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Abstract— Unmanned Aerial Vehicles (UAVs) are the subject
of an increasing interest in many applications. Autonomy isone
of the major advantages of these vehicles. It is then necessary to
develop particular sensors in order to provide efficient navigation
functions. In this paper, we propose a method for attitude compu-
tation catadioptric images. We first demonstrate the advantages
of the catadioptric vision sensor for this application. In fact, the
geometric properties of the sensor permit to compute easilythe
roll and pitch angles. The method consists in separating thesky
from the earth in order to detect the horizon. We propose an
adaptation of the Markov Random Fields for catadioptric images
for this segmentation. The second step consists in estimating the
parameters of the horizon line thanks to a robust estimation
algorithm. We also present the angle estimation algorithm and
finally, we show experimental results on synthetic and real images
captured from an airplane.

I. I NTRODUCTION

Unmanned Aerial Vehicles (UAV) have proved their
usefulness in many applications. However, their autonomy
requires a lot of abilities such as being able to evaluate their
global position, their altitude or their attitude in order to
control their stability. In this work, we propose to use a central
catadioptric vision sensor in order to compute the attitudeof
a UAV. With this system, we are able to evaluate the roll (ρ)
and pitch (ψ) angles without any additional inertial or rate
sensors. The idea consists in using the particular geometric
characteristics of the catadioptric sensor in order to compute
precisely these angles.
Generally, attitude computation by vision is based on the
detection of the horizon in the image and on the estimation
of the angle between the horizon and a horizontal reference
line. In [1], the authors use a perspective camera and they
consider the horizon as a straight line. The roll angle is then
given by the inverse tangent of the slope of the horizon line
and the pitch angle is approximated by the percentage of sky
in the image. Then, they are looking for the horizon line in
the image which maximizes an optimization criterion which
tends to separate the earth from the sky. In [2], an improved
version of the previous algorithm which better manages the
variation of the appearance of the sky is presented. In this
way, they propose to integrate a texture representation in
order to improve the first model which only relies on color
information. A statistical framework with prior models of

the sky and the earth is also used for the adaptation of the
algorithm to the variations of appearance.
In spite of the interesting results obtained with these
approaches, the use of a single perspective camera generates
several drawbacks. First, we only obtain a partial view of
the environment and important occlusions in the horizon
can have a serious influence on the final result. Second, the
horizon is visible only in a particular interval of roll and
pitch values. If the UAV gets out of this interval, the final
image is exclusively made of sky or earth and the horizon
can not be detected. Third, with a perspective camera, it is
only possible to compute the roll angle while the pitch is
only approximated thanks to a hypothesis on the altitude of
the UAV. In this work, we propose to use an omnidirectional
visual sensor in order to compute the attitude of a UAV. This
kind of sensor has already been used for the navigation of
UAVs as in [3] and omnidirectional vision has proved its
usefulness in a lot of robotic applications [4]. Omnidirectional
vision and more particularly catadioptric vision consistsin
associating a convex mirror with a projective camera whose
optical axis is aligned with the axis of the mirror [4]. The
main advantage of these sensors is the acquisition of an
omnidirectional image with a single shot. In our application
of UAV attitude computation, omnidirectional vision presents
the following advantages: first, a complete surrounding of
the UAV can be captured and the horizon is totally visible.
The possible occlusions will then have a lower impact on the
estimation of the final results. Second, whatever the attitude
of the UAV, the horizon is always present in the image, even
partially, and the angles can always be computed. Third, we
are able to compute the roll angle but also the pitch angle
without any prior hypothesis, contrary to the applications
including a perspective camera.
However, catadioptric vision also presents some drawbacks.
For example, a catadioptric image contains significant
deformations due to the geometry of the mirror and to the
sampling of the camera [5] and these deformations have
important consequences for the image processing. So, direct
application of classical operators can not provide satisfactory
results. We then also show in this paper an adaptation of
the Markov Random Fields (MRFs) which permits to treat
the images while taking into account these deformations.



Fig. 1. Equivalence between the catadioptric projection and the two-step
mapping via the sphere.

We use this adaptation in order to detect the horizon in the
catadioptric image. Once this horizon line is detected, we
use the particular geometric characteristics of the catadioptric
sensor in order to compute the attitude of the UAV.

