)
− b((b′)−1(x(k,l)

n )
)

+
n∑
i=1

c(xi, φ).

The estimator of φ is obtained by maximizing logL(ϑ̂n |x) with respect to φ given a, b, c
functions.

Corollary 3.4. The predicted mean and predicted variance for the ith individual is estimated

by ÊXi = b′(`(η̂i)) and V̂arXi = a(φ̂)b′′(`(η̂i)) respectively using (2). Both estimates do not
depend on the link function g and the predicted mean does not depend on the function b.
Let v2k and v3l be the modalities of the ith individual of the two explanatory variables, i.e.
y

(2),k
i = 1 and y

(3),l
i = 1. The predicted mean and variance are given by

ÊXi = x(k,l)
n , V̂arXi = a(φ̂)b′′ ◦ (b′)−1(x(k,l)

n ).

In the next two sections, we apply previous theorems and corollaries to two particular
distributions: Pareto 1 and lognormal distribution. Our results do not only apply to contin-
uous distributions but also for discrete distributions. But we choose these distributions in
order to model insurance losses.

4. GLM for Pareto I distribution with categorical explanatory variables

4.1. Characterization

Consider the sample X = (X1, . . . , Xn) composed of independent Pareto Type 1. Pre-
cisely, we assume that the independent random variables X1, . . . , Xn are Pareto with known
threshold parameter µ and respective shape parameter (depending on the unknown param-
eter ϑ) λ1(ϑ), . . . , λn(ϑ) ∈ Λ = (0,∞) . The density f of Pareto distribution with scale and
shape parameter µ and λi(ϑ), i ∈ I is

f(x) = λi(ϑ)
µλi(ϑ)

xλi(ϑ)+1
, x ∈ X = [µ,∞), (13)

and 0 if x < µ.

We recall that for the Pareto Type 1 distribution

EXi =
λi(ϑ)µ

λi(ϑ)− 1
< +∞ iff λi(ϑ) > 1 and EX2

i =
λi(ϑ)µ2

λi(ϑ)− 2
< +∞ iff λi(ϑ) > 2.

Unlike the known parameter µ, the parameter ϑ is to be estimated. These closed-form
formulas are particularly useful in an insurance context since the expectation and the variance
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are used in most premium computation. For instance, EX is the pure premium and for γ > 0,
EX + γVarX is the variance principle (see Bühlmann and Gisler, 2006, Section 1.2.2).

In the following, instead of X we consider the sample z = (T (X1), . . . , T (Xn)). With
the re-parametrization zi = T (xi) = − log (xi/µ), i ∈ I, this distribution belongs to the
exponential family as defined in (1), with

a(φ) = 1, b(λ) = − log(λ), and c(z, φ) = 0, z ∈ T (X) = R−, λ ∈ Λ. (14)

In particular, for the Pareto I distribution, there is no dispersion parameter. It is also worth
mentioning that −Zi is exponential with parameter λi(ϑ). Consecutively, all moments of Zi
exist and are given by EZm

i = (−1)mm!/λi(ϑ)m, m ∈ N∗.
Consider the regression model with a link function g, a response variable Xi Pareto I

distributed where Zi = − log (Xi/µ) and

g (EZi) = ϑ(1) + y
(2),1
i ϑ(2),1 + . . .+ y

(2),d
i ϑ(2),d = 〈yi,ϑ〉, i ∈ I (15)

with for i ∈ I, yi = (1, y
(2),1
i , . . . , y

(2),d
i )T are the covariate vectors and ϑ = (ϑ(1), ϑ(2),1 . . . , ϑ(2),d)

T

is the unknown parameter vector.
The choice of the link function g appearing in (15) is a crucial point. Let us start with the

canonical link. That is, the chosen function g so that ` = (b′)−1 ◦g−1 is the identity function.
For our Pareto model, g(t) = −1

t
since b′(λ) = − 1

λ
. From (4), the choice of the canonical

link function imposes constraints on the linear predictor space D ⊂ Λ ⊂ (0,+∞) in that
case. Since D results from the scalar product of ϑ parameters with explanatory variables
yi, some negative values might be produced when the covariables take negative values. This
make the choice of the canonical link inappropriate.

In order to remedy this issue, we can choose a link function such that the values of the
function ` falls in Λ ⊂ (0,∞). A natural choice is `(η) = exp(η) which guarantees a positive
parameter. The choice `(η) = exp(η) + 1 guarantee a finite expectation for the random
variables Xi, i = 1, . . . , n. We summarize in Table 1 the tested ` functions in our application
in Section 6, and in Table 2, the spaces given a link function.

Table 1: Table of typical link functions for Pareto I

Names `(ηi) g−1(t) g(t)

canonical ηi −1

t
−1

t

log-inv eηi −e−t log(−1

t
)

shifted log-inv eηi + 1 − 1

et + 1
log(−1

t
− 1)

4.2. Estimation for categorical exogenous variables

Consider the case of one categorical exogenous variable. We expose the case of the
re-parametrization without intercept (〈R,ϑ〉 = 0 with R = (1, 0, . . . , 0) ).
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Table 2: Summary of spaces for Pareto I

Parameter–covariable Linear predictor Parameter
Link name space ϑ× Yi space D space Λ b′(Λ)

unspecified ϑ× Yi ⊂ Rp × Rp 〈.,.〉−→ D ⊂ R
`−1

�
`

Λ ⊂ (0,+∞)

canonical {(ϑ,yi) ∈ Rp×Rp, 〈ϑ,yi〉≥0} 〈.,.〉−→ (0,+∞)
id
�
id

(0,+∞) (−∞, 0)

log-inv Rp × Rp 〈.,.〉−→ R
log
�
exp

(0,+∞) (−∞, 0)

shifted log-inv Rp × Rp 〈.,.〉−→ R
log(x−1)

�
exp(x)+1

(1,+∞) (−1, 0)

Let ϑ̂n the MLE defined in (9), if it exists, of ϑ. Using
∑d

j=1

∑
i,y

(2),j
i =1

zi(b
′)−1

(
z(j)
n

)
= n,

the log likelihood evaluated on ϑ̂n for both the transformed sample z and the original sample
x with one categorical exogenous variable (Corollary 3.1) is

logL(ϑ̂n | z) = n−
d∑
j=1

mj log(−z(j)
n ), logL(ϑ̂n |x) = n−

d∑
j=1

mj log
(
−z(j)

n

)
−

n∑
i=1

log(xi).

