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ON POINCARÉ AND LOGARITHMIC SOBOLEV INEQUALITIES
FOR A CLASS OF SINGULAR GIBBS MEASURES

DJALIL CHAFAÏ AND JOSEPH LEHEC

Abstract. This note, mostly expository, is devoted to Poincaré and log-Sobolev in-
equalities for a class of Boltzmann–Gibbs measures with singular interaction. Such
measures allow to model one-dimensional particles with confinement and singular pair
interaction. The functional inequalities come from convexity. We prove and characterize
optimality in the case of quadratic confinement via a factorization of the measure. This
optimality phenomenon holds for all beta Hermite ensembles including the Gaussian uni-
tary ensemble, a famous exactly solvable model of random matrix theory. We further
explore exact solvability by reviewing the relation to Dyson–Ornstein–Uhlenbeck diffu-
sion dynamics admitting the Hermite–Lassalle orthogonal polynomials as a complete set
of eigenfunctions. We also discuss the consequence of the log-Sobolev inequality in terms
of concentration of measure for Lipschitz functions such as maxima and linear statistics.
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1. Introduction

The aim of this note is first to provide synthetic exposition gathering material from
several distant sources, and second to provide extensions and novelty about optimality.

Let n ∈ {1, 2, . . .}. For a given ρ ∈ R, we say that a function φ : Rn → R ∪ {+∞} is
ρ-convex when x 7→ φ(x)−ρ|x|2/2 is convex, where |x| :=

√
x2

1 + · · ·+ x2
n is the Euclidean

norm. In particular a 0-convex function is just a convex function. An equivalent condition
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is that for all x, y ∈ Rn and λ ∈ [0, 1],

φ((1− λ)x+ λy) ≤ (1− λ)φ(x) + λφ(y)− ρ λ(1− λ)
2 |y − x|2.

If φ is C2-smooth on its domain then this is yet equivalent to Hess(φ) ≥ ρ In as quadratic
forms, pointwise, where In is the identity: 〈Hess(ϕ)(x)y, y〉 ≥ ρ|x|2 for all x, y ∈ Rn.

Let V : Rn → R and W : R → R ∪ {+∞} be two functions, called “confinement
potential” and “interaction potential” respectively. We assume that

• V is ρ-convex for some ρ > 0;
• W is convex with domain (0; +∞). In particular W ≡ +∞ on (−∞; 0].

The energy of a configuration x = (x1, . . . , xn) ∈ Rn is

U(x) = V (x1, . . . , xn) +
∑
i<j

W (xi − xj) = V (x) + UW (x) ∈ R ∪ {+∞}.

The nature of W gives that U(x) is finite if and only if x belongs to the “Weyl chamber”
D = {x ∈ Rn : x1 > · · · > xn}.

Assuming that
Zµ =

∫
Rn

e−U(x1,...,xn)dx1 · · · dxn <∞

we define a probability measure µ on Rn by

µ(dx) = e−U(x1,...,xn)

Zµ
dx. (1.1)

The support of µ is D = {x ∈ Rn : x1 ≥ · · · ≥ xn}. Note that if

W (u) =
{
−β log u, if u > 0
+∞ otherwise

(1.2)

where β is a positive parameter, and if X is a random vector of Rn distributed according
to µ, then for every σ > 0, the scaled random vector σX follows the law µ with same W
but with V replaced by V (·/σ).

Following Edelman [34], the beta Hermite ensemble corresponds to the case

V (x) = n

2 |x|
2 = n

2 (x2
1 + · · ·+ x2

n),

and W given by (1.2). In this case µ rewrites using a Vandermonde determinant as

dµ(x) = e−
n
2 |x|

2

Zµ

∏
i<j

(xi − xj)β 1{x1≥···≥xn}dx. (1.3)

The normalizing constant Zµ can be explicitly computed in terms of Gamma functions by
reduction to a classical Selberg integral, but this is useless for our purposes in this work.
The Gaussian unitary ensemble (GUE) of Dyson [37] corresponds to β = 2, namely

dµ(x) = e−
n
2 |x|

2

Zµ

∏
i<j

(xi − xj)2
1{x1≥···≥xn}dx. (1.4)

Note that on Rn the density of the beta Hermite ensemble (1.3) with respect to the
Gaussian law N (0, 1

nIn) is equal up to a multiplicative constant to
∏
i<j(xi − xj)β times

the indicator function of the Weyl chamber. The cases β = 1 and β = 4 are known as the
Gaussian orthogonal ensemble (GOE) and the Gaussian simplectic ensemble (GSE).

Let L2(µ) be the Lebesgue space of measurable functions from Rn to R which are square
integrable with respect to µ. Let H1(µ) be the Sobolev space of functions in L2(µ) with
weak derivative in L2(µ) in the sense of Schwartz distributions.

We provide in Section 2 some useful or beautiful facts about (1.1), (1.3), and (1.4).
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1.1. Functional inequalities and concentration of measure. Given f ∈ L2(µ) we
define the variance of f with respect to µ by

varµ(f) =
∫
Rn
f2 dµ−

(∫
Rn
f dµ

)2
.

If additionally f ≥ 0, then we define similarly the entropy of f with respect to µ by

entµ(f) =
∫
Rn
f log f dµ−

(∫
Rn
f dµ

)
log

(∫
Rn
f dµ

)
.

Theorem 1.1 (Poincaré inequality). Let µ be as in (1.1). For all f ∈ H1(µ),

varµ(f) ≤ 1
ρ

∫
Rn
|∇f |2 dµ.

This holds in particular with ρ = n for the beta Hermite ensemble (1.3) for all β > 0.

Theorem 1.2 (Log-Sobolev inequality). Let µ be as in (1.1). For all f ∈ H1(µ),

entµ(f2) ≤ 2
ρ

∫
Rn
|∇f |2 dµ.

This holds in particular with ρ = n for the beta Hermite ensemble (1.3) for all β > 0.

Theorem 1.3 (Optimality for Poincaré and log-Sobolev inequalities). Let µ be as in (1.1).
Assume that V is quadratic: V (x) = ρ|x|2/2 for some ρ > 0. This is in particular the
case for the beta Hermite ensemble (1.3) for all β > 0. Then equality is achieved in the
Poincaré inequality of Theorem 1.1 for

f : x ∈ Rn 7→ λ(x1 + · · ·+ xn) + c, λ, c ∈ R.

Moreover equality is achieved in the logarithmic Sobolev inequality of Theorem 1.2 for

f : x ∈ Rn 7→ eλ(x1+···+xn)+c, λ, c ∈ R.

Lastly, in both cases these are the only extremal functions.

Theorems 1.1 and 1.2 are proved in Section 3.1 and Theorem 1.3 in Section 3.2.
Poincaré and logarithmic Sobolev inequalities for beta ensembles are already known in

the literature about random matrix theory, see for instance [1, 38] and references therein.
However the optimality that we point out here seems to be new.

