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Abstract6

The paper studies the problem of actively learning from instances characterized
by imprecise features or imprecise class labels, where by actively learning we
understand the possibility to query the precise value of imprecisely specified
data. We differ from classical active learning by the fact that in the later,
data are either fully precise or completely missing, while in our case they can be
partially specified. Such situations can appear when sensor errors are important
to encode, or when experts have only specified a subset of possible labels when
tagging data. We provide a general active learning technique that can be applied
in principle to any model. It is inspired from racing algorithms, in which several
models are competing against each others. The main idea of our method is to
identify the query that will be the most helpful in identifying the winning model
in the competition. After discussing and formalizing the general ideas of our
approach, we illustrate it by studying the particular case of binary SVM in the
case of interval valued features and set-valued labels. The experimental results
indicate that, in comparison to other baselines, racing algorithms provide a
faster reduction of the uncertainty in the learning process, especially in the case
of imprecise features.

Keywords: partial data, interval-valued data, set-valued labels, data7

querying, active learning, racing algorithms8

1. Introduction9

Although classical learning schemes assume that every instance is fully spec-10

ified, there are situations where such an assumption is unlikely to hold, and11

where the data can be qualified of partial or imprecise. By “partial data”, we12

refer to the situation where either some features or the labels are imperfectly13

known, that is are specified by sets of possible values rather than a precise one.14

For example, when the label of some training instances is only known to belong15

to a set of labels, or when some features are imprecisely given in the form of16

intervals.17

Classical statistical solutions to solve this problem include the use of different18

imputation techniques [5] or the use of likelihood-based techniques such as the19
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EM algorithm [4] and its extensions. The use of such techniques however implies20

to satisfy specific statistical assumptions about the missingness process (e.g.,21

missing-at-random assumption), that can be very hard or impossible to check22

in practice, especially since we do not have access to the original precise data.23

More recently, the problem of learning from partial data has gained an increasing24

interest within the machine learning community, and many methods [2, 3, 10]25

that have shown their efficiency for different problems have been developed.26

Yet, even if these methods can handle partial data, their performances usually27

degrade as data become more and more partial or imprecise, as more and more28

uncertainty is present in the learning process.29

This work explores the following question about learning from partial data: if30

we have the possibility to gain more information on some of the partial instances,31

which instance and what feature of this instance should we query? In the32

case of a completely missing label (and to a lesser extent of missing features),33

this problem known as active learning has already been largely treated [16]34

and applied in different fields like natural language processing, text or image35

classification, recommender systems [6, 14, 23, 19]. However, we are not aware36

of similar works concerning the case of partial data. Note that for the case of37

features, there is even very few active learning methods addressing the problem38

of missing features. In this work, we provide a new general active learning39

technique that can be applied in principle to any model and partially missing40

input/features, and illustrate it on the case of SVM. It is inspired from the41

concept of racing algorithms [12], in which several models are competing against42

each others. They were initially introduced to select an optimal configuration43

of a given lazy learning model (e.g., K-nn methods), and since then have been44

applied to other settings such as multi-armed bandits [9]. The idea of such45

racing algorithms is to oppose a (finite) set of alternatives in a race, and to46

progressively discard losing ones as the race goes along. In our case, the set47

of alternatives will be different possible models, and the race will consist in48

iteratively querying the precise value of some partial features or labels. Indeed,49

as data are partial, the performance of each model is uncertain and several50

candidate models can be optimal. By iteratively making queries, i.e. asking to51

an oracle the precise value of a partial data, these performances will become less52

and less uncertain, and more models will be discarded from the race. The key53

question is then to identify those data that will be the most helpful in reducing54

the set of possible winners in the race, in order to converge as quickly as possible55

to the optimal model.56

The rest of this paper is organized as follows: we present in Section 2 the57

basic notations used in this paper. Section 3 introduces the general principles58

of racing algorithms and formalizes the problem of quantifying the influence of59

a query on the race. We then study the application of our approach using the60

particular case of a binary SVM. Section 4 is focused on interval-valued features,61

while Section 5 explores the case of set-valued labels. Some experiments are62

then performed in Section 6 to demonstrate the effectiveness of our proposals.63

Before concluding the paper, Section 7 discusses some computational issues64

of the presented approaches, generalizing some of the results concerning SVM65
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method. Note that this paper is an extension of [13], with full proofs, larger66

experiments as well as the addition of the set-valued label case for binary SVM67

and a discussion about the complexity of the approach.68

2. Preliminaries69

In classical supervised setting, the goal of the learning approach is to find
a model m : X → Y within a set M of models from a set D = {(xi, yi) ∈
X ×Y|i = 1, . . . , n} of n input/output samples, where X and Y are respectively
the input and the output spaces1. The empirical risk R(m) associated to a
model m is then evaluated as

R(m) =
n∑

i=1

`(yi,m(xi)) (1)

where ` : Y ×Y → R is the loss function, and `(y,m(x)) is the loss of predicting
m(x) when observing y. The selected model is then the one minimizing (1),
that is

m∗ = arg min
m∈M

R(m). (2)

Another way to see the model selection problem that will be useful in this paper
is to assume that a model ml is said to be better than mk (denoted ml � mk)
if

R(mk)−R(ml) > 0, (3)

or in other words if the risk of ml is lower than the risk of mk. Given the70

relation � on M, Equation (1) then simply amounts to take as best model the71

maximal element of �, or in case of equality due to indifference, one of the72

maximal model chosen arbitrarily.73

In this work, we are however interested in the case where data are partial,
that is where general samples are of the kind (Xi, Yi) ⊆ X × Y. Here and in
the rest of this paper, capital letters are used for partial data and small letters
will denote precise one, and bold letters will represent vectors and Cartesian
products of feature values. When the data is partial, Equations (1), (2) and (3)
are no longer well-defined, and can be extended in multiple different ways. Two
of the most common ways to extend them is either to use a minimin (optimistic)
or a maximin (pessimistic) approach [20, 22]. That is, if we extend Equation (1)
to a lower bound

R(m) = inf
(xi,yi)∈(Xi,Yi)

n∑
i=1

`(yi,m(xi)) (4)

=

n∑
i=1

inf
(xi,yi)∈(Xi,Yi)

`(yi,m(xi)) :=

n∑
i=1

`(Yi,m(Xi))

1As X is often multi-dimensional, we will denote its elements and subsets by bold letters.
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and an upper bound

R(m) = sup
(xi,yi)∈(Xi,Yi)

n∑
i=1

`(yi,m(xi)) (5)

=

n∑
i=1

sup
(xi,yi)∈(Xi,Yi)

`(yi,m(xi)) :=

n∑
i=1

`(Yi,m(Xi))

then the optimal minimin m∗mm and maximin m∗Mm models are

m∗mm = arg min
m∈M

R(m) and m∗Mm = arg min
m∈M

R(m).