In the rest of the paper, we present in Section 2 the model
of image formation and how the horizon is projected in the
catadioptric image. Section 3 is devoted to the adaptation of
MRFs to the catadioptric images and to its implementation
for the ground/sky segmentation. In Section 4, we develop the
estimation of the parameters of the horizon and consequently
of the roll and pitch angles. Experimental results and a
discussion are proposed in Section 5. Finally, we conclude
in Section 6 with a summary and perspectives.

II. I MAGE FORMATION AND HORIZON PROJECTION

A. Central Catadioptric Image Formation

Baker and Nayar classified catadioptric sensors into two
categories depending on the number of viewpoints [6]. Sensors
with a single viewpoint, named central catadioptric sensors,
permit a geometrically correct reconstruction of the perspec-
tive image from the original catadioptric image. This category
is made of a parabolic mirror associated to an orthographic
camera and hyperbolic, elliptic and plane mirrors with a
perspective camera. The second category with several view-
points has much less significant geometric properties and is
made of the other possibilities of associations between mirrors
and cameras. In this paper, we are only interested in central
sensors, for which Geyer and Daniilidis have demonstrated the
equivalence with a two-step projection via a unitary sphere
centered on the focus of the mirror (the single viewpoint) [7].
This two-step projection first consists in projecting a 3D point
to the sphere from the center of the sphere. The next step
consists in projecting the point on the sphere to the image
plane from a pointOp placed on the optical axis (Fig 1). The
position of this point of projectionOp and of the image plane
are determined with the calibration of the sensor.

B. Projection from the Image to the Sphere

From the equivalence model developed in [7] and showed
in Figure 1, we have :

xs = γxw

ys = γyw

zs = γzw

(1)

The equation of the unitary sphere isx2
s + y2

s + z2
s = 1 and

then gives :

γ =
1√

x2
w + y2

w + z2
w

(2)

The coordinates of pointPi on the image plane are then
obtained from the perspective projection ofPs and parameters
(ξ,ϕ) of the mirror :

xs

ξ−zs

= x
ξ+ϕ

ys

ξ−zs

= y
ξ+ϕ

z = −ϕ,
(3)

where (x, y, z) are the coordinates of pointPi expressed in
the metric system andξ andϕ define the shape of the mirror
(see [8] for further details on their signification).
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In the image frame, we finally obtain :
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 , (5)

where (u, v) are the coordinates ofPi in pixels and
(αu, αv, u0, v0) are the intrinsic parameters of the camera. In
order to perform the calibration with this model, we place the
catadioptric system in a cube with a grid of points on each
side. In this way, the points of the pattern are distributed over
the whole catadioptric image. The pattern contains 144 points
and we estimate six extrinsic parameters (3 rotations and 3
translations): the parametersξ andϕ of the mirror as well as
the intrinsic parameters of the camera(αu, αv, u0, v0). The
estimation is performed by the minimization of the quadratic
error between the selected points and those computed by the
model. With this method, we are then able to calibrate any
central catadioptric sensor without restriction about theshape
of the mirror as in the method proposed in [9].

C. Central Catadioptric Projection of the Horizon

As demonstrated in [9], a 3D sphere projects on the equiva-
lent sphere in a small circle, and then on the catadioptric image
plane in an ellipse. Consequently, the attitude computation
consists in looking for an ellipse in the omnidirectional image
or a small circle on the equivalent sphere which corresponds
to the horizon. The geometrical properties of the equivalent
sphere allow to deduce the roll and pitch angles. Indeed, if we
consider Figure 2, we can note that the normal of the projected



horizon on the sphere, which is also confounded with the line
passing through the center of the sphere of equivalence and
through the center of the earth represents in fact the attitude
of the UAV depending on the position of the optical axis.
Then, the computation of the coordinates of the optical axis
is sufficient in order to deduce the roll and pitch angles. From
the previous considerations, the complete algorithm will then
first consists in segmenting the catadioptric image in orderto
separate the sky from the ground and in extracting the points
of the horizon. Next, we back project the points of the horizon
on the sphere of equivalence thanks to the parameters obtained
with the calibration. Finally, we estimate the best plane which
passes through the points of horizon on the sphere and we
deduce its normal and consequently the roll (ρ) and pitch (ψ)
angles.