The following corollary of Theorem 1.2 provides concentration of measure around the
mean for Lipschitz functions, including linear statistics and maximum.

Corollary 1.4 (Gaussian concentration inequality for Lipschitz functions). Let µ be as
in (1.1). For every Lipschitz function F : Rn → R and for all real parameter r > 0,

µ

(∣∣∣∣F − ∫ Fdµ
∣∣∣∣ ≥ r) ≤ 2 exp

(
− ρ

‖F‖2Lip

r2

2

)
. (1.5)

In particular for any measurable f : R→ R and all r > 0, with Ln(f)(x) = 1
n

∑n
i=1 f(xi),

µ

(∣∣∣∣Ln(f)−
∫
Ln(f)dµ

∣∣∣∣ ≥ r) ≤ 2 exp
(
−n ρ

‖f‖2Lip

r2

2

)
. (1.6)

Additionally, for all r > 0,

µ

(∣∣∣x1 −
∫
x1µ(dx)

∣∣∣ ≥ r) ≤ 2 exp
(
−ρr

2

2

)
. (1.7)

This holds in particular with ρ = n for the beta Hermite ensemble (1.3) for all β > 0.
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The proof of Corollary 1.4 and some additional comments are given in Section 3.3.
The scale in (1.7) is not optimal for the beta Hermite ensemble, the largest particle is

actually more concentrated than what is predicted by Corollary 1.4. Indeed, it is proved
for instance in [63] that n2/3(λ1 − 2) converges in law as n tends to infinity to a Tracy–
Widom distribution of parameter β. In particular fluctuations of λ1 are of order n−2/3,
whereas (1.7) only predicts an upper bound of order n−1/2. See also [4, 56, 57] for a
concentration property that matches the correct order of fluctuations.

Note also that (1.6) allows to get concentration for the Cauchy–Stieltjes transform of
the empirical distribution by taking f equal to the real or imaginary part of x 7→ 1/(x−z)
where z = a+ ib is a fixed complex parameter with b > 0.

The function (x1, . . . , xn) 7→ Ln(f)(x) = 1
n

∑n
i=1 f(xi) is called a linear statistics. The

inequality (1.6) appears for the spectrum of random matrix models in the work of Guionnet
and Zeitouni [44] via the logarithmic Sobolev inequality, see also [45] and [1, Section 4.4.2],
and [1, Exercise 4.4.33] for beta ensembles. The exponential speed n2 in (1.6) is optimal
according to the large deviation principle satisfied by Ln under µ established by Ben
Arous and Guionnet [10] for the GUE, see [25] and references therein for the general case
(1.1). Concentration inequalities and logarithmic Sobolev inequalities for spectra of some
random matrix models at the correct scale can also be obtained using coupling methods
or exact decompositions, see for instance [60, 61] and references therein.

Many proofs involve the following simple transportation facts:

N (0, n−1In)
Caffarelli
−−−−−−−→ µ

x1+···+xn
−−−−−−−→ N (0, 1)

and
N (0, n−1In)

x1+···+xn
−−−−−−−→ N (0, 1)

and
Law(H)

Spectrum
−−−−−−−→ µ

x1+···+xn
−−−−−−−→ N (0, 1)

and
Law(H)

Trace
−−−−−−−→ N (0, 1)

where H is a random Hermitian matrix as in Theorem 2.1 or Theorem 2.2.

1.2. Dynamics. Let us assume in this section that the functions V andW are smooth on
Rn and (0,+∞) respectively. Then the energy U is smooth on its domain D. Fix X0 ∈ D
and consider the overdamped Langevin diffusion associated to the potential U starting
from X0, solving the stochastic differential equation

Xt = X0 +
√

2Bt −
∫ t

0
∇U(Xs) ds+ Φt, t ≥ 0, (1.8)

where (Bt)t≥0 is a standard Brownian Motion of Rn, and where Φt is a reflection at the
boundary of D which constrains the process X to stay in D. More precisely

Φt = −
∫ t

0
ns L(ds)

where L is a random measure depending on X and supported on {t ≥ 0: Xt ∈ ∂D} and
where nt is an outer unit normal to the boundary of D at Xt for every t in the support
of L. The process L is called the “local time” at the boundary of D. The stochastic
differential equation (1.8) writes equivalently

dXt =
√

2 dBt −∇U(Xt) dt− nt L(dt).
It is not obvious that equation (1.8) admits a solution. Such diffusions with reflecting
boundary conditions were first considered by Tanaka. He proved in [66] that if ∇U is
globally Lipschitz on D and grows at most linearly at infinity then (1.8) does admit a
unique strong solution.
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If it exists, the solution is a Markov process. Its generator is the operator G where

G = ∆− 〈∇U,∇〉 =
n∑
i=1

∂2
xi −

n∑
i=1

(∂xiV )(x)∂xi −
∑
i 6=j

W ′(xi − xj)∂xi (1.9)

with Neumann boundary conditions at the boundary of D. Stokes formula then shows
that G is symmetric in L2(µ). As a result the measure µ is reversible for the process (Xt).
By integration by parts the density ft of Xt with respect to the Lebesgue measure satisfies
the Fokker–Planck equation ∂tft = ∆ft + div(ft∇U).

It is common to denote Xt = (X1
t , . . . , X

n
t ) and to interpret X1

t , . . . , X
n
t as interacting

particles on the real line experiencing confinement and pairwise interactions. Let us discuss
now the particular case of the beta Hermite ensemble (1.3), for which (1.8) rewrites

dXi
t =
√

2 dBi
t − nXi

tdt+ β
∑
j : j 6=i

1
Xi
t −X

j
t

dt, 1 ≤ i ≤ n (1.10)

as long as the particles have not collided. We call this diffusion the Dyson–Ornstein–
Uhlenbeck process. Without the confinement term −Xi

t dt this diffusion is known in the
literature as the Dyson Brownian motion. Indeed Dyson proved in [36] the following
remarkable fact: if (Mt) is an Ornstein–Uhlenbeck process taking values in the space of
complex Hermitian matrices then the eigenvalues of (Mt) follow the diffusion (1.10) with
parameter β = 2, while if (Mt) is an Ornstein–Uhlenbeck process taking values in the
space of real symmetric matrices then the same holds true with β = 1. Dyson also proved
an analogue result for the eigenvalues of a Brownian motion on the unitary group. It
is natural to ask whether the repulsion term 1/(Xi

t − X
j
t ) is strong enough to actually

prevent the collision of particles. This was investigated by Rogers and Shi in [64], see also
[1]. They proved that if β ≥ 1 then there are no collisions: (1.10) admits a unique strong
solution and with probability 1, the process (Xt) stays in the Weyl chamber D for all time.
This means that in that case, Tanaka’s equation (1.8) does admit a unique strong solution,
but the reflection at the boundary Φt is actually identically 0. This critical phenomenon
was also observed twenty five years ago by Calogero in [17]. Besides, although it is not
explicetly written in Rogers and Shi’s article, when β < 1 collisions do occur in finite time,
so that the reflection Φt enters the picture. In that case though, the existence of a process
(Xt) satisfying (1.8) does not follow from Tanaka’s theorem [66], as the potential U is
singular at the boundary of D. Still (1.8) does admit a unique strong solution. Indeed,
this was established by Cépa and Lépingle in [20] using an existence result for multivalued
stochastic differential equations due to Cépa [19]. See also the work of Demni [31, 30].

