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We consider a class of one-dimensional nonselfadjoint semiclassical pseudodifferential operators, subject to small random perturbations, and study the statistical properties of their (discrete) spectra, in the semiclassical limit h → 0. We compare two types of random perturbation: a random potential vs. a random matrix. Hager and Sjöstrand had shown that, with high probability, the local spectral density of the perturbed operator follows a semiclassical form of Weyl's law, depending on the value distribution of the principal symbol of our pseudodifferential operator.

Beyond the spectral density, we investigate the full local statistics of the perturbed spectrum, and show that it satisfies a form of universality: the statistical only depends on the local spectral density, and of the type of random perturbation, but it is independent of the precise law of the perturbation. This local statistics can be described in terms of the Gaussian Analytic Function, a classical ensemble of random entire functions.

Introduction

The spectral analysis of linear operators acting on a Hilbert space is much developed in the case of selfadjoint operators: one can then use powerful tools, like the spectral theorem, or variational methods. This fact has been very useful in mathematical physics, for example in quantum mechanics, where the natural operators (quantum observables, Hamiltonian) are selfadjoint. However, nonselfadjoint operators also appear in mathematical physics, and deserve to be investigated. For instance, in quantum mechanics, the study of scattering systems naturally leads to the concept of quantum resonances, which appear as the (complex valued) poles of the analytic continuation of the scattering matrix (or of the resolvent of the Hamiltonian) into the so-called nonphysical sheet of the complex energy plane. These resonances may also be obtained as bona fide eigenvalues of a nonselfadjoint operator, obtained from the initial selfadjoint Hamiltonian through a complex dilation procedure [START_REF] Aguilar | A class of analytic perturbations for one-body Schrödinger Hamiltonians[END_REF][START_REF] Balslev | Spectral properties of many-body Schrödinger operators wth dilation analytic interactions[END_REF]. Still in quantum mechanics, when considering the evolution of a "small system" in contact with an "environment", one can be lead to express the effective dynamics of the small system through a nonselfadjoint Lindblad operator [START_REF] Lindblad | On the generators of quantum dynamical semigroups[END_REF]. In statistical mechanics, the evolution of the system may be described by a linear operator, which is often nonselfadjoint: the Fokker-Planck, or the linearized Boltzmann equation typically contain convective as well as dissipative terms, leading to nonselfadjoint operators. In hydrodynamics, the operators appearing when linearizing the Navier-Stokes equation in the vicinity of some specific solution are generally not selfadjoint [START_REF] Gallagher | Spectral asymptotics for large skew-symmetric perturbations of the harmonic oscillator[END_REF].

When studying evolution problems generated by linear operators, one is naturally lead to analyze the spectrum of that operator. Yet, in the nonselfadjoint case, the connection between the long time evolution and a spectrum of complex eigenvalues is not so obvious as in the selfadjoint case, since eigenstates do not form an orthonormal family. This difficulty of relating spectrum and dynamics is linked with a characteristics of nonselfadjoint operators, namely the possible strong instability of their spectrum with respect to small perturbations, a phenomenon nowadays commonly called pseudospectral effect. Traditionally this spectral instability was considered as a drawback, since it can be at the source of immense numerical errors, see [START_REF] Embree | Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators[END_REF]. However, as we will see below, analyzing this instability can also exhibit interesting phenomena. Numerical analysis studies, e.g. by L.N. Trefethen [START_REF] Trefethen | Pseudospectra of linear operators[END_REF], somewhat changed the perspective of this instability problem: they showed that considering the pseudospectrum of the (nonselfadjoint) operator -that is the region where the norm of the resolvent operator exceeds some (large) thresholdis often more relevant than considering its spectrum, and can reveal important dynamical informations. As an example, when studying a certain class of nonlinear diffusion equations, Sandsteede-Scheel [START_REF] Sandstede | Basin boundaries and bifurcations near convective instabilities: a case study[END_REF], Raphael-Zworski [START_REF] Raphael | Pseudospectral effects and basins of attraction[END_REF] and Galkowski [START_REF] Galkowski | Pseudospectra of semiclassical boundary value problems[END_REF] showed that the pseudospectrum of the (nonselfadjoint) linearization of the equation can explain the finite time blow-up of the solutions to the full nonlinear equation, while the mere study of its spectrum would suggest a stable evolution.

In physical situations, an "ideal" evolution operator can be perturbed by many different sources, most of them uncontrolled by the experimentalist. Hence, it seems relevant to set up a model of random perturbations, and to investigate how the spectrum of our initial operator reacts upon the addition of such perturbations. The spectrum of the perturbed operator thereby becomes random; in case this spectrum is discrete, it forms a random point process on the complex plane, which can be investigated by probabilistic methods. This is what we will do in this article, for a particular class of nonselfadjoint operators. Namely, we will focus on semiclassical pseudodifferential operators with complex valued symbols, and with some ellipticity assumption ensuring that the spectrum is discrete (at least in some region of the complex plane). Here "semiclassical" means that our operators depend on a parameter h ∈]0, 1] (often referred to as "Planck's parameter"), and that we will be interested in the asymptotic (semiclassical ) regime h 0. This small parameter will provide us with a natural threshold to define the pseudospectrum, and thereby to measure the spectral instability. The spectrum of these operators is in general very sensitive to perturbations: as we will see, in many examples the spectrum of the initial operator is localized along 1-dimensional curves in the complex plane, while the spectrum of the perturbed operator fill up an open domain of C (called the classical spectrum), defined by the symbol of our unperturbed operator. This filling up of the classical spectrum through perturbation has been studied in a series of works by Hager [START_REF] Hager | Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints I: un modèle[END_REF][START_REF] Hager | Instabilité Spectrale Semiclassique d'Opérateurs Non-Autoadjoints II[END_REF], Sjöstrand [START_REF] Sjöstrand | Eigenvalue distribution for non-self-adjoint operators on compact manifolds with small multiplicative random perturbations[END_REF][START_REF] Sjöstrand | Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations[END_REF][START_REF] Hager | Eigenvalue asymptotics for randomly perturbed nonselfadjoint operators[END_REF], Bordeaux-Montrieux [START_REF] Bordeaux-Montrieux | Loi de Weyl presque sûre et résolvante pour des opérateurs différentiels non-autoadjoints[END_REF] (see also [START_REF] Christiansen | Probabilistic Weyl Laws for Quantized Tori[END_REF] for a similar phenomenon in the framework of Toeplitz operators on the 2-dimensional torus). These authors show that the spectrum of the randomly perturbed operator satisfies, with high probability, a complex valued version of Weyl's law: the density of eigenvalues near a given "complex energy" z 0 inside the classical spectrum, is approximately given by (2πh) -1 D(z 0 ), where D(z 0 ) > 0 is the classical density at the energy z 0 , associated with the symbol of our initial operator. This Weyl's law counts the eigenvalues in any given region of C, independent of h, it therefore describes the spectrum at the macroscopic scale. Since the spectral density is of order h -1 , it is reasonable to think that the typical distance between nearest eigenvalues should be of order h 1/2 , which we will call the microscopic scale. Our aim in the present article is to investigate the distribution of eigenvalues at this microscopic scale, from a statistical point of view; in other words, we aim at studying the local spectral statistics, for our family of randomly perturbed operators, in particular the type of statistical correlations between nearby eigenvalues. A first result on these correlations has been obtained by the second named author, who computed the 2-point correlation between the eigenvalues of our randomly perturbed operator, in case of Gaussian perturbations [START_REF] Vogel | Two Point Eigenvalue Correlation for a Class of Non-Selfadjoint Operators Under Random Perturbations[END_REF].