The minimin approach usually assumes that data are distributed according to74

the model, and tries to find the best data replacement (or disambiguation)75

combined with the best possible model [10]. Conversely, the maximin approach76

assumes that data are distributed in the worst possible way, and select the77

model performing the best in the worst situation, thus guaranteeing a minimal78

performance of the model [21]. However, such an approach, due to the overly79

conservative nature of its assumptions, will often lead to sub-optimal model, so80

we will prefer the first principle.81

It should be noted that both the minimin and maximin approaches lead to
choose a unique optimal model, despite the uncertainty present in the data. Our
work focuses on a different approach, where we do not search for an optimal
model right away, but rather consider sets of potentially optimal models to then
try to identify the best one through querying. In this case, we consider that a
model ml is better than mk (still denoted ml � mk) if

R(mk−l) = inf
(xi,yi)∈(Xi,Yi)

R(mk)−R(ml) > 0, (6)

which is a direct extension of Equation (3). That is, ml � mk if and only if
it is better under every possible precise replacement (xi, yi) consistent with the
partial instances (Xi, Yi). We can then denote by

M∗ = {m ∈M :6 ∃m′ ∈M s.t.m′ � m} (7)

the set of undominated models within M, that is the set of models that are82

maximal with respect to the partial order �. The practical computation of (4)-83

(6) depends on the type of classifier considered in the race and will be explained84

in details in section 4 for the particular case of binary SVM.85

Example 1. Figure 1 illustrates a situation where Y consists of two different86

classes (grey and white), and X of two dimensions. Only imprecise data are87

numbered: squares are assumed to have precise features, and unknown labels are88

represented by striped squares (i.e., a data with partial label and features would89

be a striped rectangle). Assuming that we only have two modelsM = {m1,m2}90

to compare (the models in Figure 1 could be decision stumps, or one-level deci-91

sion trees), we would choose m2 = m∗Mm as the maximin model and m1 = m∗mm92

as the minimin one. The two models would however be incomparable according93

to (6), as both R(m1−2) and R(m2−1) are negative, henceM∗ =M in this case.94

The rest of the paper then deals with the data to query in order to reduce M∗95
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X 2

X 1

1 2

34

5

m2

m1

[R(m1), R(m1)] = [0, 5]

[R(m2), R(m2)] = [1, 3]

R(m1−2) = −1
R(m2−1) = −2

Figure 1: Illustration of partial data and competing models

3. Partial data querying: a racing approach96

Both the minimin and maximin approaches pursue the same goal: obtaining97

a unique model from partially specified data. In this sense, they are quite close98

to approaches using imputation or EM algorithms. The idea we defend in this99

paper is different: we want to identify and query those data that will be the most100

helpful in reducing the set M∗. In order to this, we will try to quantify how101

useful an information is to decide what is the best model among those in M∗.102

We will now formalise this idea. We first assume that X = X 1 × . . . × X p is a103

Cartesian product of p spaces, and that a partial data (Xi, Yi) can be expressed104

as (×p
j=1X

j
i , Yi), and furthermore that if X j ⊆ R is a subset of the real line,105

then Xj
i is an interval. The data who have imprecise features in Figure 1 could106

be of this kind.107

A query on a partial data (×p
j=1X

j
i , Yi) consists in transforming one of its di-

mension Xj
i or Yi into the true precise value (xji or yi) provided by an oracle (an

expert, a precise measuring device). More precisely, Qj
i denotes the query made

on Xj
i or Yi, with j = p+ 1 for Yi. Given a model ml and a data (×p

j=1X
j
i , Yi),

the result of a query can have an effect on the interval [R(ml), R(ml)], depend-
ing on whether it changes the interval [`(Yi,ml(Xi)), `(Yi,ml(Xi))]. Similarly,
when assessing whether the model ml is preferred to mk, the query can have
an influence on the value R(mk−l) or not. We formalise this by two functions,
EQj

i
:M→ {0, 1} and JQj

i
:M×M→ {0, 1} such that:

EQj
i
(ml) =

{
1 if ∃xji ∈ X

j
i that reduces [R(ml), R(ml)]

0 else
(8)

and

JQj
i
(mk,ml) =

{
1 if ∃xji ∈ X

j
i that increases R(mk−l)

0 else.
(9)

When j = p + 1, Xj
i is to be replaced by Yi. EQj

i
(ml) simply tells us whether108

or not the query can affect our evaluation of the model ml, while JQj
i
(mk,ml)109

informs us whether the query can help to tell apart ml from mk.110
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Example 2. In Figure 1, questions related to partial classes (points 4 and 5)111

and to partial features (points 1, 2 and 3) have respectively the same potential112

effect, so we can restrict our attention to Q3
4 (the class of point 4) and to Q2

1113

(the second feature of point 1). For these two questions, we have114

- EQ3
4
(m1) = EQ3

4
(m2) = 1 and JQ3

4
(m1,m2) = JQ3

4
(m2,m1) = 0.115

- EQ2
1
(m1) = 1, EQ2

1
(m2) = 0 and JQ2

1
(m1,m2) = JQ2

1
(m2,m1) = 1.116

This example shows that while some questions may reduce our uncertainty about117

many model risks (Q3
4 reduce risk intervals for both models), they may be less118

useful than other questions to tell two models apart (Q2
1 can actually lead to119

declare m2 better than m1), hence it is useful to consider both individual and120

pairwise effects of a unique query.121

Following the idea of racing algorithms, which concentrate on the best po-122

tential model, Definitions (8) and (9) allow us to define the value of query as123

follows:124

Definition 1. Given mk∗ the best current potential model, the value of a query
Qj

i is defined as

V alue(Qj
i ) = EQj

i
(mk∗) +

∑
k 6=k∗

JQj
i
(mk,mk∗). (10)

We can now finally propose our querying method inspired by racing algo-125

rithms, that consists in building an initial set {m1, . . . ,mR} of models, and then126

make them race against each other. The initial set can be instantiated by sam-127

pling several precise data sets (xi, yi) ∈ (Xi, Yi), and then learning an optimal128

model from each of these precise selection. Algorithm 1 summarises the general129

procedure applied to find the best query and to update the race once this set130

is built. This algorithm simply searches the query that will have the biggest131

impact on the minimin model and its competitors, adopting the optimistic at-132

titude of racing algorithms. Once a query has been made, the data set as well133

as the set of competitors are updated, so that only potentially optimal models134

remain.135

Notice that the best model (learned from fully precise data) may not be in the136

setM of competitors. This is also true for some active learning techniques such137

as Query-by-committee. This means that, at the end of the querying process,138

two solutions arise: either retain the best model mk∗ withinM, or retrain a new139

model from the completed data. Note that since we will not query all partial140

data in practice (otherwise trying to find best queries is meaningless), we will141

have to use learning techniques able to cope with such data [11]142

In the next sections, we illustrate our proposed setting and its potential143

interest with the popular SVM algorithm. We separate the two cases of interval-144

valued features from set-valued labels, for three reasons: (i) we can expect that145

imprecision in both aspects is less likely to happen in practice, (ii) this makes146

the exposure of the methods easier to follow, and (iii) considering both cases at147
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once would quickly induce a too important imprecision in the results. We leave148

the combination of the two approaches to the reader, especially since binary149

SVM are here used as an illustration of our general approach.150

Algorithm 1: One iteration of the racing algorithm to query data.