Long time behavior of the dynamics. Let us assume that the process (1.8) is well defined.
We denote by (Pt) the associated semigroup: For every test function f

Ptf(x) = E(f(Xt) | X0 = x).
Given a probability measure ν on Rn we denote νPt the law of the process at time t when
initiated from ν. Recall that the measure µ is stationary: µPt = µ for all time. For all
real number p ≥ 1, the Lp Kantorovich or Wasserstein distance between µ and ν is

Wp(ν, µ) = inf
(X,Y )
X∼ν
Y∼µ

E(|X − Y |p)1/p. (1.11)

Note that Wp(ν, µ) <∞ if |·|p ∈ L1(ν)∩L1(µ). It can be shown that the convergence for
Wp is equivalent to weak convergence together with convergence of p-th moment. If ν has
density f with respect to µ, the relative entropy of ν with respect to µ is

H(ν | µ) =
∫
Rn

log f dν. (1.12)

If ν is not absolutely continuous we set H(ν | µ) = +∞ by convention.
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Theorem 1.5 (Convergence to equilibrium). For any two probability measures ν0, ν1 on
Rn we have, for all p ≥ 1 and t ≥ 0, in [0,+∞],

Wp(ν0Pt, ν1Pt) ≤ e−ρt Wp(ν0, ν1).
In particular, choosing ν1 = µ yields

Wp(ν0Pt, µ) ≤ e−ρt Wp(ν0, µ).
Moreover we also have, for all t ≥ 0,

H(ν0Pt | µ) ≤ e−ρt H(ν0 | µ). (1.13)

A proof of Theorem 1.5 is given in Section 3.4.

1.3. Hermite–Lassalle orthogonal polynomials. Recall that for all n ≥ 1, the clas-
sical Hermite polynomials (Hk1,...,kn)k1≥0,...,kn≥0 are the orthogonal polynomials for the
standard Gaussian distribution γn on Rn. The tensor product structure γn = γ⊗n1 gives
Hk1,...,kn(x1, . . . , xn) = Hk1(x1) · · ·Hkn(xn) where (Hk)k≥0 are the orthogonal polynomials
for the one-dimensional Gaussian distribution γ1. Among several remarkable characteristic
properties, these polynomials satisfy a differential equation which writes

LHk1,...,kn = −(k1 + · · ·+ kn)Hk1,...,kn where L = ∆− 〈x,∇〉 (1.14)
is the infinitesimal generator of the Ornstein–Uhlenbeck process, which admits γn as a
reversible invariant measure. In other words these orthogonal polynomials form a complete
set of eigenfunctions of this operator. Such a structure is relatively rare, see [59] for a
complete classification when n = 1.

Lassalle discovered in the 1990s that a very similar phenomenon takes place for beta
Hermite ensembles and the Dyson–Ornstein–Uhlenbeck process, provided that we restrict
to symmetric polynomials. Observe first that this cannot hold for all polynomials, simply
because the infinitesimal generator

G =
n∑
i=1

∂2
xi − n

n∑
i=1

xi∂xi + β
∑
i 6=j

1
xi − xj

∂xi , (1.15)

of the Dyson–Ornstein–Uhlenbeck process, which is a special case of (1.9), does not pre-
serve polynomials, for instance we have Gx1 = −nx1 + β

∑
j 6=1

1
x1−xj . However, rewriting

this operator by symmetrization as

G =
n∑
i=1

∂2
xi − n

n∑
i=1

xi∂xi + β

2
∑
i 6=j

1
xi − xj

(∂xi − ∂xj ), (1.16)

it is easily seen that the set of symmetric polynomials in n variables is left invariant by G.
Let µ be the beta Hermite ensemble defined in (1.3). Lassalle studied in [51] multivariate

symmetric polynomials (Pk1,...,kn)k1≥···≥kn≥0 which are orthogonal with respect to µ. He
called them “generalized Hermite” but we decide to call them “Hermite–Lassalle”. For all
k1 ≥ · · · ≥ k1 ≥ 0 and k′1 ≥ · · · ≥ k′n ≥ 0,∫

Pk1,...,kn(x1, . . . , xn)Pk′
1,...,k

′
n
(x1, . . . , xn)µ(dx) = 1(k1,...,kn)=(k′

1,...,k
′
n). (1.17)

They can be obtained from the standard basis of symmetric polynomials by using the
Gram–Schmidt algorithm in the Hilbert space L2

sym(µ) of square integrable symmetric
functions. The total degree of Pk1,...,kn is k1 + · · · + kn, in particular P0,...,0 is a constant
polynomial. The numbering in terms of k1, . . . , kn used in [51] is related to Jack polyno-
mials. Beware that [51] comes without proofs. We refer to [5] for proofs, and to [35] for
symbolic computation via Jack polynomials.

The Hermite–Lassalle symmetric polynomials form an orthogonal basis in L2
sym(µ) of

eigenfunctions of the Dyson–Ornstein–Uhlenbeck operator G. Restricted to symmetric
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functions, this operator is thus exactly solvable, just like the classical Ornstein–Uhlenbeck
operator. Here is the result of Lassalle in [51], see [5] for a proof.

Theorem 1.6 (Eigenfunctions and eigenvalues). For all n ≥ 2 and k1 ≥ · · · ≥ kn ≥ 0,

GPk1,...,kn = −n(k1 + · · ·+ kn)Pk1,...,kn . (1.18)

where G is the operator (1.15).

When β = 0 then G becomes the Ornstein–Uhlenbeck operator. For all β > 0, the
spectrum of G is identical to the one of the Ornstein–Uhlenbeck operator. This can be
guessed from the fact that the eigenfunctions are polynomials together with the fact that
the interaction term (the non O.-U. part) lowers the degree of polynomials.

The spectral gap of G in L2
sym(µ) is n: if f ∈ L2

sym(µ) is orthogonal to constants then

n

∫
f2 dµ ≤ −

∫
f Gf dµ =

∫
|∇f |2 dµ.

Theorem 1.1 shows that this inequality holds actually for all f , not only symmetric ones.
Hermite–Lassalle polynomials can be decomposed in terms of Jack polynomials, and this

decomposition generalizes the hypergeometric expansion of classical Hermite polynomials.

