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Abstract— Unmanned Aerial Vehicles (UAVs) are the subject the sky and the earth is also used for the adaptation of the
of an increasing interest in many applications. Autonomy isone  algorithm to the variations of appearance.
of the major advantages of these vehicles. It is then necesgdo In spite of the interesting results obtained with these

develop particular sensors in order to provide efficient naigation h th f inal ti t
functions. In this paper, we propose a method for attitude canpu- approaches, the use of a singie perspective camera generate

tation catadioptric images. We first demonstrate the advarages Several drawbacks. First, we only obtain a partial view of
of the catadioptric vision sensor for this application. In fact, the the environment and important occlusions in the horizon
geometric properties of the sensor permit to compute easilthe can have a serious influence on the final result. Second, the
roll and pitch angles. The method consists in separating theky o0 js visible only in a particular interval of roll and

from the earth in order to detect the horizon. We propose an . L .
adaptation of the Markov Random Fields for catadioptric images pitch values. If the UAV gets out of this interval, the final

for this segmentation. The second step consists in estimagj the image is exclusively made of sky or earth and the horizon
parameters of the horizon line thanks to a robust estimation can not be detected. Third, with a perspective camera, it is
algorithm. We also present the angle estimation algorithm ad  only possible to compute the roll angle while the pitch is
finally, we show exp.erlmental results on synthetic and realmages only approximated thanks to a hypothesis on the altitude of
captured from an airplane. . S .
the UAV. In this work, we propose to use an omnidirectional

visual sensor in order to compute the attitude of a UAV. This
kind of sensor has already been used for the navigation of

Unmanned Aerial Vehicles (UAV) have proved theitUAVs as in [3] and omnidirectional vision has proved its
usefulness in many applications. However, their autononugefulness in a lot of robotic applications [4]. Omnidifentl
requires a lot of abilities such as being able to evaluate thgision and more particularly catadioptric vision consigts
global position, their altitude or their attitude in ordey t associating a convex mirror with a projective camera whose
control their stability. In this work, we propose to use atcah optical axis is aligned with the axis of the mirror [4]. The
catadioptric vision sensor in order to compute the attitafle main advantage of these sensors is the acquisition of an
a UAV. With this system, we are able to evaluate the rp)l ( omnidirectional image with a single shot. In our applicatio
and pitch {) angles without any additional inertial or rateof UAV attitude computation, omnidirectional vision prese
sensors. The idea consists in using the particular geamettie following advantages: first, a complete surrounding of
characteristics of the catadioptric sensor in order to agmp the UAV can be captured and the horizon is totally visible.
precisely these angles. The possible occlusions will then have a lower impact on the
Generally, attitude computation by vision is based on thestimation of the final results. Second, whatever the dtitu
detection of the horizon in the image and on the estimatiari the UAV, the horizon is always present in the image, even
of the angle between the horizon and a horizontal referengartially, and the angles can always be computed. Third, we
line. In [1], the authors use a perspective camera and thene able to compute the roll angle but also the pitch angle
consider the horizon as a straight line. The roll angle isithevithout any prior hypothesis, contrary to the applications
given by the inverse tangent of the slope of the horizon linecluding a perspective camera.
and the pitch angle is approximated by the percentage of dkgwever, catadioptric vision also presents some drawbacks
in the image. Then, they are looking for the horizon line ifFor example, a catadioptric image contains significant
the image which maximizes an optimization criterion whicdeformations due to the geometry of the mirror and to the
tends to separate the earth from the sky. In [2], an improvedmpling of the camera [5] and these deformations have
version of the previous algorithm which better manages tiraportant consequences for the image processing. So,tdirec
variation of the appearance of the sky is presented. In thpplication of classical operators can not provide satisfg
way, they propose to integrate a texture representation ragsults. We then also show in this paper an adaptation of
order to improve the first model which only relies on colothe Markov Random Fields (MRFs) which permits to treat
information. A statistical framework with prior models ofthe images while taking into account these deformations.