Fig. 2. Relation between the projections of the horizon and the roll (ρ) and
pitch (ψ) angles.

III. SKY /GROUND SEGMENTATION IN CATADIOPTRIC

IMAGES

This section deals with the problem of horizon detection.
To do this, we choose an MRF modeling in order to segment
the omnidirectional image in two parts, one corresponding to
the sky and the other one to the ground.

A. Limitation of Classical MRFs in Omnidirectional Images

Since the eighties and thanks to Besag [10], MRFs have
permitted to solve many problems in image processing such
as image segmentation, image restoration, motion detection
and so on. However, they become unsuitable if they are
applied in the same way for catadioptric images. Indeed, MRFs
use a local dependence between pixels from a predefined
neighborhood, which has to be reconsidered because of the
distortions of catadioptric images.

In the case of classical images, the neighboring systems are
defined by the closest pixels (generally, neighboring of order
1 or 2). However, this kind of neighborhood is not suited to
catadioptric images because of the distortions generated by the
mirror. Indeed, a pixel at a distanced of pixel p does not have
the same influence on the latter ifp is placed either in the
center of the image or in its periphery.

(a) (b)

Fig. 3. (a) Neighborhood at the periphery of the image, (b) Neighborhood
in the center of the image.

B. An Adapted Neighborhood

To find a neighboring more appropriate to an omnidirec-
tional image, we propose to use the equivalence between the
catadioptric projection and the sphere (Fig. 1).

In the model of equivalence [7], the mapping function is
equivalent to a projection of a 3D pointPw to a pointPs on
the sphere, followed by a projection from a point on the optical
axis to pointPi on the image plane (Fig. 1). The center of the
sphere is equal to the mirror focus and its radius is function
of the latus rectum of the mirror. The position of the center of
projection in the second projection depends on the shape and
the dimensions of the mirror.

Let us posePi an omnidirectional image point of polar co-
ordinates(u, v) = (D cos(φ), D sin(φ)) in camera coordinate
system which center corresponds to the mirror axis.
The equivalent pointPs on the sphere has then as spherical
coordinates(1, θ, φ) in the coordinate system associated with
the equivalent sphere of radius1:

θ = arccos

(
ξD2 − (ξ + ϕ)

√
(ξ + ϕ)2 +D2(1 − ξ2)

D2 + (ξ + ϕ)2

)
.

(6)
This change of space makes possible to overcome the distor-
tions induced by the sensor. To create a spatial dependence
between the points, it thus appears more natural to consider
pointsPs instead of pointsPi by associating to these points
a neighborhood defined on the equivalent sphere.
Let Π the projection for which any sites (pixel of the
omnidirectional image) associates its equivalent pointPs in
spherical coordinates on unitary sphereS2 (Fig 1),

Π :
S → S2

s = (u, v) 7→ (1, θs, φs)
(7)

Then we define the new neighborhood as follows (Fig 3):

∀s ∈ S,Π(s) = (1, θs, φs)

Vs =






t ∈ S, t 6= s Π(t) = (1, θt, φt) such as
|θt − θs| ≤ 1

N
and

(|φt − φs| ≤ 1
M

or |φt − φs| ≥ 2π − 1
M

)




 ,

(8)
whereN and M are two fixed constants which define the
order of the neighborhood.
Let us note that we do not carry out any sampling on the



equivalent sphere. Indeed, the new neighborhood is defined
only starting from the points of the sphere corresponding to
pixels of the omnidirectional image.

We have shown in [11] that this neighborhood is more
appropriate for omnidirectional images than a classical neigh-
borhood used for perspective images.