Remark 1.7 (Examples and formulas). It is not difficult to check that up to normalization

x1 + · · ·+ xn and x2
1 + · · ·+ x2

n − 1− βn− 1
2 .

are Hermite–Lassalle polynomials. In the GUE case, β = 2, Lassalle gave in [51], using
Jack polynomials and Schur functions, a formula for Pk1,...,kn in terms of a ratio of a
determinant involving classical Hermite polynomials and a Vandermonde determinant.

1.4. Comments and open questions. Regarding functional inequalities, one can prob-
ably extend the results to the class of Gaussian ϕ-Sobolev inequalities such as the Beckner
inequality [9], see also [22]. Lassalle has studied not only the beta Hermite ensemble in
[51], but also the beta Laguerre ensemble in [53] with density proportional to

x ∈ D 7→
n∏
k=1

xake−bnxk
∏
i<j

(xi − xj)β1x1≥···≥xn≥0,

and the beta Jacobi ensemble in [52] with density proportional to

x ∈ D 7→
n∏
k=1

xa−1
k (1− xk)b−1 ∏

i<j

(xi − xj)β11≥x1≥···≥xn≥0.

It is tempting to study functional inequalities and concentration of measure for these
ensembles. The proofs of Lassalle, based on Jack polynomials, are not in [53, 52, 51] but
can be found in the work [5] by Baker and Forrester. We refer to [32] for the link with
Macdonald polynomials. It is natural (maybe naive) to ask about direct proofs of these
results without using Jack polynomials. The study of beta ensembles can be connected
to H-transforms and to the work [42] on Brownian motion in a Weyl chamber, see also
[33]. The analogue of the Dyson Brownian motion for the Laguerre ensemble is studied in
[14], see also [50, 33, 43, 67]. Tridiagonal matrix models for Dyson Brownian motion are
studied in [48].

The natural isometry between L2(γn) and L2(dx) leads to associate to the Ornstein–
Uhlenbeck operator a real Schrödinger operator which turns out to be the quantum har-
monic oscillator. Similarly, the natural isometry between L2

sym(µ) and L2
sym(dx) leads to

associate to the Dyson–Ornstein–Uhlenbeck operator a real Schödinger operator known
as the Calogero–Moser–Sutherland operator, which is related to radial Dunkl operators,
see for instance [65, 32]. The fact that the eigenfunctions of such operators are explicit
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and involve polynomials goes back at least to Calogero [17], more than twenty five years
before Lassalle!

The factorization phenomenon captured by Lemma 2.6, which is behind the optimality
provided by Theorem 1.3, reminds some kind of concentration-compactness related to con-
tinuous spins systems as in [21] and [58] for instance. The factorization Lemma 2.6 remains
valid for other ensembles such as the Beta-Ginibre ensemble with density proportional to

z ∈ Cn 7→ e−n
∑n

k=1 |zi|
2 ∏
j<k

|zj − zk|β, (1.19)

see [24, Remark 5.4] for the case n = β = 2. However, in contrast with the Beta-Hermite
ensemble, the interaction term is not convex in the complex case, and it is not clear at all
what are the Poincaré and log-Sobolev constants of the Ginibre ensemble. See [24] for an
upper bound and further discussions on the associated dynamics.

2. Useful or beautiful facts

2.1. Random matrices, GUE, and beta Hermite ensemble. The following result
from random matrix theory goes back to Dyson, see [37, 62, 1, 40].

Theorem 2.1 (Gaussian random matrices and GUE). The Gaussian unitary ensemble µ
defined by (1.4) is the law of the ordered eigenvalues of a random n×n Hermitian matrix
H with density proportional to h 7→ e−

n
2 Trace(h2) = e−

n
2
∑n

i=1 h
2
ii−n

∑
i<j
|hij |2 in other words

the n2 real random variables {Hii,<Hij ,=Hij}1≤i<j≤n are independent, with <Hij and
=Hij ∼ N (0, 1/(2n)) for any i < j and Hii ∼ N (0, 1/n) for any 1 ≤ i ≤ n.

There is an analogue theorem for the GOE case β = 1 with random Gaussian real
symmetric matrices, and for the GSE case β = 4 with random Gaussian quaternion
selfdual matrices. The following result holds for all beta Hermite ensemble (1.3), see [34].

Theorem 2.2 (Tridiagonal random matrix model for beta Hermite ensemble). The beta
Hermite ensemble µ defined by (1.3) is the distribution of the ordered eigenvalues of the
random tridiagonal symmetric n× n matrix

H = 1√
2n


N (0, 2) χ(n−1)β
χ(n−1)β N (0, 2) χ(n−2)β

. . . . . . . . .
χ2β N (0, 2) χβ

χβ N (0, 2)


where, up to the scaling prefactor 1/

√
2n, the entries in the upper triangle including the

diagonal are independent, follow a Gaussian law N (0, 2) on the diagonal, and χ-laws just
above the diagonal with a decreasing parameter with step β from (n− 1)β to β.

In particular the trace follows the Gaussian law N (0, 1). Such random matrix models
with independent entries allow notably to compute moments of (1.3) via traces of powers.

2.2. Isotropy of beta Hermite ensembles. This helps to understand the structure.
Let µ be the beta Hermite ensemble (1.3), and let µ̃ be the probability measure obtained
from µ by symmetrizing coordinates: For every test function f : Rn → R we have∫

f dµ̃ =
∫
f∗ dµ

where f∗ is the symmetrization of f , defined by

f∗(x1, . . . , xn) = 1
n!

∑
σ∈Σn

f(xσ(1), . . . , xσ(n))
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where Σn is the symmetric group of permutations of {1, . . . , n}. Of course the probability
measures µ and µ̃ coincide on symmetric test functions. The probability measure µ̃ is by
definition invariant by permutation of the coordinates, and its density with respect to the
Lebesgue measure is

dµ̃
dx = e−

n
2 |x|

2

n!Zµ

∏
i<j

|xi − xj |β

Note that the support of µ̃ is the whole space and that µ̃ is not log-concave, even though
µ is.

Corollary 2.3 (Isotropy of beta Hermite ensemble). For every 1 ≤ i 6= j ≤ n,∫
xi dµ̃ = 0,

∫
x2
i dµ̃ = β

2 + 2− β
2n ,

∫
xixj dµ̃ = − β

2n.

In particular, the law µ̃ is asymptotically isotropic.

Recall that isotropy means zero mean and covariance matrix multiple of the identity.
In the extremal case β = 0, the measure µ̃ is the Gaussian law N (0, 1

nIn).

Proof of Corollary 2.3. Observe first that if X ∼ µ then
∑
Xi is a standard Gaussian.