In this article we will give a full description of these local statistics, expressed in terms of a certain Gaussian analytic functions. In particular, we will prove a partial form of universality with respect to the law of the random perturbation.

Before stating our results more precisely, and to provide some motivation, let us recall some background on the topic of spectral statistics, from a mathematical physics perspective. In the 1950s Wigner had the idea, when studying the spectra of complicated Hamiltonian operators in nuclear physics, to replace these (very structured) operators by large (non-structured) random matrices [START_REF] Wigner | Characteristic vectors of bordered matrices with infinite dimensions[END_REF]. Those random matrices could not reproduce the large scale density fluctuations of the nuclear spectra, which depend on specific features of the system, but they could (empirically) reproduce the local statistical properties of the spectra, at the scale of the mean spacing between eigenvalues. Wigner and Dyson understood that these local statistical properties only depend on certain global symmetries of the Hamiltonian, like time reversal invariance, but not on the fine details of the Hamiltonian: these statistical properties were thus said to be universal [START_REF] Dyson | Statistical Theory of the energy levels of complex systems, I, II, III[END_REF]. In the 1980s, this universality conjecture was extended to simpler Hamiltonians, namely Laplacians on Euclidean domains with specific shapes: Bohigas-Giannoni-Schmidt observed that if the billiard flow in the domain is "chaotic", then the local spectral statistics of the corresponding Laplacian correspond to Dyson's Gaussian Orthogonal ensemble of random matrices [START_REF] Bohigas | Characterization of chaotic quantum spectra and universality of level fluctuation laws[END_REF]. In parallel, a large variety of non-Gaussian random Hermitian matrix ensembles were developed and studied, notably the Wigner random matrices (all entries are i.i.d., up to Hermitian symmetry), for which the local spectral statistics was recently shown to be identical with that of the Gaussian ensembles [START_REF] Erdős | Bulk universality for Wigner Hermitian matrices with subexponential decay[END_REF], another manifestation of universality.

How about nonselfadjoint operators? Various random ensembles of nonhermitian matrices have also been introduced in the theoretical physics literature. The main objective has been to understand the distribution of quantum resonances for various types of scattering or dissipative systems, see for instance [START_REF] Fyodorov | Statistics of resonance poles phase shifts and time delays in quantum chaotic scattering: Random matrix approach for systems with broken time reversal invariance[END_REF][START_REF] Życzkowski | Truncations of random unitary matrices[END_REF][START_REF] Keating | Model for chaotic dielectric microresonators[END_REF][START_REF] Goetschy | Non-Hermitian Euclidean random matrix theory[END_REF] (a short recent review can be found in [START_REF] Fyodorov | Random Matrix Theory of resonances: An overview[END_REF]). For most of these models, the focus has been to derive the mean spectral density, without investigating the correlations between the eigenvalues. The "historical" nonhermitian random matrix model, for which the full eigenvalue statistics has been derived in closed form, is the complex Ginibre ensemble [START_REF] Ginibre | Statistical Ensembles of Complex, Quaternion, and Real Matrices[END_REF], where all entries are i.i.d. complex Gaussian; the nearby eigenvalues then exhibit a statistical repulsion between themselves, similar to the case of Dyson's Gaussian Unitary Ensemble of hermitian matrices. For certain non-Gaussian ensembles, recent results [START_REF] Bourgade | Local Circular Law for Random Matrices[END_REF][START_REF] Tao | Random matrices: universality of local spectral statistics of non-Hermitian matrices[END_REF] have been obtained on the eigenvalue distribution at the microscopic scale, including some partial universality results.

Let us also mention a model studied recently by Capitaine and Bordenave [START_REF] Ch | Outlier eigenvalues for deformed i.i.d. random matrices[END_REF] (see also [START_REF] Davies | Perturbations of Jordan matrices[END_REF]), namely the case of a large Jordan block perturbed by a Ginibre random matrix: the authors prove that most eigenvalues of the perturbed matrix lie close to the unit circle, but they also show that the "outliers" (the relatively few eigenvalues away from the unit circle) are statistically distributed like the zeros of a "hyperbolic" Gaussian analytic function (GAF). A similar result was proved by Sjöstrand and the second named author [START_REF] Sjöstrand | Interior eigenvalue density of large bi-diagonal matrices subject to random perturbations[END_REF] in the case of a nonselfadjoint bi-diagonal matrix, perturbed by a small Ginibre matrix. In these two models, GAFs appear because the perturbation is chosen to be Gaussian.

Our results will also involve Gaussian analytic functions, but of "Euclidean" type. In our case, these GAFs will describe the bulk of the spectrum, as opposed to a few outliers; also, in our case Gaussian functions appear in the limit, eventhough the perturbation operator or potential is not necessarily Gaussian distributed.

Presentation of the results for a simple model case

Before stating our results in full generality, we will illustrate them by first focussing on a simple case. Call h ∈]0, 1] Planck's parameter, and consider the semiclassical complex harmonic oscillator

P h def = -h 2 ∂ 2
x + ix 2 acting on L 2 (R) .

(1.1)

The (semiclassical) principal symbol of P h is given by the function p(x, ξ) = ξ 2 + ix 2 on the phase space R 2 ρ = (x, ξ).

(1.2)

We call the set

Σ def = p(R 2 ) ⊂ C the classical spectrum of P h . (1.3) 
Here Σ is the upper right quadrant of C. The spectrum of P h is purely discrete, and is contained in Σ (it is explicitly given by {z n = e iπ/4 h(2n + 1); n ∈ N}). Take Ω

• Σ an open subset. Then, for any z = X + iY ∈ Ω, an important data for our construction will be the structure of the "energy shell"3 p -1 (z) ⊂ R 2 . Since p : R 2 → C is a local diffeomorphism for z ∈ Ω, this energy shell consists of a discrete set of points; in the case of the harmonic oscillator, p -1 (z) consists of the 4 distinct points:

ρ 1 + = (Y 1/2 , -X 1/2 ), ρ 2 + = (-Y 1/2 , X 1/2 ), ρ 1 -= (Y 1/2 , X 1/2 ), ρ 2 + = (-Y 1/2 , -X 1/2 ) .
(1.4) We have labelled those points according to the sign of the Poisson bracket {Re p, Im p}(ρ) = 4xξ: at the points ρ j + the bracket is negative, while at the points ρ j -it is positive. From this bracket condition, one can construct [START_REF] Davies | Pseudo-spectra, the harmonic oscillator and complex resonances[END_REF][START_REF] Dencker | Pseudospectra of semiclassical (pseudo-) differential operators[END_REF], for each z ∈ Ω and j = 1, 2 a semiclassical family of functions (e j + (z, h) ∈ L 2 (R)) h∈]0,1] , e j + (z, h) = 1, satisfying4 