I. INTRODUCTION



B. Projection from the Image to the Sphere

From the equivalence model developed in [7] and showed
in Figure 1, we have :

Ts = YTy
Ys = VYw (1)
Zs = YRw

The equation of the unitary sphereai$+y%+ 22 =1 and
then gives :

1
’7/ =
N

. . o . The coordinates of poinP; on the image plane are then
Fig. 1. Equivalence between the catadioptric projectiod #re two-step . . ..
mapping via the sphere. obtained from the perspective projectionfaf and parameters

(¢,) of the mirror :

)

I T
. . . . . —zs m
We use this adaptation in order to detect the horizon in the Ys  — Y

catadioptric image. Once this horizon line is detected, we ZZ: _%w
use the particular geometric characteristics of the capadc

sensor in order to compute the attitude of the UAV. where (z, y, z) are the coordinates of poirft; expressed in
the metric system ané and ¢ define the shape of the mirror

pe [8] for further details on their signification).

In the rest of the paper, we present in Section 2 the mocig
of image formation and how the horizon is projected in the _ (£4+¢)Tw
catadioptric image. Section 3 is devoted to the adaptatfon o V@l +yd +2% — 2w

P . ; _ (E+)yw 4
MRFs to the catadioptric images and tp its implementation Y= P s 4)
for the ground/sky segmentation. In Section 4, we develep th 2= —g

estimation of the parameters of the horizon and conseguentl . . .
of the roll and pitch angles. Experimental results and a!n the image frame, we finally obtain :
discussion are proposed in Section 5. Finally, we conclude

X
in Section 6 with a summary and perspectives. u\_ ([ aw 0 u 5
v 0 o v vl ®)
v 0 1
Il. IMAGE FORMATION AND HORIZON PROJECTION where (u,v) are the coordinates ofP; in pixels and
(o, ay, ug, V) are the intrinsic parameters of the camera. In
A. Central Catadioptric Image Formation order to perform the calibration with this model, we place th

catadioptric system in a cube with a grid of points on each

Baker and Nayar classified catadioptric sensors into twje. In this way, the points of the pattern are distributeero
categories depending on the number of viewpoints [6]. S8nsghe whole catadioptric image. The pattern contains 144tpoin
with a single viewpoint, named central catadioptric sessoiand we estimate six extrinsic parameters (3 rotations and 3
permit a geometrically correct reconstruction of the peesp translations): the parametefsand o of the mirror as well as
tive image from the original catadioptric image. This cai§y the intrinsic parameters of the came@, , o, , o, o). The
is made of a parabolic mirror associated to an orthographistimation is performed by the minimization of the quadrati
camera and hyperbolic, elliptic and plane mirrors with arror between the selected points and those computed by the
perspective camera. The second category with several vigfodel. With this method, we are then able to calibrate any

points has much less significant geometric properties andcisntral catadioptric sensor without restriction aboutghape
made of the other possibilities of associations betweenonsir of the mirror as in the method proposed in [9].

and cameras. In this paper, we are only interested in central - o _

sensors, for which Geyer and Daniilidis have demonstrated {C- Central Catadioptric Projection of the Horizon

equivalence with a two-step projection via a unitary sphere As demonstrated in [9], a 3D sphere projects on the equiva-
centered on the focus of the mirror (the single viewpoin}) [7lent sphere in a small circle, and then on the catadioptragien
This two-step projection first consists in projecting a 3Dnpo plane in an ellipse. Consequently, the attitude computatio
to the sphere from the center of the sphere. The next swgnsists in looking for an ellipse in the omnidirectionakige
consists in projecting the point on the sphere to the image a small circle on the equivalent sphere which corresponds
plane from a poinO,, placed on the optical axis (Fig 1). Theto the horizon. The geometrical properties of the equivalen
position of this point of projectio, and of the image plane sphere allow to deduce the roll and pitch angles. Indeedeif w
are determined with the calibration of the sensor. consider Figure 2, we can note that the normal of the prajecte



horizon on the sphere, which is also confounded with the line
passing through the center of the sphere of equivalence an
through the center of the earth represents in fact the atitu
of the UAV depending on the position of the optical axis. . .
Then, the computation of the coordinates of the optical axis
is sufficient in order to deduce the roll and pitch anglesnkro
the previous considerations, the complete algorithm uiint
CY (b)

first consists in segmenting the catadioptric image in otder

separate the sky from the ground and in extracting the points _ _ _

of the horizon. Next, we back project the points of the hmiz(ﬁ]'%hg"ceg?ngoi'%ﬁ:?mggg at the periphery of the image, (bighteorhood

on the sphere of equivalence thanks to the parameters ebtain

with the calibration. Finally, we estimate the best planécivh

passes through the points of horizon on the sphere and we .