(16)

The log-likelihood logL(ϑ̂n |x) is detailed on Appendix B. The second remark is that

−Zi are exponentially distributed E(`(ηi)). Hence for j ∈ J , the estimators ϑ̂n,(2),j of ϑ(2),j

are known transforms of a gamma random variable Ga(mj,mj`(ϑ2,j)). Below we analyze the
choice of the link functions considered in Table 1 in Examples 4.1, 4.2, 4.3 and plotted in
Figure C.3a.

Example 4.1. canonical link
In the special case of canonical Pareto model, because zi < 0 for all i ∈ I, we have

z(j)
n ∈ b′(Λ) = (−∞, 0) for all j ∈ J (g and Λ are respectively defined in Tables 1 and 2).

With no-intercept using Equation (9), the MLE is

ϑ̂n,(2),j = −mj

(
n∑
i=1

y
(2),j
i Zi

)−1

= − 1

Z
(j)

n

, j ∈ J.

Hence, for j ∈ J , ϑ̂n,(2),j follows an Inverse Gamma distribution with shape parameter mj

and rate parameter mjϑ(2),j, see e.g. (Johnson et al., 2000, Ch. 17). We can compute the
moments of the Inverse Gamma distribution, for mj > 2,

Eϑ̂n,(2),j =
mj

mj − 1
ϑ(2),j, and Varϑ̂n,(2),j =

m2
j

(mj − 1)2(mj − 2)
ϑ2

(2),j, j ∈ J.

An unbiased estimator of ϑ(2),j is then ϑ̂?n,(2),j =
mj−1

mj
ϑ̂n,(2),j which has a lower variance

Varϑ̂?n,(2),j =
ϑ2

(2),j

mj − 2
≤ Varϑ̂n,(2),j, j ∈ J.
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A similar bias is also obtained by Bühlmann and Gisler (2006) in a credibility context. Of
course this unbiased estimator is also applicable for two exogenous variables with the first
parametrization of the Theorem 3.2. When some modalities (or couple of modalities) aren’t
much represented, it can be relevant to use this unbiased estimator.

Example 4.2. log-inverse link
In the special case of the log-inv Pareto model, we also have z(j)

n ∈ b′(Λ) = (−∞, 0) for all
j ∈ J (g and Λ are respectively defined in Tables 1 and 2). With no-intercept using Equation
(9), the MLE is

ϑ̂n,(2),j = − log

(
1

−mj

n∑
i=1

y
(2),j
i Zi

)
= − log

(
−Z(j)

n

)
, j ∈ J.

Here, for j ∈ J , the distribution of −ϑ̂n,(2),j is the distribution of the log of the gamma
distribution with shape mj and rate mj exp(ϑ(2),j). We can derive moments of this distribu-
tion which should not be confused with the log-gamma distribution studied e.g. in Hogg and
Klugman (1984).

Let L = log(G) when G is gamma distributed with shape parameter a > 0 and rate
parameter λ > 0. We have by elementary manipulations the moment generating function of
L:

ML(t) = EetL =
Γ(a+ t)

Γ(a)
λ−t, t > −a,

where Γ denotes the usual gamma function. Therefore by differentiating and evaluating at 0,
we deduce that the expectation and the variance of L are EL = ψ(a)−log λ and VarL = ψ′(a),
where the functions ψ and ψ′ are the digamma and trigamma function, see e.g. Olver et al.
(2010). Getting back to our example, we deduce that

Eϑ̂n,(2),j = ϑ(2),j + logmj − ψ(mj) and Varϑ̂n,(2),j = ψ′(mj), j ∈ J.

From Olver et al. (2010), we know that log(mj) − ψ(mj) tends to 0 as mj tend to infinity.

Hence ϑ̂n,(2),j is asymptotically unbiased, and an unbiased estimator of ϑ(2),j is

ϑ̂?n,(2),j = ϑ̂n,(2),j − (log(mj)− ψ(mj)), j ∈ J.

Example 4.3. shifted log-inverse link
In the special case of the shifted log-inv Pareto model, z(j)

n is not necessarily in b′(Λ) =
(−1, 0) for all j ∈ J (g and Λ are respectively defined in Tables 1 and 2). If there is an index
j such as z(j)

n ≤ −1, the MLE is not defined and we couldn’t use the shifted log-inv link with
the same incidence matrix.

Nevertheless, for sufficiently large n, for j such that y
(2)
i = vj, Z

(j)

n → EZi almost
surely, where EZi = −1/(exp(ϑ2,j) + 1) > −1. Hence for sufficiently large n, the conditions
of Theorem 3.1 are satisfied. With no-intercept using Equation (9), the MLE (provided it
exists) is

ϑ̂n,(2),j = log

(
mj

−
∑n

i=1 y
(2),j
i Zi

− 1

)
= log

(
−1/Z

(j)

n − 1
)
, j ∈ J.
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The expectation of ϑ̂n,(2),j is complex and should be done numerically. However by the strong

law of large numbers and the continuity of the link function, ϑ̂n,(2),j = − log
(
−1/Z

(j)

n − 1
)

converge almost surely to log((exp(ϑ(2),j) + 1)− 1) = ϑ(2),j.