(P h -z)e j + (z, h) = O(h ∞ ), (1.5) 
and such that e j + (z, h) is microlocalized at the point ρ j + (z) 5 . (Here and in the entire text, all norms without index are either norms in L 2 or in B(L 2 ), the space of bounded linear operators L 2 → L 2 ). We call each family (e j + (z, h)) an h ∞ -quasimode of P -z, or for short a quasimode of P -z. Similarly, there exists quasimodes e j -(z, h) for the adjoint operator (P h -z) * , microlocalized at the points ρ j -(z). From the quasimode equation (1.5) it is easy to exhibit an operator Q of norm unity and a parameter δ = δ(h) = O(h ∞ ), such that the perturbed operator P h + δQ has an eigenvalue at z (for instance, if we call the error r j + = (P h -z)e j + , we may take the rank 1 operator δQ = -r j + ⊗ (e j + ) * ). The possibility to create an eigenvalue at z upon a very small (O(h ∞ ) perturbation indicates that z is in a region of strong spectral instability for P h , when h 1. Since z was chosen arbitrarily in the interior of Σ, this whole region is therefore a zone of spectral instability; for this reason, we call

• Σ the (h ∞ -)pseudospectrum of P h .
Let us now explain how we construct random perturbations, following [START_REF] Hager | Eigenvalue asymptotics for randomly perturbed nonselfadjoint operators[END_REF]. Let {e k } k∈N denote an orthonormal basis of L 2 (R) comprised of the eigenfunctions of the nonsemiclassical harmonic oscillator H = -∂ 2

x + x 2 , and let {q jk } j,k∈N , {v j } j∈N be independent and identically distributed (i.i.d.) complex Gaussian random variables with expectation 0 and variance 1 (that is, with distribution N C (0, 1)). Call N (h) = C 1 /h 2 , with C 1 > 0 large enough. Using these data, we define two types of random operators Q:

1. A random, Ginibre-type matrix

Q = M ω = 1 N (h) 0≤j,k<N (h)
q j,k e j ⊗ e * k 2. A random (complex valued) potential

Q = V ω = 1 N (h) 0≤j<N (h)
v j e j (more precisely, Q is the operator of multiplication by the potential V ω ).

The coupling parameter δ = δ(h) will be assumed to be in the range

h M ≤ δ ≤ h κ , (1.6) 
where κ > 3, and M > κ is an arbitrarily large but fixed constant. Although the random operator Q and δ depend on h, we will omit this dependence in our notations. We are interested in the spectrum of the perturbed operator

P δ h = P h + δQ,
where the random operator Q is either M ω or V ω . Note that, since the operator Q is bounded on L 2 , the spectrum of P δ h remains purely discrete. More quantitatively, with probability exponentially close to 1 as h → 0, we have the bounds M ω HS ≤ Ch -1 , V ω ∞ ≤ Ch -1 [START_REF] Hager | Instabilité Spectrale Semiclassique d'Opérateurs Non-Autoadjoints II[END_REF][START_REF] Hager | Eigenvalue asymptotics for randomly perturbed nonselfadjoint operators[END_REF].

Our objective will be to study the spectrum of P δ h in a microscopic neighbourhood of some given point z 0 ∈ Ω. As explained in the previous section, the probabilistic Weyl's law [START_REF] Hager | Instabilité Spectrale Semiclassique d'Opérateurs Non-Autoadjoints II[END_REF][START_REF] Hager | Eigenvalue asymptotics for randomly perturbed nonselfadjoint operators[END_REF] shows that the typical density of eigenvalues near z 0 is of order h -1 , so we expect nearby eigenvalues to be at distances ∼ h 1/2 from one another. In order to test the statistical correlations between nearby eigenvalues, we zoom to the scale h 1/2 at the point z 0 , by defining the rescaled spectral point process:

Z Q h,z 0 def = z∈Spec(P h +δQ) δ (z-z 0 )h -1/2 .
Our main result is that, in the semiclassical limit, this rescaled point process converges in distribution to the point process formed by the zeros of a certain random analytic function. The building block of this random functions is the (Euclidean) Gaussian analytic function (GAF), which we now review.

The Gaussian analytic function

Let (α n ) n∈N be i.i.d. normal complex Gaussian random variables, i.e. α n ∼ N C (0, 1). For a given σ > 0, we consider the random entire series

g σ (w) def = ∞ n=0 α n σ n/2 w n √ n! , w ∈ C . (1.7)
With probability one, this series converges absolutely on the full plane, and defines a Gaussian analytic function (GAF) on C: g σ is a random entire function, so that for any n ∈ N and any w 1 , . . . , w n ∈ C the random vector (g σ (w 1 ), . . . , g σ (w n )) is a centred complex Gaussian (g σ (w 1 ), . . . , g σ (w n )) ∼ N C (0, Γ), (1.8) where the covariance matrix Γ ∈ GL n (C) has the entries Γ i,j = E g σ (w i )g σ (w j ) def = K σ (w i , w j ) = exp(σw i w j ) .

(1.9)

The function C 2 (u, v) → K σ (u, v) is called the covariance kernel of the GAF g σ , it completely determines its distribution. As a result, K σ also completely determines the distribution of

Z gσ def = w∈g -1 σ (0)
δ w , the random point process defined by the zeros of the GAF g σ , see for instance [START_REF] Hough | Zeros of Gaussian Analytic Functions and Determinantal Point Processes[END_REF]. In Section 6, we will review basic notions and results concerning zero point processes of random analytic functions, making the above statements more precise.

The GAF zero process Z gσ has interesting geometric properties. Its covariance kernel shows that for any w 0 ∈ C, the translated function g σ (w + w 0 ) is equal in distribution to the function e σ(w w0 +|w 0 | 2 ) g σ (w), which has the same zeros as g σ (w): hence the zero process Z gσ is translation invariant on C. The average density (1-point function) of Z gσ is thus constant over the plane, it is equal to σ/π (see section 2.5.3). The linear dependence in σ is coherent with the scaling covariance g σ (w)

d = g 1 ( √ σw): dilating the zero process Z g 1 by 1/
√ σ multiplies the average density by σ.

Let us give a short historical background of the GAF. It has appeared in the context of holomorphic representations of quantum mechanics, when investigating the properties of random states. In the framework of Toeplitz quantization on a compact Kähler manifold M , one defines a positive holomorphic line bundle L over M , and for any integer N ≥ 1 a "quantum" Hilbert space H N is formed by the holomorphic sections of the bundle L ⊗N ; the limit N → ∞ is interpreted as a semiclassical limit. In the case of the 1-dimensional projective space M = CP 1 , which is the phase space of the spin, Hannay [START_REF] Hannay | Chaotic analytic zero points: exact statistics for those of a random spin state[END_REF] defined a natural ensemble of random holomorphic sections in H N , and studied the point process formed by their zeros (topological constraints impose that any section has exactly N zeros). He explained how to compute the k-point correlation function of this process, and explicitly computed the limit (after microscopic rescaling) of the 2-point correlation function, which coincides with the 2-point function of the GAF. A few years later, Bleher-Schiffman-Zelditch [START_REF] Bleher | Universality and scaling of correlations between zeros on complex manifolds[END_REF] proved that, for a general Toeplitz quantization (M, L), the zeros of random holomorphic sections converge, when N → ∞, to a universal process depending only on the dimension of M . In dimension 1, this process is given by the zero process of the GAF.

We are now equipped to state our Theorem concerning the spectrum of P δ h .