deduce its normal and consequently the rp)lénd pitch ) B An Adapted Neighborhood

angles. To find a neighboring more appropriate to an omnidirec-
tional image, we propose to use the equivalence between the

Center of projection from catadioptric projection and the sphere (Fig. 1).

the sphere to the mage plane

o In the model of equivalence [7], the mapping function is
7 esae e equivalent to a projection of a 3D poift, to a pointP, on
Sphere of the sphere, followed by a projection from a point on the aitic
sauhelence Projection of th horizon axis to pointP; on the image plane (Fig. 1). The center of the

on the image plane

sphere is equal to the mirror focus and its radius is function
of the latus rectum of the mirror. The position of the center o
projection in the second projection depends on the shape and
the dimensions of the mirror.

Let us poseP; an omnidirectional image point of polar co-
ordinates(u, v) = (D cos(¢), D sin(¢)) in camera coordinate
system which center corresponds to the mirror axis.

The equivalent point?, on the sphere has then as spherical

Fig. 2. Relation between the projections of the horizon dredroll (p) and coordinateq1, ¢, ¢) in the coordinate system associated with

Normal to the Earth

image Plane

Optical Axis

pitch @) angles. the equivalent sphere of radius
0 — arecos | 22— E+9)V(E+9)* + D21 - &)
[1l. SKY/GROUND SEGMENTATION IN CATADIOPTRIC - D2 4 (€ 4 )2 :

IMAGES (6)

This section deals with the problem of horizon detectiohis change of space makes possible to overcome the distor-
To do this, we choose an MRF modeling in order to segmeli@ns induced by the sensor. To create a spatial dependence

the omnidirectional image in two parts, one corresponding Petween the points, it thus appears more natural to consider
the sky and the other one to the ground. points P instead of pointsP; by associating to these points

a neighborhood defined on the equivalent sphere.
A. Limitation of Classical MRFs in Omnidirectional Images  Let II the projection for which any sites (pixel of the

Since the eighties and thanks to Besag [10], MRFs ha@&Wnidirectional image) associates its equivalent pdmtin
permitted to solve many problems in image processing sugRherical coordinates on unitary sphéfe (Fig 1),
as image segmentation, image restoration, motion detectio S - 52
and so on. However, they become unsuitable if they are T ) = (1,6,6.) ()
applied in the same way for catadioptric images. Indeed, MRF ) ) .
use a local dependence between pixels from a predefingte We define the new neighborhood as follows (Fig 3):
neighborhood, which has to be reconsidered because of theys ¢ S TI(s) = (1, 6,, ¢s)
distortions of catadioptric images.

In the case of classical images, the neighboring systems are teS,t#s I(t) = (1,6, ¢;) such as
defined by the closest pixels (generally, neighboring oeord  p, = { |9, — 6, < % and ,
1 or 2). However, this kind of neighborhood is not suited to (Ipr — bs| < 37 OF |pr — | > 27 — &)
catadioptric images because of the distortions genergtéueb (8)

mirror. Indeed, a pixel at a distandeof pixel p does not have where N and M are two fixed constants which define the
the same influence on the latterjifis placed either in the order of the neighborhood.
center of the image or in its periphery. Let us note that we do not carry out any sampling on the



equivalent sphere. Indeed, the new neighborhood is definexl considerN horizon points projected on the sphere with
only starting from the points of the sphere corresponding twordinatesz®, ¢, 2¢) with i = 1,..., N. In order to avoid
pixels of the omnidirectional image. the outlying points, we need to determife= (A, B,C)" as

We have shown in [11] that this neighborhood is morthe solution of :
appropriate for omnidirectic_mal_ images than a classicajhme o arg min " T(r;)
borhood used for perspective images. _ R _ (12)

. . . r* = Azl + By, + C + z..
C. Markovian Formulation of Sky/Ground Segmentation _ ) o
whereT" is the robust M-estimator of Tukey’s biweight [14].