Remark 4.1. In Theorem 3.1, the condition Xi takes values in b′(Λ) might seem too re-
strictive. In fact the condition x(j)

n ∈ b′(Λ) for all j ∈ J is sufficient to define a vector

value ϑ̂n which maximise the likelihood. But ϑ̂n fails to be a MLE estimator because the

random variable g(X
(j)

n ) can to be not defined. Nevertheless, when mj tends to infinity for

any j ∈ J , the random variables Xi’s defined by (6) such that y
(2),j
i = 1 are i.i.d. (not

only independent) and the strong law of large numbers implies that X
(j)

i converges almost

surely to EXi = b′(`(ηi)) ∈ b′(Λ). Hence, the probability P (X
(j)

n /∈ b′(Λ)) tends to zero which
guarantees the asymptotically existence of the MLE estimator.

4.3. Model diagnostic

In this paragraph, we propose residuals adapted at the case of Pareto problem. First
note that Xi is Pareto I with shape `(ηi) and threshold µ and for the parametrization (14)
−Zi = log(Xi/µ) ∼ E(`(ηi)). Let define the residuals

Ri = −`(ηi)Zi, i ∈ I.

Hence R1, . . . , Rn are i.i.d. and have an exponential distribution E(1). The consistency of

the MLE makes it possible to say that the estimated residuals R̂n,i = −`(η̂i)Zi, i ∈ I, with

η̂i = 〈yi, ϑ̂n〉 are asymptotically i.i.d..
It is also possible to verify the assumption of the Pareto distribution for Xi conditionally

to yi with graphical diagnostic as an exponential Quantile-Quantile plot on the residuals
R̂n,i.

In the case of a single explanatory variable, for i ∈ I, the residuals R̂n,i do not depend
on ` function. Their explicit forms are

R̂n,i =
Zi

Z̄
(j)
n

j such that y
(2)
i = vj, i ∈ I. (17)

Furthermore, the summation of R̂n,1, . . . , R̂n,n has the surprising property to be deterministic
and is exactly equal to n.

5. GLM for shifted log-normal distribution with categorical explanatory vari-
ables

5.1. Characterization

Secondly, consider the sample X = (X1, . . . , Xn) composed of independent shifted log-
normal variables respectively with mean λ1(ϑ), . . . , λn(ϑ), dispersion φ = σ2 and a known
threshold µ. The shifted log-normal is also known as the 3-parameter log-normal. Precisely,
the density of Xi is

f(x) =
1

(x− µ)
√

2πφ
exp

(
−(log(x− µ)− λi(ϑ))2

2φ

)
, x ∈ X = (µ,∞), (18)
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and 0 for x ≤ µ. It is well known that the lognormal distribution has finite moment, see
e.g. Johnson et al. (2000). In particular, the expectation and the variance are given by

EXi = µ+ exp(λi(ϑ) + φ/2), VarXi = (exp(φ)− 1) exp(2λi(ϑ) + φ).

The transformed sample Z = T (X) = (T (X1), . . . , T (Xn)) with T (x) = log(x − µ) is
belongs the exponential family with

a(φ) = φ, b(λ) = λ2/2, c(z, φ) = −1

2

(
z2

φ
+ log(2πφ)

)
, z ∈ R+, λ ∈ R.

It is worth mentioning that Zi are normally distributed with mean λi(θ) and variance φ. As
a consequence, all moments of Zi exists and E(Zi−λi)m = (2m)!φm/(2mm!) for m even and
0 for m odd. Consider the regression model with a link function g, a response variable Xi

lognormally distributed where Zi = log (Xi − µ) and

g (EZi) = ϑ(1) + ϑ(2),1y
(2),1
i + . . .+ ϑ(2),dy

(2),d
i = 〈yi,ϑ〉, i ∈ I (19)

with for i ∈ I, yi = (1, y
(2),1
i , . . . , y

(2),d
i )T are the covariate vectors and ϑ = (ϑ(1), ϑ(2),1, . . . , ϑ(2),d)

T ∈
R
d is the unknown parameter vector.

The choice of the link function g for Equation (19) is less restrictive than for the Pareto
case. Any differentiable invertible function from R to R will work. Since b′(x) = x, the
canonical link function is obtained by choosing g such that ` = id ◦ g−1 = g−1 is the identity
function. In other words, the canonical link function is the identity function.

Unlike the previous section, any moment of Xi exist and there is no particular link needed
to guarantee their existence. In the numerical application, we will also consider another link
function: a real version of the logarithm.

5.2. Estimation for categorical exogenous variables

Again we consider the case of categorical variables and without intercep model, that is
with a predictor ηi = y

(2),1
i ϑ(2),1 + · · · + y

(2),d
i ϑ(2),d. In the case of the lognormal dispersion,

there is a dispersion to be estimated. The log-likelihood is given by

logL(ϑ | z) = − 1

2φ

n∑
i=1

(zi − λi(ϑ))2 − n log(2πφ)

2
.

The components of the MLE of ϑ are given by ϑ̂n,(2),j = g(z̄
(j)
n ), j ∈ J , and the estimated

log likelihood for the transformed sample z is

logL(ϑ̂n | z) = − 1

2φ

∑
j∈J

∑
i,y

(2),j
i =1

(
zi − z̄(j)

n

)2 − n log(2πφ)

2

Maximizing over φ the log-likelihood leads to the empirical variance

φ̂ =
1

n

∑
j∈J

∑
i,y

(2),j
i =1

(
zi − z̄(j)

n

)2
(20)
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Hence the estimator of φ is the intra-class variance. This closed-form estimate φ̂ differs from
what classical statistical softwares carry out, where the dispersion parameter is estimated
by a quasi-likelihood approach.