Theorem 1.1 (Complex harmonic oscillator). Fix z 0 = X 0 + iY 0 ∈ Σ, and define the classical density for the symbol p(x, ξ) = ξ 2 + ix 2 at the points ρ j ± ∈ p -1 (z 0 ):

σ(z 0 ) def = 1 |{Re p, Im p}(ρ j ± (z 0 ))| = 1 4 √ X 0 Y 0 , j = 1, 2.
For h ∈]0, 1], let the random perturbation Q be either M ω or V ω , and take δ in the interval (1.6). Then, for any domain O C, the rescaled spectral point process at z 0 converges in distribution as follows:

Z Q h,z 0 d -→ Z G z 0 ,Q on O, as h → 0.
Here Z G z 0 ,Q is the zero point process for the random entire function G z 0 ,Q described below:

1. if the perturbation Q = V ω then G z 0 ,V (w) = g 1 z 0 (w)g 2 z 0 (w), w ∈ C,
where g 1 z 0 , g 2 z 0 are two independent copies of the GAF g σ(z 0 ) .

if

Q = M ω then G z 0 ,M (w) = det g i,j z 0 (w) 1≤i,j≤2 , w ∈ C,
where g i,j z 0 , 1 ≤ i, j ≤ 2, are 4 independent copies of the GAF g σ(z 0 ) .

The convergence in distribution of point processes is described more explicitly in Thm 2.5. As we will explain in section 2.5.2, this convergence implies that all k-point measures converge as well to the limiting ones.

Main results -general framework

The above theorem can be generalized to a large class of 1-dimensional nonselfadjoint h-pseudodifferential operators, and with random perturbations which are not necessarily Gaussian. We first present the class of unperturbed operators we will be dealing with.

Semiclassical framework

We begin by recalling the definition of the pseudospectrum of an operator, an important notion which quantifies its spectral instability.

Let P : L 2 → L 2 be a densely defined closed linear operator, with resolvent set ρ(P ) and spectrum Spec(P ) = C\ρ(P ). For any ε > 0, we define the ε-pseudospectrum of P by Spec ε (P )

def = Spec(P ) ∪ {z ∈ ρ(P ); (P -z) -1 > ε -1 }. (2.1)
When ε is small, the set (2.1) describes a region of spectral instability of the operator P , since any point in the ε-pseudospectrum of P lies in the spectrum of a certain εperturbation of P [START_REF] Embree | Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators[END_REF]. Indeed, Spec ε (P ) can also be defined by

Spec ε (P ) = Q∈B(L 2 ) Q <1 Spec(P + εQ). (2.2) 
A third, equivalent definition of the ε-pseudospectrum of P is via the existence of approximate solutions to the eigenvalue problem P -z:

z ∈ Spec ε (P ) ⇐⇒ ∃u z ∈ D(P ) s.t. (P -z)u z < ε u z , (2.3) 
where D(P ) denotes the domain of P . Such a state u z is called an ε-quasimode, or simply a quasimode of P -z.

Next, let us fix the type of unperturbed operators we will consider in this paper. We will use the notation ρ = (x, ξ) ∈ R 2 for phase space points. We start by considering an order function m ∈ C ∞ (R 2 ; [1, ∞[), namely a function satisfying the following growth conditions:

∃C 0 ≥ 1, ∃N 0 > 0 : m(ρ) ≤ C 0 ρ -µ N 0 m(µ), ∀ρ, µ ∈ R 2 , (2.4) 
with the usual "Japanese brackets" notation ρ -

µ def = 1 + |ρ -µ| 2 .
To this order function is associated a semiclassical symbol class [START_REF] Dimassi | Spectral Asymptotics in the Semi-Classical Limit[END_REF][START_REF] Zworski | Semiclassical Analysis[END_REF]:

S(R 2 , m) = q ∈ C ∞ (R 2 ρ ×]0, 1] h ); ∀α ∈ N 2 , ∃C α : |∂ α ρ q(ρ; h)| ≤ C α m(ρ), ∀ρ ∈ R 2 , ∀h ∈]0, 1] . (2.5)
We assume that the symbol p ∈ S(R 2 , m) is "classical", namely it satisfies an asymptotic expansion in the limit h → 0:

p(ρ; h) ∼ p 0 (ρ) + hp 1 (ρ) + . . . in S(R 2 , m), (2.6) 
where each p j ∈ S(R 2 , m) is independent of h. In this case we call p 0 the (semiclassical) principal symbol of p. We then define two subsets of C associated with p 0 :

Σ def = p 0 (R 2 ), Σ ∞ def = {z ∈ Σ; ∃(ρ j ) j≥1 s.t. |ρ j | → ∞, p 0 (ρ j ) → z}. (2.7)
Σ is the classical spectrum of the operator P h defined below, while Σ ∞ can be called the classical spectrum at infinity. Furthermore, we suppose that the principal symbol p 0 is elliptic at some "energy" z out ∈ C\Σ:

∃C 0 > 0, |p 0 (ρ) -z out | ≥ m(ρ)/C 0 , ∀ρ ∈ R 2 .
(2.8)

For h ∈]0, 1] we let P h denote the h-Weyl quantization of the symbol p,

P h u(x) = p w (x, hD x ; h)u(x) = 1 2πh e i h (x-y)•ξ p x + y 2 , ξ; h u(y)dydξ, (2.9)
which makes sense for u ∈ S(R d ) in the Schwartz space. The closure of P h as an unbounded operator on L 2 , has the dense domain H(m

) def = (P h -z out ) -1 (L 2 (R)) ⊂ L 2 (
R); we will still denote this closed operator by P h . Moreover, we will denote by u m def = (P h -z out )u the associated norm on H(m) 6 .

Let Ω ⊂ C be open simply connected, not entirely contained in Σ, and such that Ω ∩ Σ ∞ = ∅. Then, the spectrum of P h inside Ω satisfies the following properties in the semiclassical limit [START_REF] Hager | Instabilité Spectrale Semiclassique d'Opérateurs Non-Autoadjoints II[END_REF][START_REF] Hager | Eigenvalue asymptotics for randomly perturbed nonselfadjoint operators[END_REF]:

• for h > 0 small enough, Spec(P h ) ∩ Ω is discrete • for all ε > 0, ∃h(ε) > 0 such that Spec(P h ) ∩ Ω ⊂ Σ + D(0, ε), ∀0 < h < h(ε).
(2.10)

Here, D(0, ε) ⊂ C denotes the open disc of radius ε > 0 centred at 0.

In this work we will study the spectrum of small random perturbations of P h , in the semiclassical limit h → 0, in the interior of Σ ∩ Ω.

Pseudospectrum and the energy shell

Let Ω be as above and let Ω Ω ∩ Σ be open, simply connected.

(2.11)

Recall that p 0 is the principal symbol of p, see (2.6). We assume that:

for every ρ ∈ p -1 0 (Ω), the 1-forms dp 0 , dp 0 are linearly independent.