We want to divide the image into two groups, one Whicgolution@ of (12) is computed by an lteratively Reweighted
corresponds to the sky and the other one to the groundl_lgast Squares (IRLS):

omnidirectional image sequencKt). To achieve this, we
define a Markovian modeling as follows. Let us pdsg) = © =min Y w;(r)?, (13)
{es(t),s € S} the label field wheree; can take two values © =

{0,1} (0= site of the sky,1 = site of the ground)O(¢) =
{0s(t), s € S} is the observation field and whefds the set of
pixels in the image. At each sitge observatiorv, is supplied
by color component(s) = (c1(s), c2(s), c3(s)) expressed in

wherew; = %2 (%), The normal of the horizon plane has

rt Ox

then the coordinate4, B, 1) and we can compute pitch)f
and roll (p) angles as follows :

the space described in [12]: y ( 1 ) (14)
= —— X arccos | ————
co=r—g, c=2b—r—g, c3=r+g+Db, | A V14 A2
with (r, g,b) the color space coordinates in the (red,green,blue), — —52 ¢ | cos(—¢) — Asin(—7)) |
color space. The data-driven potentjait each site is defined | B | V/(cos(—¢) — Asin(—v))? + B2
by:

ales; 0s) = (els) = Me,)"Be ! (cls) = Me,) ) V. EXPERIMENTAL RESULTS

the two regions being modeled by a Gaussian mod&l Horizon Detection
(M., X..). Then, penalization term which favors the spatial

L The results of the horizontal detection on three different
homogeneity is :

sequences are presented on Figure 4. These images have
v(es,er) = p(1 = 8(es —e,)) (10) been taken with our sensor from an altitude2ofneters. In
this figure, the white line corresponds to the limit between
wherey is a positive constant antlis the Kronecker symbol. the sky and the ground. The minimization of equation(11)
Let us noteC, = {c € C[s € c etr € c}, the maximum a s performed with the HCF algorithm [15]. We see that
posteriori (MAP) criterion of our modelization is the minimh  pmarkovian modeling permits to correctly delimit the sky and

of: the ground, even in the presence of trees (Fig 4(c) and Fig
_ 1 4(d)). On the other hand, when the texture of the ground is
Ule,0) = ;gq(em 0s) + - z;ec cardcm‘)v(es’ er) (11) similar to that of the sky, the first one is labelled as belaggi

to the sky (Ex: snow Fig 4(e) and Fig 4(f)). In this case,
where(C are the cliques defined using neighborhdodfor- the M-estimator plays an important role. Indeed, as long as
mula (8)). the number of points which delimits this badly labelled zone
At time t = 0, the two Gaussian models defining the Skjs weak compared to the number of points which detect the
and the Ground are evaluated using a disc at the peripheryttizon correctly, the M-estimator will not take into acodu
the omnidirectional image for the sky and a disc at the imagigese outliers.
center for the ground. Then, the Gaussian models are estimat ] ]
using the label field of the previous estimatieft — 1). B. Attitude Computation
Since it is difficult to obtain the ground truth for the attit
of a UAV synchronized with the correspondent image, we
Once the horizon has been detected in the image, we wanét@luate our algorithm with synthetic images. We then use
compute the normal of the plane which contains the projectia synthetic catadioptric image generator with the realrisic
of the horizon on the sphere. This method then first consistsgarameters of our catadioptric sensor. The altitude of th¢ U
using the results of the calibration in order to project tbents is constant and equal to 500 meters. We can then easily
from the image to the sphere. Next, we propose to estimat@mpute the occluding contour of the Earth, and consequentl
the small circle parameters thanks to a robust M-estimdtorits projection on the catadioptric image plane. 11,000ieidi
Tukey [13] and finally we obtain the roll and pitch angles fronimages of the projection of the horizon were generated with
the coordinates of the normal of the small circle. different combinations of roll and pitch angles. In order to
The aim of this step consists in estimating the plane whidtudy the sensitivity of the algorithm to image noise, we add
passes through the points of the horizon on the sphere. betliers to the list of points which constitute the projette