Using the previous equations, we compute the log likelihood evaluated on φ̂ and on ϑ̂n
for both the transformed sample z and the original sample x with one categorical exogenous
variable (Corollary 3.1) is

logL(ϑ̂n | z) = −n
2

(1 + log(2πφ̂)), logL(ϑ̂n |x) = −n
2

(1 + log(2πφ̂))−
n∑
i=1

zi. (21)

The log-likelihood logL(ϑ̂n |x) is detailed on Appendix B. Below we analyze the choice of
the link functions considered in Table 3 in Examples 5.1, 5.2 and plotted in Figure C.3b.

Table 3: Table of typical link functions for lognormal

Names `(ηi) g−1(t) g(t)

canonical ηi t t

sym. log eηi1ηi≥0 + (2− e−ηi)1ηi<0 et1t≥0 + (2− e−t)1t<0 log(t)1t≥1 − log(2− t)1t<1

Table 4: Summary of spaces for lognormal

Parameter–covariable Linear predictor Parameter
Link name space ϑ× Yi space D space Λ

canonical Rp × Rp 〈.,.〉−→ R
id
�
id

R

sym. log Rp × Rp 〈.,.〉−→ R
l−1
g

�
lg

R

Example 5.1. canonical link
With the canonical link function, there is no issue between the parameter space and the

linear predictor space since D = Λ = R. With no-intercept using Equation (9), the MLE is

ϑ̂n,(2),j =
1

mj

n∑
i=1

y
(2,j)
i Zi = Z

(j)

n , j ∈ J.

Hence, the distribution ϑ̂n,(2),j is simply a normal distribution with mean ϑ(2),j and variance
φ/mj. Therefore, the MLE is unbiased and converges in almost surely to ϑ(2),j.

Example 5.2. symmetrical log link
We consider a central symmetry of the logarithm function given in Table 3 leading to

lg(x) = ex1x≥0 + (2 − e−x)1x<0. With this symmetrical log link function, there is no issue
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between the parameter space and the linear predictor space since again D = Λ = R. With
no-intercept using Equation (9), the MLE is

ϑ̂n,(2),j = log
(
z(j)
n 1

z
(j)
n ≥1

)
− log

(
2− z(j)

n 1
z
(j)
n <1

)
, j ∈ J.

The expectation of ϑ̂n,(2),j is complex and should be done numerically. However by the strong

law of large numbers and the continuity of the link function, ϑ̂n,(2),j = lg(Z
(j)

n ) converge

almost surely to lg(EZ
(j)

n ) = ϑ(2),j.

5.3. Model diagnostic

In this paragraph, we give some details about residuals in the lognormal case. As already
said, the transformed variables Zi = log(Xi−µ) is normally distributed with mean `(ηi) and
variance φ. Let define the residuals

Ri =
Zi − `(ηi)√

φ
, i ∈ I.

Hence R1, . . . , Rn are i.i.d. and have a normal distribution N (0, 1). The consistency of

the MLE makes it possible to say that the R̂n,i = Zi−`(η̂i)√
φ̂

, i ∈ I, with η̂i = 〈yi, ϑ̂n〉 are

asymptotically i.i.d. Furthermore, the summation of R̂n,1, . . . , R̂n,n is exactly equal to 0.
It is also possible to verify the assumption of the lognormal distribution for Xi condi-

tionally to yi with graphical diagnostic as a normal Quantile-Quantile plot on the residuals
R̂n,i.

6. Application to large claim modeling

This section is devoted to the numerical illustration: all computations are carried out
thanks to the R statistical software R Core Team (2018). In our application, we focus on
modeling non-life insurance losses of corporate business lines. Our data set comes from an
anonymous private insurer: for privacy reason, amounts have been randomly scaled, dates
randomly rearranged, variable modalities renamed. The data set consists of 211,739 claims
which occurred between 2000 and 2010. In addition to the claim amount level, various
explanatory variables are available.

We provide in Table C.9 in Appendix C a short descriptive analysis of the two most
important variables (risk class and guarantee type with respectively 5 and 7 modalities).
Due to the very high value of skewness and kurtosis, we observe that claim amount is
particularly heavy tailed.

In the sequel, we consider only large claims which are in our context claims above µ =
340, 000 (in euros). The threshold value has been chosen by expert opinion of practitioners.
We refer to e.g. Reiss and Thomas (2007) for advanced selection methods based on extreme
value theory.
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6.1. A single explanatory variable

Firstly, we consider both Pareto 1 GLM and Shifted log-normal GLM with only one
explanatory variable: the guarantee type. We choose Guarantee 1 as the reference level
implying that ϑ(2),1 = 0. So, ϑ(1) representing the effect of the reference category and
(ϑ(2),j)j representing the differential effect of categories j relative to the reference category
will be estimated through (15) and (19). Observations x1, . . . , xn are observed claim amounts
either from Pareto 1 (13) or shifted log-normal (18).

For theses two models, we have many possible choices for the link function g. Naturally,
we choose link functions appearing in Tables 1 and 3 respectively. In accordance to Corol-
laries 3.1, the choice of g does not impact the values respectively given on (16) and (21) of
the log-likelihoods applied on the MLE of ϑ.

Furthermore, for Pareto GLM, the choice of shifted log-inverse link function seems at-
tractive because it guarantees the existence of EXi. Nevertheless, alternative link functions
(canonical or log-inv) allow to construct an unbiased estimator (see Section 4). For shifted
log-normal model, the choice of canonical link function is more attractive because it leads
to an unbiased and simpler MLE estimator (see Section 5).