(2.12)

Since the dimension d = 1, this condition is equivalent to:

for every ρ ∈ p -1 0 (Ω), {Re p 0 , Im p 0 } = 0, (2.13) 
where {•, •} denotes the Poisson bracket:

{p, q}(ρ) def = ∂ ξ p(ρ) ∂ x q(ρ) -∂ ξ q(ρ) ∂ x p(ρ), ρ = (x, ξ) ∈ R 2 .
It was observed by Dencker, Sjöstrand and Zworski [START_REF] Dencker | Pseudospectra of semiclassical (pseudo-) differential operators[END_REF], and Sjöstrand [START_REF] Sjöstrand | Non-self-adjoint differential operators, spectral asymptotics and random perturbations[END_REF] that since Ω is relatively compact and simply connected, (2.12), or equivalently (2.13), implies that there exists J ∈ N * depending only on Ω, so that for any z ∈ Ω, the "energy shell" p -1 0 (z) consists of exactly 2J points:

p -1 0 (z) = {ρ j ± (z); j = 1, . . . , J}, with ± {Re p, Im p}(ρ j ± (z)) < 0, ρ i ± (z) = ρ j ± (z) if i = j, (HYP) 
and the points ρ j ± (z) = (x j ± (z), ξ j ± (z)) depend smoothly on z. We shall make the further (generic) assumption

∀z ∈ Ω, x i ± (z) = x j ± (z) if i = j , (HYP-x)
which will play a role when studying the perturbation by a random potential. Davies [START_REF] Davies | Pseudo-spectra, the harmonic oscillator and complex resonances[END_REF] and Dencker, Sjöstrand and Zworski [START_REF] Dencker | Pseudospectra of semiclassical (pseudo-) differential operators[END_REF] showed that (HYP) implies, for each z ∈ Ω and each j = 1, . . . , J, the existence of an h ∞ -quasimode for P h -z (resp.

(P h -z) * ), microlocalized on ρ j + (z) (resp. ρ j -(z)
). We will denote those modes by e j ± = e j ± (z; h) ∈ L 2 (R), normalize them as e j ± = 1, and they satisfy

(P h -z)e j + = O(h ∞ ) and WF h (e j + ) = {ρ j + (z)}, (2.14) 
respectively

(P h -z) * e j -= O(h ∞ ) and WF h (e j -) = {ρ j -(z)}. (2.15)
Recall that, for u = (u(h)) h∈]0,1] a bounded family in L 2 , its semiclassical wavefront set WF h (u) denotes the phase space region where u is h-microlocalized:

WF h (u) def = (x, ξ) ∈ R 2 ; ∃a ∈ C ∞ c (R 2 ), a(x, ξ) = 1, a w (x, hD x )u(h) L 2 = O(h ∞ )
where a w denotes the Weyl quantization of a.

In view of the characterisation (2.3) of the pseudospectrum, we see that the assumption (2.12) implies that Ω is contained in the h ∞ -pseudospectrum of P h , a spectrally highly unstable region.

Adding a random perturbation

We will now consider random perturbations of the operator P h which are given by either a random matrix or a random potential, generalizing a little the constructions made in section 1.1. As in that section, we consider {e k } k∈N the orthonormal eigenbasis of the (nonsemiclassical) harmonic oscillator H = -∂ 2

x + x 2 .

Remark 2.1. This choice of orthonormal basis is convenient for us, but it is far from unique. It will become clear later that what we need is a family of states (not necessarily orthonormal) such that the first N (h) states microlocally cover a sufficiently large part of phase space, namely a neighbourhood of p -1 0 (Ω). We also need to avoid states which would have a large overlap with some of the quasimodes e j ± , cf. (2.14), (2.15). We refer the reader in particular to the proofs of Propositions 7.3 and 8.4 below.

Let α be a complex valued random variable defined on some probability space (M, F, P), with the properties

E[α] = 0, E[α 2 ] = 0, E[|α| 2 ] = 1, E[|α| 4+ 0 ] < +∞, (2.16) 
where ε 0 > 0 is an arbitrarily small but fixed constant. Here, E[•] denotes the expectation with respect to the probability measure P. The Markov inequality implies the following tail estimate: there exists a constant κ α > 0 such that

P[|α| ≥ γ] ≤ κ α γ -(4+ε 0 ) , ∀γ > 0.
(2.17)

Remark 2.2. For instance, the complex centred Gaussian random variable of eq. (1.7) satisfies the above assumptions.

Random Matrix. Let N (h) = C 1 /h 2 , C 1 > 0 large enough (we will be more precise about this condition later). Let q j,k , 0 ≤ j, k < N (h) be independent copies of the random variable α satisfying the conditions (2.16). We consider the random matrix

M ω = 1 N (h) 0≤j,k<N (h) q j,k e j ⊗ e * k , (RM) 
where e j ⊗ e * k u = (u|e k )e j for u ∈ L 2 (R). For some coupling parameter 0 < δ 1, we define the randomly perturbed operator

P δ M = P h + δM ω .
(2.18)

Random Potential. Take N (h) = C 1 /h 2 , C 1 > 0 as above. Let v j , 0 ≤ j < N ( 
h) be independent copies of the random variable α. Still using the same orthonormal family (e k ) k∈N , we define the random function

V ω = 1 N (h) 0≤j<N (h) v j e j .
(RP)

For 0 < δ 1, write the perturbed operator

P δ V = P h + δV ω . (2.19)
We call this perturbation a "random potential", even though V ω is complex valued. When we consider this type of perturbation, we will make the additional symmetry assumption:

p(x, ξ; h) = p(x, -ξ; h). (SYM)
This hypothesis implies that we can group the points forming p -1 0 (z) (see (HYP)) in pairs, such that ρ j ± = (x j , ±ξ j ). As a result, the centres of microlocalization of the quasimodes e j + and e j -are located on the same fibre T * x j R = {(x j , ξ), ξ ∈ R}. Remark 2.3. We could relax the assumption (SYM) into requiring this symmetry only at the level of the principal symbol, i.e. p 0 (x, ξ) = p 0 (x, -ξ). However, for the simplicity of the presentation we prefer to make the above stronger hypothesis.

Restricting to bounded perturbations. For both types of perturbations, it will be easier for us to restrict the random variables to large discs D(0, C/h), i.e. assume that

|v i |, |q i,j | ≤ C/h, 0 ≤ i, j < N (h), for some C > 0 sufficiently large.
(2.20)

This restriction induces the boundedness of the perturbations M ω , V ω . Indeed on this restricted probability space we have the bound,

M ω HS ≤ Ch -1 , (2.21) 
where M ω HS denotes the Hilbert-Schmidt norm of M ω . Respectively, in the case of the random potential,

V ω ∞ ≤ Ch -1 . (2.22)
We note that even for unrestricted random variables, these bounds on the perturbations hold with high probability. Indeed, using (2.17) to estimate the probability that (2.20) holds, we deduce that (2.21) holds with probability ≥ 1 -C 2 h ε 0 , and that (2.22) occurs with probability ≥ 1 -C 2 h 2+ε 0 , for some C 2 > 0.

Finally, we will take the coupling parameter δ = δ(h) in the same interval as in (1.6).

We will see in Section 5 that the spectra of P δ M and P δ V in Ω are purely discrete. The principal aim of this paper is to show that the statistical properties of these spectra, in a microscopic neighbourhood of any z 0 ∈ Ω, are universal, in a sense that we will specify later on.

Since p 0 -z is elliptic for every z ∈ C\Σ, the resolvent norm (P h -z) -1 = O(1), uniformly for z in compact subset of C\Σ, as h → 0. In view of (2.21), (2.22) and (1.6), we are considering random perturbations of size δM ω HS h 2 and δV ω ∞ h 2 . Therefore, in view of the characterisation (2.2) of the pseudospectrum, the spectra of P δ M and P δ V are contained in Σ + D(0, ), for any given > 0 and h > 0 small enough. Moreover, since Ω Σ, we will not feel the effects of the boundary of Σ; we will simply say that Ω lies in the bulk of the spectrum of the perturbed operator.