C. Markovian Formulation of Sky/Ground Segmentation

We want to divide the image into two groups, one which
corresponds to the sky and the other one to the ground in
omnidirectional image sequenceI(t). To achieve this, we
define a Markovian modeling as follows. Let us poseE(t) =
{es(t), s ∈ S} the label field wherees can take two values
{0, 1} (0= site of the sky,1 = site of the ground),O(t) =
{os(t), s ∈ S} is the observation field and whereS is the set of
pixels in the image. At each sites, observationos is supplied
by color componentc(s) = (c1(s), c2(s), c3(s)) expressed in
the space described in [12]:

c1 = r − g, c2 = 2b− r − g, c3 = r + g + b,

with (r, g, b) the color space coordinates in the (red,green,blue)
color space. The data-driven potentialq at each site is defined
by:

q(es, os) = (c(s) −Mes
)tΣ−1

es
(c(s) −Mes

) (9)

the two regions being modeled by a Gaussian model
(Mes

,Σes
). Then, penalization termv which favors the spatial

homogeneity is :

v(es, er) = µ(1 − δ(es − er)) (10)

whereµ is a positive constant andδ is the Kronecker symbol.
Let us noteCsr = {c ∈ C|s ∈ c et r ∈ c}, the maximum a

posteriori (MAP) criterion of our modelization is the minimum
of:

U(e, o) =
∑

s∈S

q(es, os) +
∑

<s,r>∈C

1

card(Csr)
v(es, er) (11)

whereC are the cliques defined using neighborhoodV (for-
mula (8)).

At time t = 0, the two Gaussian models defining the Sky
and the Ground are evaluated using a disc at the periphery on
the omnidirectional image for the sky and a disc at the image
center for the ground. Then, the Gaussian models are estimated
using the label field of the previous estimatione(t− 1).

IV. H ORIZON ESTIMATION AND ATTITUDE COMPUTATION

Once the horizon has been detected in the image, we want to
compute the normal of the plane which contains the projection
of the horizon on the sphere. This method then first consists in
using the results of the calibration in order to project the points
from the image to the sphere. Next, we propose to estimate
the small circle parameters thanks to a robust M-estimator of
Tukey [13] and finally we obtain the roll and pitch angles from
the coordinates of the normal of the small circle.

The aim of this step consists in estimating the plane which
passes through the points of the horizon on the sphere. Let

us considerN horizon points projected on the sphere with
coordinates(xi

s, y
i
s, z

i
s) with i = 1, . . . , N . In order to avoid

the outlying points, we need to determineΘ = (A,B,C)T as
the solution of :

Θ̂ = arg min
Θ

∑
i

Γ(ri)

ri = Axi
s +Byi

s + C + zi
s.

(12)

whereΓ is the robust M-estimator of Tukey’s biweight [14].
SolutionΘ̂ of (12) is computed by an Iteratively Reweighted
Least Squares (IRLS):

Θ̂ = min
Θ

∑

i=1

wi(r
i)2, (13)

wherewi = 1
ri

∂Γ
∂x

(ri). The normal of the horizon plane has
then the coordinates(A,B, 1) and we can compute pitch (ψ)
and roll (ρ) angles as follows :

ψ =
A

| A | × arccos

(
1√

1 +A2

)
(14)

ρ =
−B
| B | × arccos

(
| cos(−ψ) −A sin(−ψ) |√

(cos(−ψ) −A sin(−ψ))2 + B2

)

(15)

V. EXPERIMENTAL RESULTS

A. Horizon Detection

The results of the horizontal detection on three different
sequences are presented on Figure 4. These images have
been taken with our sensor from an altitude of2 meters. In
this figure, the white line corresponds to the limit between
the sky and the ground. The minimization of equation(11)
is performed with the HCF algorithm [15]. We see that
Markovian modeling permits to correctly delimit the sky and
the ground, even in the presence of trees (Fig 4(c) and Fig
4(d)). On the other hand, when the texture of the ground is
similar to that of the sky, the first one is labelled as belonging
to the sky (Ex: snow Fig 4(e) and Fig 4(f)). In this case,
the M-estimator plays an important role. Indeed, as long as
the number of points which delimits this badly labelled zone
is weak compared to the number of points which detect the
horizon correctly, the M-estimator will not take into account
these outliers.