Coefficients are estimated by explicit formulas given in Sections 4 and 5. We compare
the fitted coefficients with the result of the IWLS algorithm described in McCullagh and
Nelder (1989): we found exactly the same value for the MLE (within the numeric tolerance).
In Table 5, the estimated coefficients are given in the five considered situations. Positive
values of ϑ(2),j in the Pareto GLM increase the shape parameter of the Pareto 1 distribution
leading to a decrease in heavy-tailedness. Regarding the log-normal model, positive values
of ϑ(2),j increase the scale parameter of the log-normal distribution leading to a shrink of the
distribution.

Irrespectively of the considered link function, the sign of the fitted coefficients are same
except for intercept (Table 5) given a distribution. This convinces us that different model
assumptions (i.e. link) do not lead to opposite conclusions on the claim severity. Furthermore
from Table C.9, we retrieve the fact that all guarantees except Guarantee 2 have heavier
tails than the reference Guarantee 1.

Table 5: Coefficients for the guarantee variable

Model Pareto 1 Shifted log normal
Variable canonical loginv shifted.loginv canonical symlog

Intercept 1.89 0.64 -0.11 11.75 2.46
Guarantee 2 0.04 0.02 0.04 0.10 0.01
Guarantee 3 -0.67 -0.43 -1.36 0.75 0.06
Guarantee 4 -0.86 -0.60 -3.13 1.04 0.08
Guarantee 5 -0.71 -0.47 -1.55 0.72 0.06
Guarantee 6 -0.42 -0.25 -0.63 0.42 0.04
Guarantee 7 -0.48 -0.29 -0.78 0.59 0.05

log likelihood -14507.53 -14507.53 -14507.53 -14517.37 -14517.37

Whatever the considered link function g, the residuals defined in Section 4.3 by R̂n,i =
−`(η̂i)Zi, i ∈ I, do not depend on ` and are given by Equation (17). We show on Figure 2
(left) the quantile/quantile plots of residuals described on Section 4.3 against the standard
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exponential distribution. The assumption of Pareto 1 for X1, . . . , Xn does not seem be
contradictory. However the assumption of log-normal distribution is more questionnable, see
Figure 1. Comparing the value of the log-likelihood in Table 5, Pareto 1 distribution is also
the best choice. In the following, we focus only on the Pareto 1 distribution.
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Figure 1: Quantile-quantile plots of the residuals defined in Section 4.3: (left) for pareto1, (right) for shifted
log-normal

For all coefficient, let us compute the p-values of statistical tests with the null hypothesis
ϑ(1) = 0 (Interecept null), and for j ∈ J \ {1}, ϑ(2),j = 0 (no differential effect of the jth
Guarantee). Table 6 reports the value of the coefficient, its standard error, the student statis-
tics and the associated p-value. We observe that some modalities of the guarantee variable
are statistically significant at the 5% level. Except for Guarantee 2 and Guarantee 6, other
p-values are relatively small showing the Pareto 1 distribution with explanatory variables is
relevant in this context.

Table 6: Statistics and p.values for the tests ϑ(1) = 0 and ϑj = 0, j ∈ J in the Pareto GLM model for the
log-inverse link.

Estimate Std. Error z value Pr(>|z|)
Intercept 0.6391 0.1644 3.8877 0.0001

Guarantee 2 0.0214 0.2219 0.0966 0.9230
Guarantee 3 -0.4332 0.1950 -2.2217 0.0263
Guarantee 4 -0.6009 0.1708 -3.5180 0.0004
Guarantee 5 -0.4660 0.1805 -2.5817 0.0098
Guarantee 6 -0.2485 0.2295 -1.0827 0.2789
Guarantee 7 -0.2949 0.1834 -1.6075 0.1080

6.2. Two explanatory variables

Secondly, we consider the Pareto GLM models and Shifted log-normal GLM models with
the two explanatory variables (guarantee and risk class) without intercept nor single-variable
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(c.f. model (10) and example 3.4), that are

g(EZi) =
∑

(k,l)∈KL?

ϑkly
(k,l)
i , i ∈ I (22)

with Zi = − log(Xi/µ) for the Pareto 1 modeling Zi = log(Xi − µ) for the shifted log
normal modeling and where for (k, l) ∈ KL? the unknown parameters ϑkl represent the
effect of the couple of the modalities k and l for the first and the second variable. In
theses examples, as it describes in Table 7, we have K = {1, . . . , 7}, L = {1, . . . , 5} but
KL? = {1, . . . , 7} × {1, . . . , 5} \ {(1, 2), (6, 5)}.

Consider the estimation procedures in 22. Computing claim numbers according Guaran-
tee and Risk is done in Table 7. This claim number per class might be too short to ensure
the existence of the MLE with the shifted log-inv link. We arbitrary choose the simple case
of the canonical link and an unbiased estimator is relevant in this context.

The coefficients of the model are estimated using the exact method described in Section 3
and then unbiased in the same way of Example 1. The fitted coefficients are not shown but
are available upon request to the authors. Furthermore, we compute the p-values of the
statistical test ϑkl = 0 in Table 8. We observe that most computed p-values are small: either
less than 10−6 or less than 1%. Only 5 on the 33 p-values are above the usual 5% level,
corresponding to the couples Guarantee/Risk class (1,5), (2,2), (2,3), (2,5) and (7,5) (claim
number of 1,2 or 3). In the two variables setting, the Pareto 1 GLM is thus still relevant.

Table 7: Number of claim par couple Guarantee/Risk class.

Claim number Risk class 1 Risk class 2 Risk class 3 Risk class 4 Risk class 5
Guarantee 1 39 0 4 6 1
Guarantee 2 26 2 3 16 3
Guarantee 3 48 7 11 29 4
Guarantee 4 232 40 75 147 20
Guarantee 5 68 18 36 72 6
Guarantee 6 24 7 4 11 0
Guarantee 7 94 9 22 57 3

Table 8: p-values for the tests ϑkl = 0, (k, l) ∈ KL? in 22 for the canonical link.