Probabilistic Weyl's law and local statistics

In a series of works by Hager [START_REF] Hager | Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints I: un modèle[END_REF][START_REF] Hager | Instabilité Spectrale Semiclassique d'Opérateurs Non-Autoadjoints II[END_REF][START_REF] Hager | Eigenvalue asymptotics for randomly perturbed nonselfadjoint operators[END_REF] and Sjöstrand [START_REF] Sjöstrand | Eigenvalue distribution for non-self-adjoint operators on compact manifolds with small multiplicative random perturbations[END_REF][START_REF] Sjöstrand | Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations[END_REF], the authors considered randomly perturbed operators P δ as given in (2.18) and (2.19). Under more restrictive assumptions on the random variables than (2.16), they have shown the following result.

Theorem 2.4 (Probabilistic Weyl's law). Let Ω be as in (2.11), (2.12). Let Γ Ω be open with C 2 boundary. Let P δ h be either of the randomly perturbed operators P δ M or P δ V with δ as in (1.6) with κ > 0 sufficiently large. Then, in the limit h → 0,

# Spec(P δ h ) ∩ Γ = 1 2πh p -1 0 (Γ) dxdξ + o(1) with probability ≥ 1 -Ch η ,
(2.23) for some fixed η > 0.

The authors also give an explicit control over both the error term in Weyl's law, and the error term in the probability estimate. x + e 3ix + δQ acting on L 2 (T), with h = 10 -3 and δ = 10 -12 . The perturbation Q is either a Gaussian random matrix M ω (left), or a Gaussian random potential V ω (right). The region plotted is the same, it is part of the bulk (the units on the axes are arbitrary). In the region the number of quasimodes is 2J, J = 6.

This probabilistic Weyl's law shows that, with probability close 1, the number of eigenvalues of the perturbed operator P δ h in any fixed subset of Ω is of order h -1 . Hence, the spectrum of P δ h will spread across Ω, with an average spacing between nearby eigenvalues of order h 1/2 . Figure 1 illustrates this behaviour for a choice of operator P h = -h 2 ∂ 2

x + e 3ix acting on the torus T = R/2πZ. We draw random perturbations M ω , V ω and plot some region of the spectra of P δ M and P δ V , in the interior of Σ. Both spectra are grossly uniform over the plotted region, yet in the case of P δ V (right plot) the distribution of the eigenvalues seems a bit "less uniform" than in the case of P δ M (left plot), in particular it allows the presence of small clusters of very near eigenvalues.

To quantify this difference of uniformity between the spectra of P δ M and P δ V , we study the local statistics of the eigenvalues, that is the statistics of the eigenvalues on the scale of their mean level spacing. For this purpose, we fix a point z 0 ∈ Ω. In both cases Q = M ω and Q = V ω , we view the rescaled spectrum of the randomly perturbed operator P δ Q as a random point process

Z Q h,z 0 def = z∈Spec(P δ Q ) δ (z-z 0 )h -1/2 , Q = M ω or Q = V ω , (2.24) 
where the eigenvalues are counted according to their algebraic multiplicities. Notice that the rescaled eigenvalues (z j -z 0 )h -1/2 have a mean spacing of order 1. The principal aim of this paper is to show that, under the assumption (2.16) on the random coefficients, in the limit h → 0 the correlation functions of the processes Z M h,z 0 and Z V h,z 0 are universal, in the sense that they

• depend only on the structure of the energy shell p -1 0 (z) and on the type of random perturbation used, either M ω or V ω ;

• are independent of the law of the random variable α used to define the random perturbations, as long as satisfies (2.16).

Finally, let us stress that our results concern solely the eigenvalues in the bulk of the spectrum of P δ h , that is in the interior of the h ∞ -pseudospectrum of P h . Near the boundary of that pseudospectrum, we expect the statistical properties of the eigenvalues to change drastically. It has been shown by the second author [START_REF] Vogel | The precise shape of the eigenvalue intensity for a class of nonselfadjoint operators under random perturbations[END_REF] in the case of a model operator, that the probabilistic Weyl's law breaks down in the vicinity of ∂Σ, in fact, the density of eigenvalues explodes near that boundary.

Perturbation by a random potential

We begin with the case of a perturbation by a random potential V ω , eq. (2.19). In Weyl's law of Thm 2.4, the main term on the right hand side can be easily expressed in terms of the classical spectral density, pull-back of the symplectic measure on T * R through the symbol p 0 :

p -1 0 (Γ) dx dξ = Γ (p 0 ) * (dx dξ)
(the Lebesgue measure dx dξ on R 2 is also the measure induced by the symplectic form on

T * R ∼ = R 2 ).
From the structure (HYP) of the energy shell p -1 0 (z), the classical spectral density at the energy z can be expressed as follows:

(p 0 ) * (dx dξ) = J j=1 (σ j + (z)+σ j -(z))L(dz), σ j ± (z) = 1 ∓{Re p 0 , Im p 0 }(ρ j ± (z))
.

(2.25)

Here L denotes the Lebesgue measure on C. In other words, each point ρ j ± of the energy shell provides a density component σ j ± (z) > 0, which depends smoothly on z ∈ Ω. If we additionally assume the symmetry (SYM) and group the points such that ρ j ± = (x j , ±ξ j ), we find that σ j + (z) = σ j -(z) for all j = 1, . . . , J.

Universal limiting point process

Let us now state our main theorem for the perturbed operators P δ V . It provides the asymptotic behaviour of the rescaled spectral point processes Z V h,z 0 in the semiclassical limit.

Theorem 2.5. Let p be as in (2.6) satisfying (2.12) and (SYM). Let Ω Σ be as in (2.11), and choose z 0 ∈ Ω. Then, for any bounded open set O C, the rescaled spectral point processes at z 0 converge in distribution:

Z V h,z 0 d -→ Z Gz 0 in O, as h → 0.
This convergence means that for any test function φ ∈ C c (O, R),

Z V h,z 0 , φ = z∈Spec(P δ h ) φ((z -z 0 )h -1/2 ) d -→ Z Gz 0 , φ = z∈G -1 z 0 (0) φ(z), as h → 0 .
Here Z Gz 0 is the zero point process for the random analytic function

G z 0 (z) = J j=1 g j z 0 (z), z ∈ C,
where the g j z 0 are J independent GAFs g j z 0 ∼ g σ j + (z 0 ) (see section 1.2), with σ i + (z 0 ) the local spectral densities given in (2.25).

For the reader's convenience, in Section 6 we present a short review of the probabilistic notions used in this paper, such as convergence in distribution. The definition and basic properties of the GAFs have been presented in section 1.2.

This theorem tells us that at any given point z 0 ∈ Ω in the bulk of the pseudospectrum, the rescaled spectral point process converges, in the limit h → 0, to the point process given by the zeros of the product of J independent GAFs. This limiting point process is the superposition of J independent processes, each one generated by a GAF g j z 0 . The latter only depends on the part of the classical spectral density coming from the pair of points ρ j ± = (x j , ±ξ j ). In particular, this limiting process is independent of the precise probability distribution of the coefficients (v j ), as long at it satisfies (2.16), or of the orthonormal family (e j ) used to generate the random potential V ω ; this process only depends on the cardinal 2J of the energy shell p -1 0 (z) and of the local spectral densities {σ j + (z 0 ), j = 1, . . . , J}.