Input: data (Xi, Yi), set {m1, . . . ,mR} of models
Output: updated data and set of models

1 k∗ = arg mink∈{1,...,R}R(mk);

2 foreach query Qj
i do

3 V alue(Qj
i ) = EQj

i
(mk∗) +

∑
k 6=k∗ JQj

i
(mk,mk∗);

4 Qj∗

i∗ = arg maxQj
i
V alue(Qj

i );

5 Get value xj
∗

i∗ of Xj∗

i∗ ;
6 foreach k, l ∈ {1, . . . , R} × {1, . . . , R}, k 6= l do
7 Compute R(mk−l) ;
8 if R(mk−l) > 0 then remove mk from {m1, . . . ,mR} ;

4. Application to binary SVM: interval-valued features151

In the binary SVM setting [1], the input space X = Rp is the real space and
the binary output space is Y = {−1, 1}, where −1, 1 encode the two possible
classes. The model ml = (wl, cl) corresponds to the “maximum-margin” hy-
perplane wlx + cl with wl ∈ Rp and cl ∈ R. For convenience sake, we will use
(wl, cl) and ml interchangeably from now on. We will also focus in this section
on the case of imprecise features and precise labels, and will denote yi the label
of training instances. We will also focus on the classical 0 − 1 loss function
defined as follows for an instance (xi, yi):

`(yi,ml(xi)) =

{
0 if yi ·ml(xi) ≥ 0

1 if yi ·ml(xi) < 0,
:= `l(yi,xi) (11)

whereml(xi) = wlxi+cl, and `l(yi, xi) is used as a short notation for `(yi,ml(xi)).152

4.1. Instances inducing imprecision in empirical risk153

Before entering into the details of how single risk bounds [R(ml), R(ml)]154

and pairwise risk bounds R(mk−l) given by Equations (4)-(6), and query ef-155

fects EQj
i
(ml) and JQj

i
(mk,ml) given by Equations (8)-(9) can be estimated in156

practice, we will first investigate under which conditions an instance (Xi, yi)157

induces imprecision in the empirical risk. Such instances are the only ones of158

interest here, since if `l(yi,Xi) = `l(yi,Xi) = `l(yi,Xi), then EQj
i
(ml) = 0 for159

all j = 1, . . . , p. Furthermore, if an instance (Xi, yi) is precise w.r.t both mk and160

ml, then JQj
i
(mk,ml) = 0 for all j = 1, . . . , p. Thus, only instances which are161

imprecise w.r.t at least one model are interested when determining JQj
i
(mk,ml).162
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Definition 2. Given a SVM model ml, an instance (Xi, yi) is called an impre-
cise instance w.r.t. ml if and only if

∃x
′

i,x
′′

i ∈ Xi s.t ml(x
′

i) ≥ 0 and ml(x
′′

i ) < 0. (12)

Instances that do not satisfy Definition 2 will be called precise instances163

(w.r.t. ml). Being precise means that the sign of ml(xi) is the same for all164

xi ∈ Xi, which implies that the loss `l(yi,Xi) = `l(yi,Xi) is precisely known.165

The next example illustrates the notion of (im)precise instances.166

Example 3. Figure 2 illustrates a situation with two models and where the two167

different classes are represented by grey (y = +1) and white (y = −1) colours.168

From the figure, we can say that (X1, y1) is precise w.r.t both m1 and m2,169

(X2, y2) is precise w.r.t m1 and imprecise w.r.t m2, (X3, y3) is imprecise w.r.t170

both m1 and m2 and (X4, y4) is imprecise w.r.t m1 and precise w.r.t m2.171

X 2

X 1

1

4

2
3

m1

m2

Figure 2: Illustration of interval-valued instances

Determining whether an instance is imprecise w.r.t. ml is actually very easy172

in practice. Let us denote by173

ml(Xi) := inf
xi∈Xi

ml(xi) and ml(Xi) := sup
xi∈Xi

ml(xi) (13)

the lower and upper bounds reached by model ml over the space Xi. The174

following result characterizing imprecise instances, as well as when a hyperplane175

ml(xi) = 0 intersects with a region Xi, follows from the fact that the image of176

a compact set by a continuous function is also compact.177

Proposition 1. Given ml(xi) = wlxi + cl and the set Xi, then (Xi, yi) is
imprecise w.r.t. ml if and only if

ml(Xi) < 0 and ml(Xi) ≥ 0. (14)

Furthermore, we have that the hyperplane ml(xi) = 0 intersects with the region178

Xi if and only if (14) holds. In other words, ∃xi ∈ Xi s.t. ml(xi) = 0.179

Proof. Since continuous functions preserve compactness and connectedness [7],
then the image f(X) = Y of a compact and connected set X is compact and
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connected. Furthermore, a set on Rp is compact if and only if it is closed
and bounded (Heine–Borel Theorem [15]), then X is a closed, bounded and
connected set which is exactly a closed interval. Or in other words, we have
that

ml(Xi) =

[
ml(Xi),ml(Xi)

]
,

is an interval consisting of every possible values that can take ml(xi) for xi ∈ Xi.180

That (14) is equivalent to (12) then immediately follows. Also, we have that181

∃xi ∈ Xi s.t. ml(xi) = 0 if and only if 0 ∈
[
ml(Xi),ml(Xi)

]
.182

This proposition means that to determine whether an instance (Xi, yi) is183

imprecise, we only need to compute values ml(Xi) and ml(Xi), which can be184

easily done using Proposition 2.185

Proposition 2. Given (Xi, yi) with Xj
i =

[
aji , b

j
i

]
and SVM model (wl, cl), we

have

ml(Xi) =
∑
wj

l≥0

wj
l b

j
i +

∑
wj

l <0

wj
l a

j
i + cl

ml(Xi) =
∑
wj

l≥0

wj
l a

j
i +

∑
wj

l <0

wj
l b

j
i + cl.

Proof. Since ml(xi) is a linear function, it is monotonic in each dimension, hence186

the extreme values are obtained at points xi ∈ ×p
j=1{a

j
i , b

j
i}. Furthermore,187

ml(xi) decreases (increases) w.r.t xj
i if wj

l < 0 (wj
l > 0). Hence, Proposition 2188

holds.189

Again, it should be noted that only imprecise instances are of interest here,190

as these are the only instances that, once queried, can result in an increase of191

the lower empirical risk bounds. We will therefore focus on those in the next192

sections.193

Example 4. Consider the model ml on a 3-dimensional space given by wl =
(2,−1, 1) and the partial instance Xi = [1, 3] × [2, 5] × [1, 2]. In this case, we
have

ml(Xi) = 1× 2 + 5×−1 + 1× 1 = −2,

ml(Xi) = 3× 2 + 2×−1 + 2× 1 = 6,

hence the instance Xi is imprecise with respect to ml194

4.2. Empirical risk bounds and single effect195

We are now going to investigate the practical computation of R(ml), R(ml),
as well as the value EQj

i
(ml) of a query on a model ml. Equations (4) (resp.

(5)) implies that the computation of R(ml) (resp. R(ml)) can be done by first

9



computing `l(yi,Xi) (resp. `l(yi,Xi)) for i = 1, . . . , n and then summing the
obtained values. This means that we can focus our attention on computing
`l(yi,xi) and `l(yi,xi) for a single instance, as obtaining R(ml), R(ml) from
them is straightforward. Note that we have `l(yi,Xi) = 0 and `l(yi,Xi) = 1 if
and only if Xi is imprecise w.r.t. ml, a fact that can easily be checked using
Proposition 1. The bounds of the loss interval for the model ml and datum
(Xi, yi) is

[`l(yi,Xi), `l(yi,Xi)] =


[0, 0] if min(yi ·ml(Xi), yi ·ml(Xi)) ≥ 0

[0, 1] if ml(Xi) ·ml(Xi) < 0

[1, 1] if max(yi ·ml(Xi), yi ·ml(Xi)) < 0

(15)

Let us now focus on estimating the effect of a query. As with the loss196

bounds, the only situation where a query Qj
i can affect the empirical risk197

bounds, and hence the only situation where EQj
i
(ml) = 1, is when the interval198