P.values Risk class 1 Risk class 2 Risk class 3 Risk class 4 Risk class 5
Guarantee 1 < 10−6 - 0.04550 0.01431 0.31731
Guarantee 2 < 10−6 0.15730 0.08301 0.00006 0.08326
Guarantee 3 < 10−6 0.00815 0.00091 < 10−6 0.04550
Guarantee 4 < 10−6 < 10−6 < 10−6 < 10−6 0.00001
Guarantee 5 < 10−6 0.00002 < 10−6 < 10−6 0.01431
Guarantee 6 < 10−6 0.00815 0.04550 0.00091 -
Guarantee 7 < 10−6 0.00270 < 10−6 < 10−6 0.08326

7. Conclusion

In this paper, we deal with regression models where the response variable belongs to the
general formulation of the exponential family, the so-called GLM. We focus on the estimation
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Figure 2: Quantile-quantile plots of the residuals defined in Section 4.3: (left) for one explanatory variable,
(right) for two explanatory variables

of parameters of GLMs and derive explicit formulas for MLE in the case of categorical
explanatory variables. In this case, the closed-form estimators do not require any use of
numerical algorithms, in particular the well-known IWLS algorithm. This is logical, because
in the special setting of categorical variables, a regression model is equivalent to fitting the
same distribution on subgroups defined with respect to explanatory variables. Hence, we get
back to usual explicit solutions for the exponential family in the i.i.d. case.

Yet we work with one or two explanatory variables for the two derived theorems, this is
not a limit because the general setting of d categorical variables can be rewritten as a single
categorical variable defined as the observed combination of the d variables.

The explicit formulas are examplified on two particular positive distributions particu-
larly useful in an insurance context: the Pareto 1 distribution and the shifted log-normal
distribution. In both cases, we present typical link functions and derive in most cases the
distribution of the MLE. In relevant cases, we also give an unbiased estimator. Finally, we
illustrate the estimation process for both distributions on an actuarial data set.

For future research, a natural extension is to propose regression models for distribution
outside the exponential family. Typically we could consider generalized Pareto distribution
based on the peak over thresholds approach. A second natural extension could also be to
jointly estimate the threshold µ and the parameters of the distribution.
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A. Proofs of Section 3

Proof of Theorem 3.1. We have to solve the system{
S(ϑ) = 0
Rϑ = 0.

(A.1)

The system S(ϑ) = 0 is
n∑
i=1

`′(ηi) (xi − b′ ◦ `(ηi)) = 0

n∑
i=1

y
(2),j
i `′(ηi) (xi − b′ ◦ `(ηi)) = 0, ∀j ∈ J.

that is 
∑
j∈J

`′(ϑ(1) + ϑ(2),j)

(
n∑
i=1

y
(2),j
i xi −mjb

′ ◦ `(ϑ(1) + ϑ(2),j)

)
= 0

`′(ϑ(1) + ϑ(2),j)

(
n∑
i=1

y
(2),j
i xi −mjb

′ ◦ `(ϑ(1) + ϑ(2),j)

)
= 0, ∀j ∈ J.

The first equation in the previous system is redundancy, and

S(ϑ) = 0⇔ `′(ϑ(1) + ϑ(2),j)

(
n∑
i=1

y
(2),j
i xi −mjb

′ ◦ `(ϑ(1) + ϑ(2),j)

)
= 0, ∀j ∈ J.

Hence if Xi takes values in X ⊂ b′(Λ), and ` injective, we have

ϑ(1) + ϑ(j) = g(X
(j)

n ) ∀j ∈ J.

The system (A.1) is {
Qϑ = g(X̄)
Rϑ = 0.

⇔
(
Q
R

)
ϑ =

(
g(X̄)

0

)
. (A.2)

Let us compute the determinant of the matrix Md =

(
Q
R

)
. Consider R = (r0, r1, . . . , rd).

We have

Md =

(
1d Id
r0 r

)
=


1 1 0 . . .
1 0 1 0
...

...
. . . . . . . . .

1 0 . . . 0 1
r0 r1 . . . rd

 , with r =
(
r1 . . . rd

)
,1d =

1
...
1

 .
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The determinant can be computed recursively

det(Md) = rd

∣∣∣∣∣∣∣∣∣
1 1 0 . . .

1 0
. . . 0

...
...

. . . 1
1 0 . . . 0

∣∣∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣∣
1 1 0 . . .

1 0
. . . 0

...
...

. . . 1
r0 r1 . . . rd−1

∣∣∣∣∣∣∣∣∣ = (−1)d+1rd − det(Md−1)

Since det(M1) = −r0 + r1 and det(M2) = −r2− (−r0 + r1) = r0− r1− r2, we get det(Md) =
(−1)dr0 + (−1)d+1(r1 + · · · + rd) = (−1)d(r0 − r1 − · · · − rd). This determinant is non zero
as long as r0 6=

∑d
j=1 rj.

Now we compute the inverse of matrix Md by a direct inversion.