It is known that the zero process of a single GAF exhibits a local repulsion between the nearby points (see the section 2.5.3). On the opposite, as a superposition of J independent point processes, the limiting process Z Gz 0 authorizes the presence of clusters of at most J points very close to one another, confirming our observations in the right plot of Fig. 1 (for the considered operator and plotted region, we have J = 6). In the next section we will analyze this clustering by computing the correlation functions between the points of the process.

Scaling limit of the k-point measures

An explicit way to quantify the statistical correlations between k nearby eigenvalues of P δ V consists in defining the k-point measures of the point process Z V h,z 0 . These are positive measures µ k,V,z 0 h on O k , where O is the open domain as in Theorem 2.5. These measures are defined through their action on an arbitrary test funtion φ ∈ C c (O k , R + ) as follows:

E (Z V h,z 0 ) ⊗k (φ) = E z 1 ,...,z k ∈Spec(P δ ) φ (z 1 -z 0 )h -1/2 , . . . , (z k -z 0 )h -1/2 def = O k φ(w) µ k,V h,z 0 (dw) .
(2.26)

In practice, one often studies these measures away from the generalized diagonal ∆ = {z ∈ C k ; ∃ i = j s.t. z i = z j }, in order to avoid trivial self-correlations. Hence the test functions we will use below will be chosen in C c (O k \∆, R + ). When these k-point measures are absolutely continuous with respect to the Lebesgue measure on C k , we call their densities the k-point functions.

Theorem 2.6. Let µ k,V h,z 0 be the k-point measure of Z V h,z 0 , defined in (2.26), and let µ k,V z 0 be the k-point measure of the point process Z Gz 0 , given in Theorem 2.5. Then, for any domain O C and for all φ

∈ C c (O k \∆, R + ), O k \∆ φ(w) µ k,V h,z 0 (dw) -→ O k \∆ φ(w) µ k,V z 0 (dw), h → 0.
Moreover, µ k,V z 0 is absolutely continuous with respect to the Lebesgue measure on C k . Its density d k,V z 0 is given by the following formula:

d k,V z 0 (w 1 , . . . , w k ) = α∈N J , j α j =k τ ∈S k 1 α! J j=1 d α j g j (w τ (α 1 +•••+α j-1 +1) , . . . , w τ (α 1 +•••+α j ) ) (2.27)
where S k is the symmetric group on k elements, and for all 1 ≤ j ≤ J and all r ∈ N * ,

d r g j (w) = perm[C r j (w) -B r j (w)(A r j ) -1 (w)(B r j ) * (w)] det πA r j (w)
, while d 0 g j (w) ≡ 1 .

(2.28)

Here, perm denotes the permanent of a matrix; A r j , B r j , C r j are complex r × r-matrices given by

(A r j ) n,m = K j (w n , wm ), (B r j ) n,m = (∂ w K j )(w n , wm ), (C r j ) n,m = (∂ 2 w wK j )(w n , wm ),
where K j (w, w) = exp(σ j + (z 0 )w w) is the covariance function of the GAFs g j z 0 appearing in Thm 2.5.

The function d r g j (z) in (2.28) is the r-point function for the zero process of the Gaussian analytic function g j . The limiting k-point functions are thus obtained by concatenating the r-point functions (1 ≤ r ≤ k) of the J GAFs g j associated with the points ρ j ± of the energy shell. The zeros associated with different points ρ j ± are uncorrelated with one another.

A result by Nazarov and Sodin [36, Theorem 1.1] implies the following estimate for the r-point densities of a single GAF. Proposition 2.7. [START_REF] Nazarov | Correlation functions for random complex zeroes: Strong clustering and local universality[END_REF] Let O C be a bounded domain. Let (g j = g j z 0 ) 1≤j≤J be the GAFs appearing in Thm 2.5, and let d r g j (w), 1 ≤ r ≤ k, be the corresponding r-point functions as in (2.28).

Then there exists a constant C = C(r, g j , O) > 1 such that, for any configuration of pairwise distinct points w 1 , . . . , w k ∈ O,

C -1 i<j |w i -w j | 2 ≤ d r g j (w 1 , . . . , w k ) ≤ C i<j |w i -w j | 2 .
This estimate shows that the zeros of a GAF enjoy a statistical (quadratic) repulsion at short distance, namely they are very unlikely to approach one another much more than the mean distance.

In formula (2.27) we see that if k > J, each summand has at least one factor d α j g j with α j ≥ 2. Hence, Thm 2.6 and Prop. 2.7 lead to the following Corollary 2.8. Let O C be a bounded domain, let k > J, and let d k,V z 0 (w) be as in (2.27). Then there exists a positive constant C = C(r, O) such that, for any configuration of pairwise distinct points w 1 , . . . , w k ∈ O,

d k,V z 0 (w 1 , . . . , w k ) ≤ C i<j |w i -w j | 2 .
We have seen by Theorem 2.6 that the limiting point process of the rescaled eigenvalues is given by the superposition of J independent processes given by the zeros of independent Gaussian analytic functions. Due to this independence, k points, each originating from a different GAF process, may approach each other without any statistical repulsion: this authorizes the formation of clusters of a most J points. As a result, for k ≤ J the limiting k-point functions do not decay to zero as the distances between the k points gets smaller: this authorizes the presence of clusters of at most J points. This behaviour is made more explicit in the next section in the case k = 2.

On the opposite, if k > J then at least two points must originate from the same GAF process, and therefore statistically repel each other when approaching each other. This is exactly what Corollary 2.8 tells us: the probability to find more than J points close together decays at least quadratically with the distance. As a result, finding small clusters containing more than J eigenvalues is very unlikely.

2-point correlation function

The 2-point correlation function of a point process is defined by the 2-point function, renormalized by the local 1-point functions (or local average densities):

K 2,Q z 0 (w 1 , w 2 ) = d 2,Q z 0 (w 1 , w 2 ) d 1,Q z 0 (w 1 )d 1,Q z 0 (w 2 ) , w 1 = w 2 ∈ O, Q = V ω , M ω .
By Theorem 2.6, the limiting local 1-point function d 1,V z 0 (w) is a constant function, given by

d 1,V z 0 (w) = J j=1 σ j + (z 0 ) π , ∀w ∈ O.
This average density of eigenvalues (at the microscopic scale near z 0 ) exactly corresponds to the macroscopic density predicted by the probabilistic Weyl's law in Theorem 2.4, see also (2.25).

The limiting 1-point and 2-point functions of the zero process generated by a single GAF g σ (see section 1.2) are given by

d 1 gσ (w 1 ) = σ π , respectively d 2 gσ (w 1 , w 2 ) = σ π 2 κ σ|w 1 -w 2 | 2 2 ,
with the scaling function

κ(t) def = (sinh 2 t + t 2 ) cosh t -2t sinh t sinh 3 t , ∀t ≥ 0. (2.29)
The function κ (σ|w 1 -w 2 | 2 /2) describes the 2-point correlation function of the zeros of the GAF g σ . A remarkable property of this function is its isotropy: it only depends on the distance between the points w 1 , w 2 . In Figure 2 as κ(t 2 ) = t 2 (1 + O(t 4 )) when t → 0, which reflects the quadratic repulsion between the nearby zeros of g σ . On the opposite, when t 1 it converges exponentially fast to unity, showing a fast decorrelation between the zeros at large distances.