[`l(yi,Xi), `l(yi,Xi)] can be reduced by querying Xj
i . Therefore we can also199

focus on a single instance to evaluate it. In the case of 0-1 loss, the only case200

where EQj
i
(ml) = 1 is the one where [`l(yi,Xi), `l(yi,xi)] goes from [0, 1] before201

the query to a precise value after it, or in other words if there is xji ∈ X
j
i such202

that X
′

i = ×j′ 6=jX
j
′

i × {x
j
i} is precise w.r.t. ml. According to Proposition 1,203

this means that either ml(X
′

i) should become positive, or ml(X
′

i) should become204

negative after a query Qj
i . The conditions to check whether this is possible are205

given in the next proposition.206

Proposition 3. Given (Xi, yi) with Xj
i =

[
aji , b

j
i

]
and a model ml s.t. Xi is

imprecise, then EQj
i
(ml) = 1 if and only if one of the following conditions holds

ml(Xi) ≥ −|wj
l |(b

j
i − a

j
i ) (16)

or

ml(Xi) < |wj
l |(b

j
i − a

j
i ). (17)

Proof. Let us concentrate on the first condition (the second one can be proved

similarly). If we denote by m
Qj

i

l the lower bound reached by ml on X′i (the set
resulting from the query answer), then we have the following inequality

m
Qj

i

l (X
′

i) ≤ ml(Xi) + |wj
l |(b

j
i − a

j
i )

giving us a tight upper bound for it. Indeed, if wj
l ≥ 0, then ml is obtained for207

xji = aji (by Proposition 2), and it can increase by at most wj
l (bji − a

j
i ) if the208

result of the query Qj
i is xji = bji (the case wj

l ≤ 0 is similar). Since ml(Xi) is209

known to be negative (from Proposition 1 and the fact that Xi is imprecise), it210

can only become positive after a query Qj
i if ml(Xi) + |wj

l |(b
j
i − a

j
i ) is positive.211

Finally, by investigating the change of sign(wj
l ), we have:212

10



B1: Qj
i can change the sign of ml(xi) iff213

{
ml(xi) + wj

l (bji − a
j
i ) ≥ 0 if wj

l ≥ 0,

ml(xi)− wj
l (bji − a

j
i ) ≥ 0 if wj

l < 0.

B2: Qj
i can change the sign of ml(xi) iff{

ml(xi)− wj
l (bji − a

j
i ) < 0 if wj

l ≥ 0

ml(xi) + wj
l (bji − a

j
i ) < 0 if wj

l < 0.

214

R(ml), R(ml), needed in the line 1 of Algorithm 1 to identify the most215

promising model k∗, are computed easily by summing over all training instances216

the intervals [`l(yi,Xi), `l(yi,Xi)] given by Equation (15), while Equations (16)-217

(17) give easy ways to estimate the values of EQj
i
(mk∗), needed in line 3 of218

Algorithm 1.219

Example 5. Let us consider again Example 4, and check whether querying the
last (j = 3) or second dimension may induce some effect on the emprical risk
bounds. Using Proposition 3, we have for Q3

i that

ml(Xi) = −2 < −1× (2− 1) and ml(Xi) = 6 > 1× (2− 1),

hence EQ3
i
(ml) = 0, as none of the conditions are satisfied. We do have, on the

contrary, that
ml(Xi) = −2 ≥ −1× (5− 2),

hence EQ2
i
(ml) = 1. Indeed, if x2i = 2 (the query results in the lower bound),220

then the model becomes positive for any replacement of X′i = [1, 3]× 2× [1, 2].221

4.3. Pairwise risk bounds and effect222

Let us now focus on how to compute, for a pair of models mk and ml,
whether a query Qj

i will have an effect on the value R(mk−l). For this, we will
have to compute R(mk−l), which is a necessary step to estimate the indicator
JQj

i
(mk,ml) of a possible effect of Qj

i . To do that, note that R(mk−l) can be

rewritten as

R(mk−l) = inf
xi∈Xi,i=1,...,n

(R(mk)−R(ml)) =

n∑
i=1

`k−l(yi,Xi) (18)

with

`k−l(yi,Xi) = inf
xi∈Xi

(
`k(yi,xi)− `l(yi,xi)

)
, (19)
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meaning that computing R(mk−l) can be done by summing up `k−l(yi,Xi) over223

all Xi, similarly to R(ml) and R(ml). Also, JQj
i
(mk,ml) = 1 if and only if Qj

i224

can increase R(mk−l). We can therefore focus on the computation of `k−l(yi,Xi)225

and its possible changes. First note that if Xi is precise w.r.t. both mk and ml,226

then `k(yi,Xi)− `l(yi,Xi) is a well-defined value, as each loss is precise, and in227

this case JQj
i
(mk,ml) = 0. Therefore, the only cases of interest are those where228

Xi is imprecise w.r.t. to at least one model. We will first treat the case where229

it is imprecise for only one, and then we will proceed to the more complex one230

where it is imprecise w.r.t. both. Note that imprecision with respect to each231

model can be easily established using Proposition 1.232

4.3.1. Imprecision with respect to one model233

Let us consider the case where Xi is imprecise w.r.t. either mk or ml. In234

each of these two cases, the loss induced by (Xi, yi) on the model for which235

it is precise is fixed. Hence, to estimate the lower loss `k−l(yi,Xi), as well236

as the effect of a possible query Qj
i , we only have to look at the model for237

which (Xi, yi) is imprecise. The next proposition establishes the lower bound238

`k−l(yi,Xi), necessary to compute R(mk−l).239

Proposition 4. Given (Xi, yi) with Xj
i = [aji , b

j
i ] and two models mk and ml

s.t (Xi, yi) is imprecise w.r.t. one and only one model, then we have

`k−l(yi,Xi) = `k(yi,Xi)− 1 if Xi imprecise w.r.t. ml (20)

`k−l(yi,Xi) = 0− `l(yi,Xi) if Xi imprecise w.r.t. mk. (21)

Proof. We will only prove Equation (20), the proof for Equation (21) being sim-240

ilar. First note that if Xi is precise with respect to mk, then `k(yi,Xi) is precise.241

Second, the value of `l(yi,Xi) ∈ {0, 1}, since Xi is imprecise with respect to242

ml, hence the lower bound is obtained for xi ∈ Xi such that `l(yi,xi) = 1.243

We kept the 0 in Equation (21) to make clear that we take the lower bound244

of the loss w.r.t. mk, and the precise value of `l(yi,Xi). Let us now study245

under which conditions a query Qj
i can increase `k−l(yi,Xi), hence under which246

conditions JQj
i
(mk,ml) = 1. The two next propositions respectively address247

the case of imprecision w.r.t. mk and ml. Given a possible query Qj
i on Xi,248

the only possible way to increase `k−l(yi,Xi) is for the updated X
′

i to become249

precise w.r.t. to the model for which Xi was imprecise, and moreover to be so250

that `l(yi,X
′

i) = 0 (`k(yi,X
′

i) = 1) if Xi is imprecise w.r.t. ml (mk).251

Proposition 5. Given (Xi, yi) with Xj
i = [aji , b

j
i ] and two models mk and ml

s.t. (Xi, yi) is imprecise w.r.t. ml, the question Qj
i is such that JQj

i
(mk,ml) = 1

if and only if one of the two following conditions holds

yi = 1 and ml(Xi) ≥ −|wj
l |(b

j
i − a

j
i ) (22)

or

yi = −1 and ml(Xi) < |wj
l |(b

j
i − a

j
i ). (23)
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Proof. First note that if Xi is imprecise w.r.t. ml, then the only case where252