This can be seen using Theorem 2.2, and observing that
∑
Xi coincides with the trace

of the matrix H. Actually this is true regardless of the interaction potential W , see
Lemma 2.6 below. In particular∫

(x1 + · · ·+ xn)µ(dx) = 0,

hence, by definition µ̃,∫
xi µ̃(dx) = 1

n

∫
(x1 + · · ·+ xn)µ(dx) = 0,

for every i ≤ n. Since
∑
Xi is a standard Gaussian we also have∫

(x1 + · · ·+ xn)2 µ(dx) = 1. (2.1)

Next we compute
∫
|x|2 dµ. This can be done using Theorem 2.2, namely∫

|x|2 µ(dx) = E(Trace(H2)) = 1 + β

n

n−1∑
k=1

k = 1 + (n− 1)β
2 . (2.2)

Note that the matrix model gives more: indeed, using the algebra of the Gamma laws,

Trace(H2) ∼ Gamma
(
n

2 + βn(n− 1)
4 ,

n

2

)
.

Alternatively one can use the fact that the square of the norm |·|2 is, up to an additive
constant, an eigenvector of G, see Remark 1.7. Namely, recall the definition (1.15) of the
operator G and note that

G(|·|2)(x) = 2n− 2n|x|2 + 2β
∑
i 6=j

xi
xi − xj

= 2n− 2n|x|2 + n(n− 1)β.

In particular G(|·|2) ∈ L2(µ). Since µ is stationary, we then have
∫

G|x|2 dµ = 0, and we
thus recover (2.2).

Combining (2.1) and (2.2) we get∫
x2
i µ̃(dx) = 1

n

∫
|x|2 µ(dx) = β

2 + 2− β
2n ,

and ∫
xixj µ̃(dx) = 1

n(n− 1)

∫
(x1 + · · ·+ xn)2 − (x2

1 + · · ·+ x2
n) µ̃(dx) = − β

2n.
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�

Remark 2.4 (Mean and covariance of beta Hermite ensembles). Let µ and µ̃ be as in
Corollary 2.3. In contrast with the probability measure µ̃, the probability measure µ is
log-concave but is not centered, even asymptotically as n → ∞, and this is easily seen
from 0 6∈ D. Moreover, if Xn = (Xn,1, . . . , Xn,n) ∼ µ then the famous Wigner theorem
for the beta Hermite ensemble, see for instance [44], states that almost surely and in L1,
regardless of the way we choose the common probability space,

1
n

n∑
i=1

δXn,i
weak−→
n→∞

νβ (2.3)

where

νβ = arg inf
µ

(∫
x2

2 dµ(x)− β
∫∫

log(x− y)dµ(x)dµ(y)
)

=
√

2β − x2

βπ
1[−
√

2β,
√

2β](x)dx. (2.4)

This follows for instance from a large deviation principle. Moreover it can be shown that
Xn,1 −→

n→∞
−
√

2β and Xn,n −→
n→∞

√
2β. This suggests in a sense that asymptotically, as

n→∞, the mean is supported by the whole interval [−
√

2β,
√

2β]. It is quite natural to
ask about the asymptotic shape of the covariance matrix of µ. Elements of answer can be
found in the work of Gustavsson [46].

2.3. Log-concavity and curvature. The following Lemma is essentially the key of the
proof of Theorem 1.1 and Theorem 1.2.

Lemma 2.5 (Log-concavity and curvature). Let µ be as in (1.1). Then U is ρ-convex. In
particular, for the beta Hermite ensemble (1.3), the potential U is n-convex, for all β > 0.

Proof. Recall from (1) that U(x) = V (x) + UW (x). Observe that UW is convex as a sum
of linear maps composed with the convex function W . Thus, if V is ρ-convex then so is
U . �

2.4. Factorization by projection. The following factorization lemma is the key of the
proof of Theorem 1.3. Let u be the unit vector of Rn given by the diagonal direction:

u = 1√
n

(1, . . . , 1)

and let π and π⊥ be the orthogonal projection onto Ru and (Ru)⊥ = {v ∈ Rn : 〈v, u〉 = 0}.

Lemma 2.6 (Factorization by projection). Let µ be as in (1.1) and let X be a random
vector distributed according to µ. Assume that the confinement potential V is quadratic:
V = ρ |·|2 /2 for some ρ > 0. Then µ has a Gaussian factor in the direction u in the sense
that π(X) = 〈X,u〉u and π⊥(X) are independent and

〈X,u〉 ∼ N
(

0, 1
ρ

)
.

Moreover π⊥(X) has density proportional to e−U with respect to the Lebesgue measure on
(Ru)⊥.

In the special case of the beta Hermite ensemble (1.3), the law of 〈X,u〉 = Trace(H)/
√
n

is easily seen on the random matrix model H provided by theorems 2.1 and 2.2.
An extension of Lemma 2.6 to higher dimensional gases in considered is [26].
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Proof of Lemma 2.6. Since x = π(x) + π⊥(x) and π(x) = 〈x, u〉u, we have

|x|2 = 〈x, u〉2 + |π⊥(x)|2.

Besides it is easily seen that UW (x) = UW (π⊥(x)) for all x, a property which comes from
the shift invariance of the interaction energy UW along Ru. Therefore

e−U(x) = e−ρ〈x,u〉2/2 × e−ρ|π⊥(x)|2/2−UW (π⊥(x)) = e−ρ〈x,u〉2/2 × e−U(π⊥(x)).

So the density of X is the product of a function of 〈x, u〉 by a function of π⊥(x). �

The result extends naturally by the same proof to the more general quadratic case
V = 〈Ax, x〉 where A is a symmetric positive definite n × n matrix, provided that the
diagonal direction u is an eigenvector of A.

Remark 2.7 (Gaussian factor and orthogonal polynomials). Let µ be as in Lemma 2.6.
Let Hi and Hj be two distinct univariate (Hermite) orthogonal polynomials with respect
to the standard Gaussian law N (0, In). Then it follows from Lemma 2.6 that the sym-
metric multivariate polynomials Hi(

√
ρ/n(x1 + · · · + xn)) and Hj(

√
ρ/n(x1 + · · · + xn))

are orthogonal with respect to µ. In particular, when ρ = n and with Hi(x) = x and
Hj(x) = x2 − 1, we get that x1 + · · ·+ xn and (x1 + · · ·+ xn)2 − 1 are orthogonal for µ.

3. Proofs

3.1. Proof of Theorems 1.1 and 1.2.

Proof of Theorems 1.1 and 1.2. Let us first mention that Theorem 1.2 actually implies
Theorem 1.1. Indeed it is well-known that applying log-Sobolev to a function f of the
form f = 1 + εh and letting ε tend to 0 yields the Poincaré inequality for h, with half the
constant if the log-Sobolev inequality. See for instance [2] or [7] for details.

In the discussion below, we call potential of a probability measure µ the function − log ρ,
where ρ is the density of µ with respect to the Lebesgue measure. In view of Lemma 2.5
it is enough to prove that a probability measure µ on Rn whose potential U is ρ-convex
for some positive ρ satisfies the logarithmic Sobolev inequality with constant 2/ρ. This
is actually a well-known fact. It can be seen in various ways which we briefly spell out
now. Some of these arguments require extra assumptions on U , namely that the domain
of U equals Rn (equivalently µ has full support) and that U is C2-smooth on Rn. For this
reason we first explain a regularization procedure showing that these hypothesis can be
added without loss of generality.