B. Attitude Computation

Since it is difficult to obtain the ground truth for the attitude
of a UAV synchronized with the correspondent image, we
evaluate our algorithm with synthetic images. We then use
a synthetic catadioptric image generator with the real intrinsic
parameters of our catadioptric sensor. The altitude of the UAV
is constant and equal to 500 meters. We can then easily
compute the occluding contour of the Earth, and consequently
its projection on the catadioptric image plane. 11,000 artificial
images of the projection of the horizon were generated with
different combinations of roll and pitch angles. In order to
study the sensitivity of the algorithm to image noise, we add
outliers to the list of points which constitute the projected



(a) (b)

(c) (d)

(e) (f)

Fig. 4. Results of Sky/Ground Segmentation using the Markovian modeling
with a neighborhood adapted for omnidirectional image,µ = 10.

horizon. The number of outliers varies from 0 to 100% of the
number of horizon points and the positions of these outliers
are randomly computed.

In Figure 5, the 3D plots show the mean error expressed
in degrees for the roll and pitch angles for the different
combinations of angles, noise and sampling. We can see that
this error is approximately equal to3 degrees when the number
of outliers is low and increases to5 degrees when the number
of outliers is high. If we analyze our results more in depth, the
main errors are obtained when the pitch and roll angles are
close to90◦ or −90◦. If we consider only the interval equal
to [−60◦, 60◦] for both angles, the error becomes less than
1 degree. This effect is due to the projection of the horizon
which becomes a piece of ellipse in the image. The estimation
of the parameters of the great circle is then more delicate and
some errors may occur.

In table I, we present the roll and pitch angles of Figure
5. For each one of these images, we do not have the ground
truth attitude but we can estimate that the results are coherent
with the presented images. Finally, in Figure 6, we propose
some results obtained with the sensor mounted on an aerial
platform. The red pixels correspond to the detected pixels of
the horizon and in the bottom left corner, the estimated roll
and pitch angles are presented. We can see that the evolution

(a)

(b)

Fig. 5. 3D plot of the attitude error in the different combinations (a) Roll
error, (b) Pitch error.

Figure Roll (ρ) Pitch (ψ)
5.(a) ρ = −5.5◦ ψ = −3◦

5.(b) ρ = 2.3◦ ψ = 3.5◦

5.(c) ρ = −3◦ ψ = −9◦

5.(d) ρ = −2.9◦ ψ = 5.2◦

5.(e) ρ = 0
◦ ψ = −4

◦

5.(f) ρ = −4.2◦ ψ = −1.6◦

TABLE I

ROLL AND PITCH ANGLES OFFIGURE 5

of the values is totally coherent with the movement perceived
in the sequence. The complete sequence is available at the fol-
lowing address http://www.crea.u-picardie.fr/∼vasseur. Figure
7 presents the evolution of the roll and pitch angles during a
sequence of 1000 images. We can note that for each image
the angles are always computed and that there is no outlier
in the estimated values. We can also see that the algorithm
offers a good rate of repeatability since between successive
images with a similar attitude, the angle values do not differ
significantly.

VI. SUMMARY AND CONCLUSION

In this paper, we present an attitude sensor for UAVs based
on a central catadioptric vision sensor. This sensor presents
several advantages compared to a perspective camera such
as robustness even in case of occlusions in the horizon, the
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Pitch : 5.03 °
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Pitch : −0.27 °
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Roll : −3.72 °
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Fig. 6. Experimental results on real images captured from anaerial platform
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Fig. 7. Roll (blue line) and pitch (red line) angles during a sequence of 1000
images.

constant visibility of the horizon in the image and a real
computation of the roll and pitch angles. The method for the
attitude computation is divided in two main steps. First, weare
looking for the horizon line in the catadioptric image plane.
This detection is performed thanks to a markovian approach.
However, because of the distortions in the omnidirectional
image, a classic neighborhood can not be directly employed.
We then propose a new neighboring system adapted to the
geometry of the sensor in order to segment the image in
two regions (sky/earth). Once the horizon line is detected,the

second step consists in projecting this line onto the equivalent
sphere in order to estimate the attitude angles. Thanks to the
geometric properties of the equivalent sphere, the computation
of the pitch and roll angles consists in finding a 3-space plane
which intersects the sphere. For this, we use a robust estimator
in order to discard the potential outliers detected during the
horizon line extraction. Experimental results demonstrate the
robustness of the horizon line detection and attitude estimation
of the sensor (and consequently of the UAV). Synthetic results
allow to verify the accuracy of the angle estimation with an
error which is less than one degree for angles in the interval
[−60◦, 60◦].
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