`k−l(Xi) increases is when the updated instance X
′

i is precise w.r.t. ml after253

the query Qj
i is performed and the precise loss becomes `l(yi,X

′

i) = 0.254

Let us consider the case yi = 1 (the case yi = 0 is similar). To have255

`l(yi,X
′

i) = 0, we must have ml(X
′

i) ≥ 0. Using the same argument as in256

Proposition 3, we easily get the result.257

Proposition 6. Given (Xi, yi) with Xj
i = [aji , b

j
i ] and two models mk and ml

s.t. (Xi, yi) is imprecise w.r.t. mk, the query Qj
i is such that JQj

i
(mk,ml) = 1

if and only if one of the two following condition holds

yi = 1 and mk(Xi) < |wj
k|(b

j
i − a

j
i ) (24)

or

yi = −1 and mk(Xi) ≥ −|wj
k|(b

j
i − a

j
i ). (25)

The proof is analogous to the one of Proposition 5. In summary, if Xi is258

imprecise w.r.t. only one model, estimating JQj
i
(mk,ml) comes down to identify259

whether the Xi can become precise with respect to such a model, in such a way260

that the lower bound is possibly increased. Propositions 5 and 6 show that this261

can be checked easily using our previous results of Section 4.1 concerning the262

empirical risk. Actually, in this case, the problem essentially boils down to the263

problem of Section 4.2.264

4.3.2. Imprecision with respect to both models265

Given Xi and two models mk,ml, we define :

mk−l(Xi) = mk(Xi)−ml(Xi). (26)

We thus have:

mk−l(Xi) > 0 if mk(xi)−ml(xi) > 0 ∀xi ∈ Xi (27)

mk−l(Xi) < 0 if mk(xi)−ml(xi) < 0 ∀xi ∈ Xi. (28)

In the other cases, this means that there are x
′

i,x
′′

i ∈ Xi for which the model266

difference have different signs. The reason for introducing such differences is267

that, if mk−l(Xi) > 0 or mk−l(Xi) < 0, then not all combinations in {0, 1}2268

are possible for the pair (`k(yi,xi), `l(yi,xi)), while they are in the other case.269

These various situations are depicted in Figure 3, where the white class is again270

the negative one (yi = −1).271
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(a) m1−2(Xi) > 0
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Xi
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(b) m1−2(Xi) < 0

X2

X1

Xi

m1
m2

(c) Non-constant sign

Figure 3: Illustrations for the different possible cases corresponding to the difference m1(x)−
m2(x)

Since mk(xi)−ml(xi) is also of linear form (with weights wj
k −w

j
l ), we can

easily determine whether the sign of mk−l(Xi) is constant: it is sufficient to
compute the interval[

inf
xi∈Xi

(mk(xi)−ml(xi)), sup
xi∈Xi

(mk(xi)−ml(xi))

]
that can be computed similarly to [mk(Xi),mk(Xi)] in Section 4.1 (Proposition272

2). If zero is not within this interval, then mk−l(Xi) > 0 if the lower bound273

is positive, otherwise mk−l(Xi) < 0 if the upper bound is negative. The next274

proposition indicates how to easily compute the lower bound `k−l(yi,Xi) for275

the different possible situations.276

Proposition 7. Given (Xi, yi) with Xj
i = [aji , b

j
i ] and two models mk, ml s.t.

(Xi, yi) is imprecise w.r.t. both models, then the minimal difference value is

`k−l(yi,Xi) =


min(0,−yi) if mk−l(Xi) > 0

min(0, yi) if mk−l(Xi) < 0

−1 if mk−l(Xi) can take both signs

(29)

Proof. First note that when neither mk−l(Xi) > 0 nor mk−l(Xi) < 0 hold, then277

there are values xi for which mk(xi) and ml(xi) are either positive and negative,278

or negative and positive, or of the same sign. Hence there is always a value xi279

such that `k(yi,xi) = 0 and `l(yi,xi) = 1.280

Let us then deal with the situation wheremk−l(Xi) > 0 (the casemk−l(Xi) <281

0 can be treated similarly). In this case, there are values xi ∈ Xi such that282

mk(xi) and ml(xi) have the same sign (0/1 loss difference is then null), or283

mk(xi) is positive and ml(xi) negative, but no values for which mk(xi) is nega-284

tive and ml(xi) positive. When mk(xi) is positive and ml(xi) negative, the loss285

difference is −1 if yi = +1, and 1 if yi = −1.286

The next question is to know under which conditions a query Qj
i can increase287

`k−l(yi,Xi) (or equivalently R(mk−l)), or in other words to determine a pair288

(i, j) s.t JQj
i
(mk,ml) = 1. Proposition 7 tells us that `k−l(yi,Xi) can be either 0289

or −1 if mk−l(Xi) > 0 or mk−l(Xi) < 0, and is always −1 if mk−l(Xi) can take290

both signs. The next proposition establishes conditions under which `k−l(yi,Xi)291

can increase.292
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Proposition 8. Given (Xi, yi) with Xj
i = [aji , b

j
i ] and two models mk and ml293

s.t (Xi, yi) is imprecise w.r.t both of the given models, then JQj
i
(mk,ml) = 1 if294

the following conditions hold295

if `k−l(yi,Xi) = −1 and yi = 1:

mk(Xi) < |wj
l |(b

j
i − a

j
i ) or ml(Xi) ≥ −|wj

l |(b
j
i − a

j
i ) (30)

if `k−l(yi,Xi) = −1 and yi = −1:

mk(Xi) ≥ −|wj
k|(b

j
i − a

j
i ) or ml(Xi) < |wj

l |(b
j
i − a

j
i ). (31)

if `k−l(yi,Xi) = 0 and mk−l(Xi) < 0:

mk(Xi) < |wj
l |(b

j
i − a

j
i ) and ml(Xi) ≥ −|wj

l |(b
j
i − a

j
i ) (32)

if `k−l(yi,Xi) = 0 and mk−l(Xi) > 0:

mk(Xi) ≥ −|wj
k|(b

j
i − a

j
i ) and ml(Xi) < |wj

l |(b
j
i − a

j
i ). (33)

Proof. Let us first investigate the case where `k−l(yi,Xi) = −1 and yi = 1 (the296

case `k−l(yi,Xi) = −1 and yi = −1 is similar). In this case, JQj
i
(mk,ml) = 1 if297

and only if Qj
i can either increase `k(yi,Xi) = 0 or decrease `l(yi,Xi) = 1, that298

is become precise for at least one of them, with `k(yi,X
′

i) = 1 or `l(yi,X
′

i) = 0.299

The conditions are then obtained by following arguments similar to those of300

Proposition 3.301

The second case `k−l(yi,Xi) = 0 only happens when either mk−l(Xi) < 0302

or mk−l(Xi) > 0, and we will treat the first case. According to Proposition 7,303

this means that yi = −1. Also, since according to Proposition 4 the value 0 is304

an upper bound of `k−l(yi,Xi) when Xi is imprecise with either mk or ml, to305

go from `k−l(yi,Xi) = 0 to `k−l(yi,X
′

i) = 1, we need a value xji ∈ X
j
i such that306

mk(X
′

i) < 0 and ml(X
′

i) > 0, as yi = −1. Again, we can get the conditions to307

have such a value by deriving arguments similar to those of Proposition 3.308

For instance, in Figure 3(a) and 3(b), JQ1
i
(m2,m1) = 0 and JQ2

i
(m2,m1) =309

1 for both cases. The whole procedure is summed up in the Algorithm 1.310

Algorithm 2 summarizes how to determine the query effect Qj
i , which can be311

considered as the main computational difficulty when performing the querying312

step (line 2 − 3 in Algorithm 1). Determining the set of undominated models313

(line 6− 8 in Algorithm 1) is summarized in Algorithm 3.314

Let us now study the complexity of the whole approach. Lines 2 and 4 of315

Algorithm 2 are in O(p), since they correspond to linear operations. Iterations316

from 5-10 are in O(R × p), since we must check all undominated models once.317

Iterations from 13-15 are also in O(R×p), for the same reason. Thus, one run of318