IV. HORIZON ESTIMATION AND ATTITUDE COMPUTATION



(e) 0] Fig. 5. 3D plot of the attitude error in the different combinas (a) Roll

. . . . ) error, (b) Pitch error.
Fig. 4. Results of Sky/Ground Segmentation using the Maskomodeling

with a neighborhood adapted for omnidirectional images 10.

Figure Roll (p) Pitch @)
5.(a | p=—5.5° P =—-3°
5.(b) p=2.3° P = 3.5°
5.(c) p=—3° P =—-9°

horizon. The number of outliers varies from 0 to 100% of the 5.(d) | p=-29° | o =520
number of horizon points and the positions of these outliers 5.(e) p=0° P = —4°
are randomly computed. 5(f) | p=-42° | p=-16°

In Figure 5, the 3D plots show the mean error expressed TABLE |
in degrees for the roll and pitch angles for the different
combinations of angles, noise and sampling. We can see that
this error is approximately equal Sodegrees when the number
of outliers is low and increases fodegrees when the number
of outliers is high. If we analyze our results more in depltie, t of the values is totally coherent with the movement perakive
main errors are obtained when the pitch and roll angles drethe sequence. The complete sequence is available atlthe fo
close t090° or —90°. If we consider only the interval equallowing address http://www.crea.u-picardie-fifasseur. Figure
to [—60°,60°] for both angles, the error becomes less thahpresents the evolution of the roll and pitch angles during a
1 degree. This effect is due to the projection of the horizasequence of 1000 images. We can note that for each image
which becomes a piece of ellipse in the image. The estimatithe angles are always computed and that there is no outlier
of the parameters of the great circle is then more delicate &in the estimated values. We can also see that the algorithm
some errors may occur. offers a good rate of repeatability since between sucoessiv

In table I, we present the roll and pitch angles of Figuritages with a similar attitude, the angle values do not diffe
5. For each one of these images, we do not have the growighificantly.
truth attitude but we can estimate that the results are eolher
with the presented images. Finally, in Figure 6, we propose
some results obtained with the sensor mounted on an aerialn this paper, we present an attitude sensor for UAVs based
platform. The red pixels correspond to the detected pixEls on a central catadioptric vision sensor. This sensor ptesen
the horizon and in the bottom left corner, the estimated raleveral advantages compared to a perspective camera such
and pitch angles are presented. We can see that the evoluisrrobustness even in case of occlusions in the horizon, the

ROLL AND PITCH ANGLES OFFIGURES

VI. SUMMARY AND CONCLUSION



Pitch ; 5.03%
Roll : -12.61 °

Pitch; 5.04%
Roll : 25,68 ©

Pitch : -0.27°
Roll : ~20.47 °

(d)

- . G
Pitch : 0.94°
Roll : -20.82 °

(e) ®

Fig. 6. Experimental results on real images captured froraeaial platform

30

-30
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200 400 600 800 1000

Fig. 7. Roll (blue line) and pitch (red line) angles duringemsence of 1000 [12]

images.

14
constant visibility of the horizon in the image and a reahg,}
computation of the roll and pitch angles. The method for the

attitude computation is divided in two main steps. First,axe

second step consists in projecting this line onto the etpriva
sphere in order to estimate the attitude angles. Thankseto th
geometric properties of the equivalent sphere, the contipata
of the pitch and roll angles consists in finding a 3-spaceelan
which intersects the sphere. For this, we use a robust dstima
in order to discard the potential outliers detected durimg t
horizon line extraction. Experimental results demonettat
robustness of the horizon line detection and attitude @diim

of the sensor (and consequently of the UAV). Synthetic tesul
allow to verify the accuracy of the angle estimation with an
error which is less than one degree for angles in the interval
[-60°, 60°].
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