Regularization procedure. Let γ be the Gaussian measure whose density is proportional
to e−ρ|x|2/2 and let f be the density of µ with respect to γ. Clearly U is ρ-convex if and
only if log f is concave. Next let (Qt) be the Ornstein–Uhlenbeck semigroup having γ as
a stationary measure, namely for every test function g

Qtg(x) = E
[
g
(
e−tx+

√
1− e−2tG

)]
where G ∼ γ. Since γ is reversible for (Qt) the measure µQt has density Qtf with respect
to γ. Moreover the semigroup (Qt) satisfies the following property

f log-concave ⇒ Qtf log-concave.

This is indeed an easy consequence of the Prékopa–Leindler inequality, see (3.3) below.
As a result the potential Ut of µQt is also ρ-convex. Besides Ut is clearly C∞ smooth on
the whole Rn. Lastly since limt→0Qtf(x) = f(x) for almost every x, we have µPt → µ
weakly as t tends to 0. As a result, if µPt satisfies log-Sobolev with constant 2/ρ for every
t, then so does µ.
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First proof: The Brascamp–Lieb inequality. A theorem due to Brascamp and Lieb [13]
states that if the potential of µ is smooth and satisfies Hess(U)(x) > 0 for all x ∈ Rn, then
for any C∞ compactly supported test function f : Rn → R, we have the inequality

varµ(f) ≤
∫
Rn

〈
Hess(U)−1∇f,∇f

〉
dµ.

If U is ρ-convex then Hess(U)−1 ≤ (1/ρ)In and we obtain

varµ(f) ≤ 1
ρ

∫
Rn
|∇f |2 dµ.

The extension of this inequality to all f ∈ H1(µ) follows by truncation and regularization.
Note that this method only works for Poincaré. The Brascamp–Lieb inequality does not
seem to admit a logarithmic Sobolev inequality counterpart, see [12] for a discussion.

Second proof: Caffarelli’s contraction theorem. Again let γ be the Gaussian measure
on Rn whose density is proportional to e−ρ|x|2/2. The theorem of Caffarelli [16, 15] states
that if the potential of µ is ρ-convex then the Brenier map from γ to µ is 1-Lipschitz.
This easily implies that the Poincaré constant of µ is at least as good as that of γ, namely
1/ρ. Let us sketch the argument briefly. Let T be the Brenier map from γ to µ and let f
be a smooth function on Rn. Using the fact that T pushes forward γ to µ, the Poincaré
inequality for γ and the Lipschitz property of T we get

varµ(f) = varγ(f ◦ T ) ≤ 1
ρ

∫
Rn
|∇(f ◦ T )|2 dγ

≤ 1
ρ

∫
Rn
|∇f |2 ◦ T dγ

= 1
ρ

∫
Rn
|∇f |2 dµ.

(3.1)

This contraction principle works just the same for log-Sobolev.
Third proof: The Bakry–Émery criterion. Assume that U is finite and smooth on the

whole Rn and consider the Langevin diffusion

dXt =
√

2 dBt −∇U(Xt) dt.

The generator of the diffusion is the operator G = ∆ − 〈∇U,∇〉. The carré du champ Γ
and its iterated version Γ2 are easily computed:

Γ(f, g) = 1
2(G(fg)− fG(g)− gG(f)) = 〈∇f,∇g〉

Γ2(f, g) = 1
2(GΓ(f, g)− Γ(f,Gg)− Γ(Gf, g)

= Tr (Hess(f)Hess(g)) + 〈Hess(U)∇f,∇g〉.

(3.2)

We also set Γ(f) = Γ(f, f) and similarly for Γ2. The hypothesis that U is ρ-convex thus
implies that

Γ2(f) ≥ ρΓ(f),
for every suitable f . Actually this inequality is equivalent to the condition that U is ρ-
convex, as can be seen by plugging in linear functions. In the language of Bakry–Émery,
see [6, 2, 7], the diffusion satisfies the curvature dimension criterion CD(ρ,∞). This
criterion implies that the stationary measure µ satisfies the following logarithmic Sobolev
inequality

entµ(f2) ≤ 2
ρ

∫
Rn

Γ(f) dµ,

see [7, Proposition 5.7.1]. Formally this proof also works if µ does not have full support
by adding a reflection at the boundary, just as in section 1.2. However this poses some
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technical issues which are not always easy to overcome. As a matter of fact, diffusions
with reflecting boundary conditions are not treated in the book [7].

Fourth proof: An argument of Bobkov and Ledoux. This fourth proof is the one that
requires the least background. Another nice feature is that the regularization procedure
is not needed for this proof. It is based on the Prékopa-Leindler inequality. The latter,
which is a functional form of the Brunn–Minkowski inequality, states that if f, g, h are
functions on Rn satisfying

(1− t)f(x) + tg(y) ≤ h((1− t)x+ ty)

for every x, y ∈ Rn and for some t ∈ [0, 1], then(∫
ef dx

)1−t (∫
eg dx

)t
≤
∫

eh dx. (3.3)

We refer to [8] for a nice presentation of this inequality. Let F : Rn → R be a smooth
function with compact support, and for s > 0 let RsF be the infimum convolution

RsF (x) = inf
y∈Rn

{
F (x+ y) + 1

2s |y|
2
}
.

Fix t ∈ (0, 1). Using the ρ-convexity of U :

(1− t)U(x) + tU(y) ≤ U((1− t)x+ ty)− ρt(1− t)
2 |x− y|2,

it is easily seen that the functions f = Rt/ρF − U , g = −U and h = (1− t)F − U satisfy
the hypothesis of the Prékopa-Leindler inequality. The conclusion (3.3) rewrites in this
case (∫

Rn
eRt/ρF dµ

)1−t
≤
∫
Rn

e(1−t)F dµ. (3.4)

It is well-known that (Rs) solves the Hamilton–Jacobi equation

∂RsF + 1
2 |∇RsF |

2 = 0,

see for instance [39]. Using this and differentiating the inequality (3.4) at t = 0 yields

entµ(eF ) ≤ 1
2ρ

∫
Rn
|∇F |2eF dµ

which is equivalent to the desired log-Sobolev inequality. We refer to the article [12] for
more details. �

3.2. Proof of Theorem 1.3 and comments on optimality. In the case of the beta
ensemble, Theorem 1.6 shows that x ∈ Rn 7→ x1 + · · ·+ xn is the only symmetric function
optimal in the Poincaré inequality, up to additive and multiplicative constants. Our goal
now is to study the optimality far beyond this special case.