Algorithm 2 is in O(R× p). If we have I partial features in the data, then loop319
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2-3 of Algorithm 1 takes O(I ×R× p) in the case of SVM, so it remains linear320

in each of the parameter. Algorithm 3 corresponds to lines 6-8 of Algorithm 1,321

and computing R(mk−l) can be done in O(n× p) since we must compute ` for322

each data point. Finally, since this must be done for every pair of models in323

the worst case, performing Algorithm 3 is in O(R2 × n× p), which is quadratic324

in R and linear in the other parameters. This can be approximated by only325

comparing intervals [R(mk), R(mk)] of every models, that would bring down326

the complexity to O(R × n × p), but would provide a super-set of the set of327

undominated models.328

Algorithm 2: Determining the query effect V alue(Qj
i )

Input: partial data (Xi, yi), set M = {m1, . . . ,mR} of models, the best
potential model mk∗

Output: the query effect V alue(Qj
i )

1 initialize EQj
i
(mk∗) = 0, JQj

i
(mk,mk∗) = 0, V alue(Qj

i ) = 0, ∀k 6= k∗;

2 check whether (Xi, yi) is imprecise w.r.t mk∗ using Prop. 1 and 2;
3 if (Xi, yi) is imprecise w.r.t mk∗ then
4 compute EQj

i
(mk∗) using Prop. 3 ;

5 foreach k 6= k∗ do
6 if (Xi, yi) is imprecise w.r.t mk then
7 use Prop. 7 to get `k−k∗(yi,Xi) ;
8 use Prop. 8 to get JQj

i
(mk,mk∗) ;

9 else
10 use Prop. 5 to get JQj

i
(mk,mk∗);

11 compute V alue(Qj
i ) using Definition 1;

12 else
13 foreach k 6= k∗ do
14 if (Xi, yi) is imprecise w.r.t mk then
15 use Prop. 6 to get JQj

i
(mk,mk∗) ;

16 compute V alue(Qj
i ) using Definition 1;

5. Application to binary SVM: set-valued labels329

This section investigates the computations of racing algorithms to query set-330

valued labels when using binary SVM with precise features and when labels are331

partially given. Let us first note that, in the binary case, the problem of querying332

partial label data is identical to classical active learning as label data is either333

precise or fully partial (completely missing). One suitable technique in such a334

case is query-by-committee [17]. However, the strategies of query-by-committee335

technique and our racing technique are different. The previous one focus on336
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Algorithm 3: Determining the undominated set

Input: data (Xi, yi), set M = {m1, . . . ,mR} of models
Output: the set of undominated model M∗

1 foreach k, l ∈ {1, . . . , R} × {1, . . . , R}, k 6= l do
2 R(mk−l) = 0;
3 foreach data (Xi, yi) do
4 if (Xi, yi) is imprecise w.r.t both mk and ml then
5 use Prop. 7 to get `k−l(yi,Xi) ;

6 else if (Xi, yi) is imprecise w.r.t only one of mk and ml then
7 use Prop. 4 to get `k−l(yi,Xi) ;

8 else
9 compute `k−l(yi,Xi) = `k(yi,Xi)− `l(yi,Xi) using (15)

10 R(mk−l) = R(mk−l) + `k−l(yi,Xi);

11 if R(mk−l) > 0 then remove mk from {m1, . . . ,mR} ;

missing labels that are the least consensual or the most ambiguous among a337

given set of models, while racing algorithms focus on labels having the most338

effect on reducing the uncertainty about the best potential model performance,339

as well as its difference to other models. From such intuitions, we could hope340

that, in practice, query-by-committee provide a quick reduction on the size of the341

set of undominated models while racing algorithms give faster convergence on342

determining the best potential model. In any case, it is worth exploring whether343

the two techniques perform similarly or if they show significant differences.344

Before investigating the detailed computations of racing algorithms, let us
recall that we focus here on binary SVM with 0/1 loss function (11). Also,
as the output is partially given and inputs are precise, from now on and to
facilitate exposure, we will adopt the notation (xi, Yi) where Yi ⊆ {−1, 1} = Y
and xi ∈ X . Let us first note that, in case of precise label (i.e, Yi = λ), it is
clear that the corresponding loss score is precisely given as in (34) and querying
such an instance is redundant.

`l(Yi,xi) = `l(Yi,xi) = `l(Yi,xi) =

{
0 if Yi ∗ml(xi) ≥ 0,

1 otherwise.
(34)

We are now going to determine the imprecise loss function,

[`l(Yi,xi), `l(Yi,xi)]

and investigate under which conditions an imprecise label can have an effect on345

the risk bounds.346

Proposition 9. Given a model ml and an instance (xi, Yi), if Yi = {−1, 1},347

then the following results hold348
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A1. [`l(Yi,xi), `l(Yi,xi)] = [0, 1]349

A2. EQi
(ml) = 1.350

Proof. It is clear that, in the binary case, if Yi = {−1, 1}, whatever the predic-
tion of the given model is (either 1 or −1), there always exist element λ and λ

′

in yi s.t

`l(λ,xi) = 0 and `l(λ
′
,xi) = 1,

or in other words, [`l(Yi,xi), `l(Yi,xi)] = [0, 1]. Furthermore, querying Yi always351

help to modify [`l(Yi,xi), `l(Yi,xi)] into single value (either to 0 or 1). Or, in352

other words, A2 holds.353

Proposition 9 simply points out that all partial labels give the same (interval-354

valued) losses and have an effect on modifying the corresponding losses. In the355

next Proposition, we show that if the predictions of two given models for a356

partially labelled instance are different, then the corresponding lower pairwise357

difference is −1 and the effect of querying such labels is 1. Otherwise, both358

values are 0.359

Proposition 10. Given two models mk and ml and an imprecise instance360

(xi, Yi) (Yi = {−1, 1}) then the following properties hold361

B1. if mk(xi) = ml(xi) then

`k−l(Yi,xi) = 0 and JQi
(mk,ml) = 0.

B2. if mk(xi) 6= ml(xi) then

`k−l(Yi,xi) = −1 and JQi(mk,ml) = 1.

Proof. B1 follows from the fact that if mk(xi) = ml(xi), then `k−l(λ,xi) = 0362

for all λ ∈ Yi. Furthermore, for any λ∗ ∈ Yi to be returned after performing Qi,363

we always have `k−l(λ
∗,xi) = 0, or in other words JQi

(mk,ml) = 0.364

We are now going to give the proof for B2. Let us first notice that when365

mk(xi) 6= ml(xi), there always exists λ ∈ Yi (i.e λ = ml(xi)) s.t `k−l(λ) = −1.366

Then it is clear that `k−l(Yi,xi) = −1. Furthermore, if λ∗ = ml(xi) is the given367

label after performing Qi, then the pairwise difference `Qi

k−l(λ
∗,xi) = 1. In other368

words, we have JQi(mk,ml) = 1.369

Propositions 9 and 10 provide an interesting property of V alue(Qi). In370

fact, for any given partial label Yi, the corresponding total effect (V alue(Qi))371

is exactly 1 + ui where ui is the number of models in the undominated set that372

give predictions against the best potential model (m∗). This means that while373

query-by-committee do consider consensus between all models for each instance,374

racing algorithms are based on the consensus of each model w.r.t. to the best375

potential model, for all instances. Again, we can see similarities and differences376

between the two approaches, and comparing them makes sense.377
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The whole procedure is again summed up in the Algorithm 1. Similar to the378

case of interval-valued features, we summarize how to determine the query effect379