(
1d Id
r0 r

)(
a′ b
C d

)
=

(
Id 0
0′ 1

)
⇔


1da

′ + IdC = Id
b1d + Idd = 0
r0a

′ + rC = 0′

br0 + rd = 1

⇔


C = Id − 1

−r0+r1d
1dr

d = 1
−r0+r1d

1d
a′ = r

−r0+r1d

b = −1
−r0+r1d

Let us check the inverse of Md(
1d Id
r0 r

)( r
−r0+r1d

−1
−r0+r1d

Id − 1dr
−r0+r1d

1d

−r0+r1d

)
=

( 1dr
−r0+r1d

+ Id − 1dr
−r0+r1d

−1d

−r0+r1d
+ 1d

−r0+r1d

r0
r

−r0+r1d
+ r − r1dr

−r0+r1d

−r0
−r0+r1d

+ r1d

−r0+r1d

)
=

(
Id 0
0 1

)
So as long as r0 6=

∑d
j=1 rj

ϑ̂n =

( r
−r0+r1d

−1
−r0+r1d

Id − 1dr
−r0+r1d

1d

−r0+r1d

)(
g(X̄)

0

)
=

(
rg(X̄)
−r0+r1d

g(X̄)− 1d
rg(X̄)
−r0+r1d

)
.

In an other way, the system (A.2) is equivalent to

(Q′ R′)

(
Q
R

)
ϑ = Q′g(X̄),

and for (QR) of full rank, the matrix (Q′Q+R′R) is invertible and ϑ = (Q′Q+R′R)−1Q′g(X̄).

Examples - Choice of the contrast vector R

1. Taking r0 = 1, r = 0 leads to

−r0 + r1d = −1⇒ ϑ̂n =

(
0

g(X̄)

)
2. Taking r0 = 0, r = (1,0) leads to

−r0 + r1d = 1⇒ ϑ̂n =


g(X̄

(1)
n )

0

g(X̄
(2)
n )− g(X̄

(1)
n )

...

g(X̄
(d)
n )− g(X̄

(1)
n ))

 .
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3. Taking r0 = 0, r = 1 leads to

−r0 + r1d = d⇒ ϑ̂n =


g(X̄)

g(X̄
(1)
n )− g(X̄)
. . .

g(X̄
(d)
n )− g(X̄)


with g(X̄) =

1

d

d∑
j=1

g(X
(j)

n ).

Proof of Corollaries 3.1. The log likelihood of ϑ̂n is defined by

logL(ϑ̂n |x) =
1

a(φ)

n∑
i=1

(xi`(η̂i)− b(`(η̂i))) +
n∑
i=1

c(xi, φ).

In fact, we must be verified than `(η̂i) does not depend on g function. If we consider

ϑ̂n defined by (8), we have Qϑ̂n = g(x̄) , since ϑ̂n is solution of the system (A.1), i.e.

Q(Q′Q+R′R)−1Q′ = I Using η̂i = (Qϑ̂n)j for i such that y
(2),j
i = 1 we obtain

`(η̂i) =
d∑
j=1

` ◦ g(x̄(j)
n )y

(2),j
i =

d∑
j=1

` ◦ `−1 ◦ (b′)−1(x̄(j)
n )y

(2),j
i =

d∑
j=1

(b′)−1(x̄(j)
n )y

(2),j
i ,

and

logL(ϑ̂n |x) =
1

a(φ)

d∑
j=1

∑
i,y

(2)
i =vj

(
xi(b

′)−1
(
x(j)
n

)
− b
(

(b′)
−1 (

x(j)
n

)))
+

n∑
i=1

c(xi, φ).

In the same way,

ÊXi = b′(`(η̂i)) =
d∑
j=1

x̄(j)
n y

(2),j
i V̂arXi = a(φ)b′′(`(η̂i)) = a(φ)

d∑
j=1

b′′ ◦ (b′)−1(x̄(j)
n )y

(2),j
i

Proof of Theorem 3.2. The system S(ϑ) = 0 is

n∑
i=1

`′(ηi) (xi − b′ ◦ `(ηi)) = 0

n∑
i=1

y
(3),l
i `′(ηi) (xi − b′ ◦ `(ηi)) = 0, ∀l ∈ L

n∑
i=1

y
(2),k
i `′(ηi) (xi − b′ ◦ `(ηi)) = 0, ∀k ∈ K

n∑
i=1

ykli `
′(ηi) (xi − b′ ◦ `(ηi)) = 0, ∀(k, l) ∈ KL?.
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that is



∑
(k,l)∈KL?

`′(ϑ(1) + ϑ(2),k + ϑ(3),l + ϑkl)

(
n∑
i=1

y
(k,l)
i xi −mklb

′ ◦ `(ϑ(1) + ϑ(2),k + ϑ(3),l + ϑkl)

)
= 0

∑
k∈K?

l

`′(ϑ(1) + ϑ(2),k + ϑ(3),l + ϑkl)

(
n∑
i=1

y
(k,l)
i xi −mklb

′ ◦ `(ϑ(1) + ϑ(2),k + ϑ(3),l + ϑkl)

)
= 0 ∀l ∈ L

∑
l∈L?

k

`′(ϑ(1) + ϑ(2),k + ϑ(3),l + ϑkl)

(
n∑
i=1

y
(k,l)
i xi −mklb

′ ◦ `(ϑ(1) + ϑ(2),k + ϑ(3),l + ϑkl)

)
= 0 ∀k ∈ K

`′(ϑ(1) + ϑ(2),k + ϑ(3),l + ϑkl)

(
n∑
i=1

y
(k,l)
i xi −mklb

′ ◦ `(ϑ(1) + ϑ(2),k + ϑ(3),l + ϑkl)

)
= 0 ∀(k, l) ∈ KL?.

The system have exactly 1 + d2 + d3 redundancies, and S(ϑ) = 0 is

`′(ϑ(1)+ϑ(2),k+ϑ(3),l+ϑkl)

(
n∑
i=1

y
(k,l)
i xi −mklb

′ ◦ `(ϑ(1) + ϑ(2),k + ϑ(3),l + ϑkl)

)
= 0 ∀(k, l) ∈ KL?.