We have just seen that if a measure µ has density e−φ where φ is ρ-convex for some
ρ > 0 then it satisfies Poincaré with constant 1/ρ. This constant is sharp in the case
where µ is the Gaussian measure whose density is proportional to e−ρ|x|2/2. Indeed the
Poincaré constant of that Gaussian measure is equal to 1/ρ and extremal functions are
affine functions, see for instance [2, 7]. Similarly, its log-Sobolev constant is 2/ρ and ex-
tremal functions are log-affine functions, see [18]. The next lemma asserts that conversely,
if the Poincaré constant of µ or its log-Sobolev constant matches the bound predicted by
the strict convexity of its potential, then µ must be Gaussian in some direction.

Recall the notion of having a Gaussian factor in a given direction, used in Lemma 2.6.
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Lemma 3.1. Let µ be a probability measure on Rn with density e−φ where φ is ρ-convex
for some ρ > 0, and assume that there exists a non constant function f such that

varµ(f) = 1
ρ

∫
Rn
|∇f |2 dµ. (3.5)

Then the following properties hold true:
(i) The function f is affine: there exists a vector u and a constant b such that

f(x) = 〈u, x〉+ b.

(ii) The measure µ has a Gaussian factor of variance 1/ρ in the direction u.
Besides, there is a similar statement for the log-Sobolev inequality: if there exists a non
constant function f such that

entµ(f2) = 2
ρ

∫
Rn
|∇f |2 dµ,

then log f is affine and µ has a Gaussian factor in the corresponding direction.

The Poincaré case is contained in the main result of Cheng and Zhou’s article [27].
The general result is a consequence of the works of de Philippis and Figalli [29], and also
Courtade and Fathi [28]. These authors actually establish a stability estimate for this
lemma: if there exists a function f which is near optimal in Poincaré then µ nearly has a
Gaussian factor. We sketch a proof of Lemma 3.1 based on their ideas.

Proof of Lemma 3.1. We analyze the equality case in the third proof of the main theorem,
the one based on Caffarelli’s contraction theorem. Recall that the Brenier map T from γ
to µ is the gradient of a convex function and that it pushes forward γ to µ. Recall also
that Caffarelli’s theorem asserts that under the hypothesis of the lemma T is 1-Lipshitz.
Therefore T is differentiable almost everywhere, and its differential is a symmetric matrix
satisfying

0 ≤ (dT )x ≤ In (3.6)
as quadratic forms. Now, observe that if f satisfies (3.5) then every inequality in (3.1)
must actually be an equality. In particular f ◦T must be optimal in the Poincaré inequality
for γ. This implies that f ◦ T is affine. Also there is equality in the inequality

|∇(f ◦ T )(x))|2 ≤ |∇f(Tx)|2

for almost every x. Because of (3.6) this actually implies that

(dT )x(∇f(Tx)) = ∇f(Tx),

for almost every x. Since f ◦ T is affine the left hand side is constant, and we obtain
that f itself must be affine. Thus, there exists a vector u and a constant b such that
f(x) = 〈u, x〉+ b, and moreover (dT )x(u) = u for almost every x. By a change of variable,
we can assume that u is a multiple of the first coordinate vector. The differential of T at
x thus has the form

(dT )x =
(

1 0
0 ∗

)
for almost every x. Therefore

T (x1, . . . , xn) = (x1 + a, S(x2, . . . , xn))

for some constant a and some map S from Rn−1 to itself. This implies that the image µ of
γ by T is a product measure, and that the first factor is the Gaussian measure with mean
a and variance 1/ρ. This finishes the proof of the first part of the lemma. The log-Sobolev
version can be obtained very similarly and we omit the details. �
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Remark 3.2 (Alternate proof based on the Bakry–Émery calculus). We spell out briefly
an alternative proof of Lemma 3.1 based on the Bakry–Émery calculus starting from a work
by Ledoux [54]. Let G, Γ, and Γ2 be as in (3.2), and let (Pt)t≥0 be the Markov semigroup
generated by G. The usual Bakry–Émery method gives, up to regularity considerations,

varµ(f) = 1
ρ

∫
Γfdµ− 2

ρ

∫ ∞
0

(∫
(Γ2 − ρΓ)(Ptf)dµ

)
dt.

This is a Taylor–Lagrange formula expressing the “deficit” in the Poincaré inequality.
It shows that if Γ2 ≥ ρΓ and varµ(f) = 1

ρ

∫
Γfdµ then (Γ2 − ρΓ)(Ptf)(x) = 0 almost

everywhere in t and x. Up to regularity issues, we get in particular

(Γ2 − ρΓ)(f) = 0.

In other words, denoting ‖·‖HS the Hilbert–Schmidt norm,

‖Hess(f)‖2HS + 〈(Hess(U)− ρIn)∇f,∇f〉 = 0.

Since both term are non negative this actually implies that

Hess(f) = 0 and 〈(Hess(U)− ρIn)∇f,∇f〉 = 0.

Thus f is affine: there exists a unit vector u and two constants λ and c such that

f(x) = λ〈u, x〉+ c,

and moreover 〈Hess(U)u, u〉 = ρ . Since Hess(U) ≥ ρIn this actually implies that

Hess(U)u = ρ u

pointwise. Proceeding as in the proof of Lemma 3.1, we then see that µ has a Gaussian
factor of variance 1/ρ in the direction u. There is a similar argument for the log-Sobolev
inequality using

entµ(f) = 1
2ρ

∫
Γ(log f) f dµ− 1

ρ

∫ ∞
0

(∫
(Γ2 − ρΓ)(logPtf)Ptf dµ

)
dt.

This leads to the fact that if f is optimal in the logarithmic Sobolev inequality then f is
of the form f(x) = eλ〈u,x〉+c and µ has a Gaussian factor in the direction u. As usual, this
seductive approach requires to justify rigorously the computations via delicate handling
of regularity and smoothing, see for instance [7], [3], and [1, Section 4.4.2].

Proof of Theorem 1.3. According to Lemma 2.6, if V = ρ |·|2 /2 for some ρ > 0 then µ
has a Gaussian factor in the diagonal direction u = (1, . . . , 1)/

√
n. As we have seen,

this Gaussian satisfies Poincaré with constant 1/ρ and log-Sobolev with constant 2/ρ.
Moreover, affine functions are optimal in Poincaré and log-affine functions are optimal in
log Sobolev. This shows that we have equality in the Poincaré inequality of Theorem 1.1
for functions f of the form f(x) = λ(x1 + · · · + xn) + c for some constants λ and c,
and equality in the logarithmic Sobolev inequality of Theorem 1.2 for functions whose
logarithm is of the preceding type.