Qi (line 2 − 3 in Algorithm 1) and the set of undominated models (line 6 − 8380

in Algorithm 1) in Algorithm 4 and 5, respectively. The complexity analysis is381

similar to the one of interval-valued features.382

Algorithm 4: Determining the query effect V alue(Qi)

Input: partial data (xi, Yi) with Yi = {−1, 1}, set M = {m1, . . . ,mR} of
models, the best potential model mk∗

Output: the query effect V alue(Qi)
1 initialize EQi

(mk∗) = 1;
2 foreach k 6= k∗ do
3 use Prop. 10 to get JQi

(mk,mk∗);

4 compute V alue(Qi) using Definition 1;

Algorithm 5: Determining the undominated set

Input: data (xi, Yi), set M = {m1, . . . ,mR} of models
Output: the set of undominated model M∗

1 foreach k, l ∈ {1, . . . , R} × {1, . . . , R}, k 6= l do
2 R(mk−l) = 0;
3 foreach data (xi, Yi) do
4 if (xi, Yi) is imprecise then
5 use Prop. 10 to get `k−l(Yi,xi) ;

6 else
7 compute `k−l(Yi,xi) = `k(Yi,xi)− `l(Yi,xi) using (34)

8 R(mk−l) = R(mk−l) + `k−l(Yi,xi);

9 if R(mk−l) > 0 then remove mk from {m1, . . . ,mR} ;

6. Experiments383

We run experiments on a “contaminated” version of 7 standard benchmark384

(binary classes) data sets that are described in Table 1. The next two Sections385

present the details of the experiments and the results obtained in the two cases386

of interval-valued features and set-valued labels.387

6.1. Interval-valued features case388

Given a data set, we randomly chose a training set D consisting of 10% of389

instances and the rest (90%) as a test set T. For each training instance xi ∈ D,390

and each dimension j = 1, ..., p, a biased coin is flipped in order to decide391

whether or not xji will be contaminated; the probability of contamination is α (α392
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Table 1: Data set used in the experiments

Name # instances # features
parkinsons 197 22

vertebral-column 310 6
ionosphere 351 34

climate-model 540 18
breast-cancer 569 30

blood-transfusion 784 4
banknote-authentication 1372 4

is fixed to 0.4 in all the experiments). Note that the probability that an instance393

has at least one contaminated feature is equal to 1 − 0.6p (the complement of394

having no features contaminated), which is quite high: 0.87 when p = 4, our395

lowest number of features in any data set. In case xji is contaminated, a width396

qji will be generated from a uniform distribution. Then, the generated interval397

valued data is Xj
i = [xji + qji (Dj − xji ), x

j
i + qji (D

j − xji )] where Dj = mini(x
j
i )398

and D
j

= maxi(x
j
i ).399

The set of undominated models is generated as follows: we randomly choose400

100 precise replacements from the interval-valued training data. From each401

replacement, one linear SVM model is trained. The set of such 100 models is402

considered as the initial set M of undominated models.403

After each query, the efficiency of the querying scheme is assessed based on404

the two following criteria:405

- the proportion on the test set of identical predictions between the current406

best potential model and a reference model. The reference model is chosen407

to be the one in the initial undominated set that has the best accuracy408

on the fully precise training set. It is thus the model towards which the409

race must converge. The best potential model is the minimin model in the410

race. In case of multiple minimal risk models, the one with the minimum411

value of R(m) will be chosen as the best potential model;412

- the size of the undominated set.413

To make comparisons about the convergence of the two criteria, two base-line414

algorithms are also used to query interval-valued features:415

- a random querying strategy where, each time, an interval feature to be416

queried is chosen randomly;417

- the most partial querying strategy i.e, each time, the feature with the418

largest imprecision (i.e., the largest sampled value q) is queried.419

Because the training set is randomly chosen and contaminated, the results420

may be affected by random components. Then, for each data set, we repeat the421

above procedure 10 times and compute the average results.422
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Figure 4: Experiments for interval-valued features data with preferred model

6.2. Set-valued labels case423

Experiments for the case of set-valued labels is performed in a similar way.424

Firstly, we randomly chose a training set D consisting of 20% of instances and425

the rest (of 80%) as a test set T. Then, each label yi in the training set D will be426

contaminated with probability α (α is fixed to 0.8 in all the experiments). Since427

the label is binary, if a label is contaminated, it becomes completely missing.428

To make comparisons, the two following base-line querying schemes are also429

used:430

- a random querying strategy, where, each time, a set-valued label is chosen431

randomly432

- and a query-by-committee (QBC) strategy which picks up the instance433

with a set-valued label associated to the highest disagreement among the434

predictions given by the models in the race;435

For each cases, we only show the results for two data sets (Parkinsons and436

Veretbral), as all data sets display similar behaviours. The experimental results437

for the case of interval-valued features and set-valued labels are given in Figures438

4 and 5, respectively. The other results can be found in the Appendix.439

In the case of set-valued labels, we can see that there are only slight dif-440

ferences between the methods. This result was expected, since, in the case of441

binary classification, partial labels are completely missing labels. Querying par-442

tial labels is thus equivalent to standard active learning methods like QBC. A443

lot of queries are needed to significantly reduce the set of undominated models444
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Figure 5: Experiments for set-valued labels data with preferred model

and to converge through the best model. Also, the random strategy has per-445

formances that are often comparable to the active learning ones. In contrast,446

the performances of our approach are much better than the others in the case447

of interval-valued features. One can see that the size of the set of undominated448

models is very quickly reduced and that our racing algorithm converges faster449

than the other approaches to the winning model.450

It should be noted that the two previous sections provide an illustration of451

our approach to a particular learning method, i.e., binary SVM, but that the452

method can be applied in principle to any other learning method. Of course,453

whether or not the racing can be efficiently achieved or can improve quickly the454

prediction qualities vary from models to models, and can even depend on the455

aspects of data that are partial: in the case of binary SVM, our method is much456

more interesting when features are partial. We think it is however mainly due457

to two reasons: binary SVM are rather robust with respect to changes in the458

labels of data, as their learning rely only on a handful of precise points (the459

support vectors), and partial labels take a very restricted form (in contrast with460

partial features) that is equivalent to having missing labels. Therefore, what461

happens for SVM and labels will not necessarily happen for multi-class methods462

more sensitive to misspecified labels, such as decision trees.463

In order to provide some insights about the potential difficulties of adapting464

our method to other models, the next section discuss briefly computational465

issues by building upon the results obtained for SVM.466
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7. Discussion on computational issues467

The reader may have noticed that the section devoted to SVM with interval-468

valued features was quite longer, and presented more complex methods than the469

one about set-valued labels. Such an observation extends beyond SVM, and we470

try in this section to give some reasons why we may expect the problem of471

interval-valued features to be more complex than the problem of set-valued472

labels. As with the previous sections, we will stick to the case of 0 − 1 loss473

functions. We will first provide some general remarks about the implementation474

of our generic approach, and then will shortly discuss how results obtained for475

the SVM case could be extended to monotone models in general.476

7.1. General discussion477

A first remark is that when we have a partial data (Xi, yi) with interval-478

valued features, a queryQj
i will not make the data precise unless only one feature479

is partial, but will transform Xi into X′i = ×k 6=jX
k
i × x

j
i . In contrast, querying480

a partial data (xi, Yi) with set-valued label Yi guarantees that the queried data481

becomes the precise data (xi, yi), hence guaranteeing that the loss with respect482

to any model ml will also become precise.483

Let us now consider the problem of computing bounds of loss functions and484

potential effect of queries, with a focus on pairs of models and on the case485

where partial data will induce imprecision in the loss functions of both models,486

which constitute the most difficult aspects of our approach (our conclusions487

also apply to other calculations, yet these are typically easier to solve for both488

interval-valued features and set-valued labels).489

Let us first consider the computations of `k−l: in the case of set-valued label
Yi, we do have