Hence the system has rank KL? and if Xi takes values in X ⊂ b′(Λ), and ` injective, we have

ϑ(1) + ϑ(2),k + ϑ(3),l + ϑkl = g(X̄(k,l)
n ) ∀(k, l) ∈ KL?.

In the same way of proof of theorem 1, we have to solve{
Qϑ = g(X̄)
Rϑ = 0.

that is, because QQ′ +RR′ is full rank, ine the same way of proof of Theorem 1

ϑ = (Q′Q+R′R)−1Q′g(X̄).

1. Under linear contrasts (C̃0), the model (10) is equivalent to model (6) with J = KL?

modalities. Hence the solution is evident.

2. Under linear contrasts (C̃Σ ), the system

ϑ(1) + ϑ(2),k + ϑ(3),l + ϑkl = g(X̄(k,l)
n ) ∀(k, l) ∈ KL?

implies that ∑
(k,l)∈KL?

mkl(ϑ(1) + ϑ(2),k + ϑ(3),l + ϑkl) =
∑

(k,l)∈KL?

mklg(X̄(k,l)
n ).

Using ∑
(k,l)∈KL?

mkl = n,
∑

(k,l)∈KL?

mklϑ(2),k =
∑
k∈K

∑
l∈L?

k

mklϑ(2),k =
∑
k∈K

m
(2)
k ϑ(2),k = 0,
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∑
(k,l)∈KL?

mklϑ(3),l =
∑
l∈L

∑
k∈K?

l

mklϑ(3),l =
∑
l∈L

m
(3)
l ϑ(3),l = 0,

∑
(k,l)∈KL?

mklϑkl = 0,

we have ϑ(1) =
1

n

∑
(k,l)∈KL?

mklg(X̄(k,l)
n ). In the same way, taking summation on K?

l for

l ∈ L and on L?k for k ∈ K, we found ϑ(2),k and ϑ(3),l, and then ϑkl.

B. Calculus of the Log-likelihoods appearing in Section 4 and 5

Consider the Pareto GLM described on (13) and (15). The b function is b(λ) = − log(λ),

using corollary 3.1 we have `(η̂i) = (b′)−1(z(j)
n ) = −(z(j)

n )−1 for j such that y
(2),j
i = 1 and

logL(ϑ̂n | z) =
d∑
j=1

∑
i,y

(2),j
i =1

(
zi/z

(j)
n − log

(
−z(j)

n

))

= n−
d∑
j=1

mj log
(
−z(j)

n

)
Compute the original log likelihood of Pareto 1 distribution:

logL(ϑ |x) =
n∑
i=1

(
log `(ηi) + `(ηi) log µ− (`(ηi) + 1) log xi

)
.

Hence with zi = − log(xi/µ),

logL(ϑ̂n |x) =
d∑
j=1

∑
i,y

(2),j
i =1

(
− log(−z(j)

n )− log µ

z(j)
n

+
log(xi)

z(j)
n

− log xi

)

= n−
d∑
j=1

mj log(−z(j)
n )−

n∑
i=1

log xi

Now consider the shifted log-normal GLM described on (18) and (19). Here, the b function
is b(λ) = λ2/2, hence using Corollary 3.1, we have `(η̂i) = (b′)−1(z(j)

n ) = z(j)
n for j such that

y
(2),j
i = 1 and equation (21) holds.

Let us compute the original log likelihood of the shifted log normal distribution:

logL(ϑ |x) =
n∑
i=1

(
− log(xi − µ)− log(

√
2πφ)− (log(xi − µ)− `(ηi))2

2φ

)
= −

n∑
i=1

zi − n log(
√

2πφ)−
n∑
i=1

(zi − `(ηi))2

2φ
,
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with zi = log(xi − µ). Hence

logL(ϑ̂ |x) = −
n∑
i=1

zi − n log(
√

2πφ)− 1

2φ

d∑
j=1

∑
i,y

(2),j
i =1

(zi − z(j)
n )2

Using φ̂ = 1
n

∑
j∈J
∑

i,y
(2),j
i =1

(
zi − z̄(j)

n

)2

we have

logL(ϑ̂ |x) = −
n∑
i=1

zi −
n

2
log(2πφ̂)− n

2

C. Link functions and descriptive statistics
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Figure C.3: Graphs of link functions
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Table C.9: Empirical quantiles and moments (in euros)

Amount Risk class 1 Risk class 2 Risk class 3 Risk class 4 Risk class 5
Min. 0 0 0 0 0 0
1st Qu. 51 140 39 130 150 27
Median 761 1120 652 1073 1015 737
3rd Qu. 3,003 4,169 2,474 4,486 4,155 3,113
Max. 15,688,300 15,315,173 15,688,300 11,916,121 6,078,593 10,833,825
Mean 10,745 14,508 7,265 28,082 18,193 11,179
Std dev. 128,146 148,380 98,141 275,175 140,607 125,004
Skewness 54 48 96 24 24 38
Kurtosis 4,473 3,933 12,753 751 796 2,124

Guarantee 1 Guarantee 2 Guarantee 3 Guarantee 4 Guarantee 5 Guarantee 6 Guarantee 7
Min. 0 0 0 0 0 0 0
1st Qu. 123 155 235 128 2 1 2
Median 1,253 814 1,955 893 2,977 2 564
3rd Qu. 4,994 2,664 8,246 3,726 39,647 1,560 2,097
Max. 3,882,524 4,529,249 15,315,173 14,272,522 15,688,300 4,888,656 4,670,686
Mean 7,022 4,055 28,429 32,328 110,056 8,388 7,157
Std dev. 39,581 24,620 280,500 273,958 534,337 74,969 60,916
Skewness 49 85 38 22 16 42 35
Kurtosis 3,955 13,620 1,833 738 366 2,399 1,927
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