Let us now prove that these are the only optimal functions. Assume that f is non
constant and extremal in the Poincaré inequality. Then by Lemma 3.1, there exists a
vector v and a constant b such that f(x) = 〈v, x〉 + b, and moreover µ has a Gaussian
factor in the direction v. Since the support of µ is the set {x1 ≥ · · · ≥ xn} this can only
happen if v is proportional to the diagonal direction u, which is the result. The proof for
log-Sobolev is similar. �
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3.3. Proof of Corollary 1.4 and comments on concentration.
Proof of Corollary 1.4. The Gaussian concentration can be deduced from the log-Sobolev
inequality via an argument due to Herbst, see for instance [55], which consists in using
log-Sobolev with f = eF to get the Gaussian upper bound on the Laplace transform∫

eF dµ ≤ exp
(∫

F dµ+
‖F‖2Lip

2ρ

)
, (3.7)

which leads in turn to the concentration inequality (1.5) via the Markov inequality. Alter-
natively we can use the intermediate inequality (3.4) obtained in the course of the fourth
proof of Theorem 1.2. Indeed applying Jensen’s inequality to the right-hand side of (3.4)
and letting t→ 1, we obtain ∫

eR1/ρF dµ ≤ exp
(∫

F dµ
)
. (3.8)

Moreover, if F is Lipschitz it is easily seen that

R1/ρF ≥ F −
1
2ρ‖F‖

2
Lip.

Plugging this into the previous inequality yields (3.7). Note that a result due to Bobkov
and Götze states that (3.8) is equivalent to a Talagrand W2 transportation inequality for
µ, see for instance [55] and references therein.

In the case F (x1, . . . , xn) = 1
n

∑n
i=1 f(xi) = Ln(f)(x) we have

‖F‖Lip ≤
‖f‖Lip√

n

so that (1.6) follows from (1.5).
Finally taking F (x1, . . . , xn) = max(x1, . . . , xn) (= x1 on D) in (1.5) gives (1.7). �

Remark 3.3 (Concentration of measure in transportation distance). Following Gozlan
[41], it is possible to obtain concentration of measure inequalities in Kantorovich–Wasserstein
distance W2 from the Hoffman–Wielandt inequality. Namely, given a Hermitian matrix
A, we let x1(A) ≥ · · · ≥ xn(A) be the eigenvalues of A, arranged in decreasing order, and

LA = 1
n

n∑
i=1

δxi(A)

be the corresponding empirical measure. If B is another Hermitian matrix, we get from
the Hoffman–Wielandt inequality

nW2(LA, LB)2 =
n∑
i=1

(xi(A)− xi(B))2 ≤ Trace((A−B)2) = ‖A−B‖2HS . (3.9)

Thanks to the triangle inequality for W2, this implies that for every probability measure ν
on R with finite second moment, the Lipschitz constant of the map A 7→W2(LA, µ) with
respect to the Hilbert–Schmidt norm is at most 1/

√
n. If G is a Gaussian matrix with

density proportional to e−nTrace(X2), the Gaussian concentration inequality then yields

P (|W2(LG, ν)− EW2(LG, ν)| > r) ≤ 2e−
n2
2 r2

.

Note that ν is arbitrary. This inequality can be reformulated as follows: If µ is the
Gaussian unitary ensemble in Rn and L is the map x ∈ Rn 7→ 1

n

∑
i≤n δxi then for any

probability measure ν on R we have

µ

(∣∣∣∣W2(L, ν)−
∫

W2(L, ν) dµ
∣∣∣∣ > r

)
≤ 2e−

n2
2 r2

.

More generally this inequality remains valid when µ is the law of the eignevalues of a
random matrix satisfying Gaussian concentration with rate n. This is the case for instance
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if the matrix has independent entries satisfying a logarithmic Sobolev inequality with
constant 1/n.

Remark 3.4 (Proof for GUE/GOE via Hoffmann–Wielandt inequality). For the GUE and
the GOE one can give a fifth proof, based on the contraction principle, like the proof using
Caffarelli’s theorem above. The Hoffman–Wielandt inequality [47, 49, 11], states that for
all n× n Hermitian matrices A and B with ordered eigenvalues x1(A) ≥ · · · ≥ xn(A) and
x1(B) ≥ · · · ≥ xn(B) respectively, we have

n∑
i=1

(xi(A)− xi(B))2 ≤
n∑

i,j=1
|Aij −Bij |2.

In other words the map which associates to an n × n Hermitian matrix A its vector of
eigenvalues (x1(A), . . . , xn(A)) ∈ Rn is 1-Lipschitz for the Euclidean structure on n × n
Hermitian matrices, given by 〈A,B〉 = Trace(AB). On the other hand, as we saw in
section 2.1, the Gaussian unitary ensemble is the image by this map of the Gaussian
measure on Hn whose density is proportional to e−(n/2)Trace(H2). The Poincaré constant
of this Gaussian measure is 1/n so by the contraction principle the Poincaré constant of
the GUE is 1/n at most. The argument works similarly for log-Sobolev and for the GOE.

3.4. Proof of Theorem 1.5.

Proof of Theorem 1.5. The exponential decay of relative entropy (1.13) is a well-known
consequence of the logarithmic Sobolev inequality, see for instance [7, Theorem 5.2.1].
The decay in Wasserstein distance follows from the Bakry–Émery machinery, see [7, The-
orem 9.7.2]. Alternatively it can be seen using parallel coupling. We explain this argument
briefly.

Let X and Y be two solutions of the stochastic differential equation (1.8) driven by the
same Brownian motion:

dXt =
√

2 dBt −∇U(Xt) dt+ dΦt

dYt =
√

2 dBt −∇U(Yt) dt+ dΨt,

where Φ and Ψ are the reflections at the boundary of the Weyl chamber of X and Y
respectively, see section 1.2 for a precise definition. Assume additionally that X0 ∼ ν0,
Y0 ∼ ν1 and that

E(|X0 − Y0|p) = Wp(ν0, ν1)p.
Observe that

d|Xt − Yt|2 = −2〈Xt − Yt,∇U(Xt)−∇U(Yt)〉dt+ 2〈Xt − Yt, dΦt〉+ 2〈Yt −Xt,dΨt〉.

Since U is ρ-convex 〈Xt−Yt,∇U(Xt)−∇U(Yt)〉 ≥ ρ|Xt−Yt|2. Besides dΦt = −ntdLt where
L is the local time of X at the boundary of the Weyl chamber D and nt is an outer unit
normal at Xt. Since Yt ∈ D and since D is convex we get in particular 〈Xt − Yt, dΦt〉 ≤ 0
for all t, and similarly 〈Yt −Xt, dΨt〉 ≤ 0. Thus d|Xt − Yt|2 ≤ −2ρ|Xt − Yt|2 dt, hence

|Xt − Yt| ≤ e−ρt|X0 − Y0|.

Taking the p-th power and expectation we get, in [0,+∞],

E[|Xt − Yt|p]1/p ≤ e−ρt E(|X0 − Y0|p)1/p = e−ρtWp(ν0, ν1).

Moreover since Xt ∼ ν0Pt and Yt ∼ ν1Pt we have by definition of Wp

Wp(ν0Pt, ν1Pt) ≤ E[|Xt − Yt|p]1/p.

Hence the result. �
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