`k−l(Yi,xi) =

{
0 if mk(xi) = ml(xi) ∨ {mk(xi),ml(xi)} ∩ Yi = ∅
−1 else

(35)

as the first case describes the only situations where we cannot find a label λ ∈ Yi
such that mk(xi) = λ and ml(xi) 6= λ. These conditions are rather easy to check
in practice. In contrast, when one has interval-valued features, or more generally
set-valued features Xi with a precise label yi, we have that

`k−l(yi,Xi) =


1 if ∀xi ∈ Xi,mk(xi) 6= yi ∧ml(xi) = yi

−1 if ∃xi ∈ Xi s.t. mk(xi) = yi ∧ml(xi) 6= yi

0 else

(36)

with the last case corresponding to the situation where we can only find2 xi ∈ Xi490

such that either mk(xi) = ml(xi) = yi, or mk(xi) 6= yi and ml(xi) 6= yi.491

In contrast with Equation (35) whose conditions are easily checked provided492

2In addition to those possible xi for which mk(xi) 6= yi and ml(xi) = yi.
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mk(xi) and ml(xi) are easy to compute (this is the greatest majority of model-493

based learning methods), identifying which case of Equation (36) does apply is494

more complex and highly depends on the properties of the considered learning495

method.496

Similar conclusions can be drawn to compute the effect JQj
i
(ml,mk) of a

possible query. In the case of a set-valued label Yi, we can directly extend the
observation made in Proposition 10 for SVM to have that

JQi(mk,ml) = 1 iff `k−l(Yi,xi) = −1

where `k−l(Yi,xi) = −1 is given by the general and usually easy to esti-497

mate Equation (35). In contrast, we cannot extend Proposition 8 to arbitrary498

models when we have interval-valued features. Of course we still have that499

JQj
i
(mk,ml) = 0 when `k−l(yi,Xi) = 1, as it cannot be increased by any query.500

Yet, in the other cases, one must check that the conditions to have an increase501

of `k−l(yi,Xi) are met at least for one value xji ∈ X
j
i , and we do not see how502

to provide a generic, efficient algorithmic procedure to check them without con-503

sidering the specificities of the considered model.504

7.2. The case of monotone models505

In the case of the SVM methods, Proposition 7 uses the fact that linear506

functions are monotonic in every dimension X j . Note that our analysis should507

extend easily to all monotonic models, such as logistic regression or models based508

on the Choquet [18] and more generally on non-additive and fuzzy integrals [8].509

As an illustration of this fact, let us consider the case of the logistic regression
model. Keeping X = Rp and the output space Y = {−1, 1} encoding the two
possible classes, the logistic regression corresponding to a model mk can be
read3 as

mk(xi) = ln
Pk(1|xi)

Pk(−1|xi)
=

p∑
j=0

wj
kx

j
i ,

with Pk(.|xi) the posterior probabilities induced by model mk, and vector wk

its parameters with the convention x0i = 1. This model obviously shares with
the SVM that it is monotone in each of its parameters, and in the case of the
0− 1 loss function, we also have

`k(yi,xi) =

{
0 if yi ·mk(xi) ≥ 0

1 if yi ·mk(xi) < 0.
. (37)

Indeed, if mk(xi) > 0, we have Pk(1|xi) ≥ Pk(−1|xi), hence predicting ŷi = 1.
If we consider now that the features xi are imprecisely known (as said in the
previous section, the major computational difficulties will mostly happen in the
case of set-valued features), and that Xj

i = [aji , b
j
i ] (note that we still have

3The adopted formulation allows us to better shows the similarities with the SVM case.
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X0
i = [1, 1]), we can again easily determine when (Xi, yi) will be imprecise (1)

w.r.t. a model mk and (2) w.r.t. both models mk and m`. Clearly, for the first
case, we will have

[mk(Xi),mk(Xi)] =

∑
wj

k≥0

wj
kb

j
i +

∑
wj

k<0

wj
ka

j
i ,
∑
wj

k≥0

wj
ka

j
i +

∑
wj

k<0

wj
kb

j
i

 ,
and (Xi, yi) will be imprecise w.r.t. mk if and only if it contains the value 0
(arguments are similar to the one of the SVM case). Let us now consider the
case of not one but two models mk and m`, (Xi, yi) being imprecise w.r.t. both
of them (in the other situations, the same remarks as the one done for the SVM
case apply). Without loss of generality, we can assume that yi = 1, and we then
have that

`k−`(yi,Xi) =


1 if ∀xi,mk(xi) < 0 ∧m`(xi) > 0

−1 if ∃xi,mk(xi) > 0 ∧m`(xi) < 0

0 else .

It is clear that the first case will never happen, as (Xi, yi) is imprecise w.r.t.
mk (so there is an xi for which mk is positive). To check the second condition,
we have to know whether we can find xi with m`(xi) < 0, under the constraint
that mk(xi) > 0. This comes down to solve the following linear optimisation
problem

inf
xi∈Xi

mk(xi)>0

p∑
j=0

wj
`x

j
i

and to check whether it is negative, in which case the lower bound is −1, and 0510

otherwise. The methodology is here slightly different than in the SVM case, but511

still takes advantage of the monotonicity and linearity of the model. Completely512

implementing our proposal in the case of logistic regression would of course513

require some additional work (left here to the interested reader), but seems514

quite doable in the light of the above remarks.515

8. Conclusion516

This paper has explored an issue related to partially specified data: what517

is the best information to query so that an optimal model can be quickly de-518

rived. We have proposed a generic method, inspired from the idea of racing519

algorithms, to identify what partial data, feature or label should be queried520

(i.e., whose precise value should be obtained). The method search to differen-521

tiate, as soon as possible, different competing models. In principle, it can be522

applied to any learning method, but the computational complexity of applying it523

may vary between different learning methods, especially in the case of partially524

specified features, while the case of set-valued labels should present comparable525

complexities for most learning methods.526
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To illustrate this generic method, we have detailed its implementation for527

the specific case of binary SVM, and have performed various experiments to528

demonstrate the efficiency of our method. While it clearly outperformed other529

approaches in the case of partial features, demonstrating the potential usefulness530

of our approach in some cases, all tested approaches (including the random one)531

were comparable in the case of set-valued labels. However, it should be kept532

in mind that in the specific case of binary labels, learning and querying from533

partial data comes down to classical active learning. The picture may be quite534

different for multi-class problems.535

Our future research efforts will mainly concentrate on applying this approach536

to various learning methods. Decision trees seem particularly interesting, as we537

are optimistic about the possibility to propose implementation that are compu-538

tationally reasonable, and as those multi-class classifiers are well known to be539

highly sensitive to training data. This means that they could strongly benefit540

from our approaches. Logistic regression models, or their extension to non-linear541

functions [18] could also be explored, as in this case we can probably use the542

same monotonicity properties as in the SVM case.543
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Figure A.6: Experiments for interval-valued features data with preferred model
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Figure A.7: Experiments for set-valued labels data with preferred model
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