To our knowledge, the function κ was first computed by Hannay [START_REF] Hannay | Chaotic analytic zero points: exact statistics for those of a random spin state[END_REF], as the scaling limit 2-point correlation function for the zeros of certain ensembles of random polynomials. In the work by Bleher, Shiffman and Zelditch [START_REF] Bleher | Universality and scaling of correlations between zeros on complex manifolds[END_REF], κ describes the scaling limit 2-point correlation function for the zeros of random holomorphic sections of large powers of a positive Hermitian line bundle over a compact complex Kähler surface.

In the present work, κ appears as a building block for the limit 2-point correlation function of the eigenvalues of P δ V :

K 2,V z 0 (w 1 , w 2 ) = 1 + J j=1 (σ j + (z 0 )) 2 J j=1 σ j + (z 0 ) 2 κ σ j + (z 0 )|w 1 -w 2 | 2 2 -1 . (2.30)
Let us study more closely this 2-point correlation function:

Long range decorrelation: For |w 1 -w 2 | 1, in the limit h → 0, the 2-point correlation function converges exponentially fast to unity

K 2,V z 0 (w 1 , w 2 ) = 1 + O e -min j σ j + (z 0 )|w 1 -w 2 | 2 .
This shows that two points at distances |w 1 -w 2 | 1 are statistically uncorrelated.

A weak form of repulsion: When |w 1 -w 2 | 1, in the limit h → 0, there is a weak form of repulsion between two nearby eigenvalues,

K 2,V z 0 (w 1 , w 2 ) = 1 - J j=1 σ j + (z 0 ) 2 J l=1 σ l + (z 0 ) 2 1 - σ j + (z 0 )|w 1 -w 2 | 2 2 + O(|w 1 -w 2 | 4 ) .
(2.31)

This formula shows that the probability to find two rescaled eigenvalues w 1 , w 2 at dis- tance 1 is smaller than the one to find them at large distances: pairs of rescaled eigenvalues show a weak repulsion at short distance. However, the correlation function does not converge zero when |w 1 -w 2 | → 0, but to the positive value 1 - 2 . This weak repulsion can be explained by the fact that the random function G z 0 is the product of J independent GAFs: two zeros w 1 , w 2 will not repel each other if they originate from different GAFs, while they will repel quadratically if they come from the same GAF. The net result is this weak form of repulsion. The larger the number of quasimodes J, the weaker this repulsion becomes, since two zeros w 1 , w 2 chosen at random will have a smaller chance to come from the same GAF.

0
J j=1 σ j + (z 0 ) 2 ( J l=1 σ l + (z 0 ))
In Figure 3 we compare the limiting 2-point correlation functions K 2,V z 0 with the one obtained from numerical spectra of two operators on the torus T = R/(2πZ):

P δ h,q = -h 2 ∂ 2 x + e iqx + δV ω , q = 1, 3, x ∈ T. (2.32)
We took the parameters h = 10 -3 , δ = 10 -12 , and the Gaussian random potential V ω as in section 1.1. We use operators defined on T because they are numerically easier to diagonalize than operators on R. For each operator P h,q , we drew 1000 samples of the random potential V ω , and computed the corresponding spectra of P δ V , then extracted from these spectra the correlation function.

The analysis of the principal symbols p q,0 shows that the classical spectrum is, in both cases, given by Σ = R + + U (1). At the energy z 0 = 1.6 (clearly located in the "bulk"), the operator (P h,q -z 0 ) admits J = 2q quasimodes. Figure 3 compares the numerically obtained 2-point correlation functions (shown as blue dots) of the operators P δ h,1 (left) and P δ h,3 (right), with the theoretical scaling limit described in (2.31). For the two operators, the theoretical curve fits quite well the numerical points, including at short distances |w 1 -w 2 | 1.

Perturbation by a random matrix

We now describe the situation where the operator P h is perturbed by a small random matrix δM ω , as described in (RM,2.18). In this case we do not need to assume the symmetry property (SYM) for the symbol p 0 .

Universal limiting point process

Here as well, we can prove a convergence of the rescaled spectral point process Z M h,z 0 (see (2.24)) towards a limiting zero process when h → 0. Theorem 2.9. Let p be as in (2.6) satisfying (2.12). Let Ω Σ be as in (2.11). Choose z 0 ∈ Ω. Then, for any bounded open set O C, the rescaled spectral point process Z M h,z 0 converges in distribution towards the zero point process associated with a random analytic function Gz 0 described below:

Z M h,z 0 d -→ Z Gz 0 on O as h → 0. (2.33)
The random function Gz 0 is defined as

Gz 0 (w) def = det(g i,j z 0 (w)) 1≤i,j≤J , w ∈ C,
where g i,j z 0 , for 1 ≤ i, j ≤ J, are J 2 independent GAFs g i,j z 0 ∼ g σ i,j z 0 , for the parameters

σ i,j z 0 = 1 2 (σ i + (z 0 ) + σ j -(z 0 )) . ( 2 

.34)

The local classical densities σ i ± (z 0 ) associated with the points ρ i ± (z 0 ), were defined in (2.25). Theorem 2.9 tells us that at any given point z 0 ∈ Ω ∩ Σ in the bulk of the pseudospectrum, the local rescaled point process of the eigenvalues of P δ M is given, in the limit h → 0, by the zero process associated with the determinant of a J × J matrix, whose entries are independent GAFs. The GAF situated at the entry i, j of the matrix only depends on the local classical densities of the points ρ i + (z 0 ) and ρ j -(z 0 ).

The limiting point process Z Gz 0 features some partial form of universality: it is independent of the precise law on the entries of the perturbation M ω (2.16), but only depends on the cardinal 2J of the energy shell p -1 0 (z), and of the local classical densities {σ j ± (z 0 ); j = 1, . . . , J} (notice that in absence of the symmetry (SYM), the densities σ j + (z 0 ) and σ j -(z 0 ) are a priori unrelated).

The limiting process Z Gz 0 is different from the universal limit Z Gz 0 studied in the previous section. In particular the function Gz 0 is not given by a simple product of GAFs, but by a more complicated expression, namely a determinant. As we will see below, we expect the zeros of Gz 0 to exhibit a quadratic repulsion between nearby points, as opposed to the zeros of the function G z 0 in Thm 2.5.

Scaling limit k-point measures

A direct consequence of the convergence of the zero processes Z M h,z 0 is the convergence of their k-point measures to those of the limiting point process.

Corollary 2.10. Let µ k,M h,z 0 be the k-point measure of Z M h,z 0 , defined as in (2.26), and let µ k,M z 0 be the k-point measure of the point process Z Gz 0 described in Thm 2.9. Then, for any O C open connected domain and for all φ

∈ C c (O k \∆, R + ), O k \∆ φ(w) µ k,M h,z 0 (dw) -→ O k \∆ φ(w) µ k,M z 0 (dw), h → 0.
One can calculate the densities of the limiting 1-point measures µ 1,M z 0 :

d 1,M z 0 (w) = J i=1 σ i + (z 0 ) + σ i -(z 0 ) 2π , ∀w ∈ O. (2.35)
Not surprisingly, this microscopic density is exactly the rescaling of the macroscopic spectral density at z 0 predicted by the probabilistic Weyl's law in Thm 2.4, see also (2.25).

In the case of an operator P h satisfying the symmetry assumption (SYM), this microscopic density is equal to the one obtained for the operator perturbed by a random potential: for such symmetric symbols, the microscopic densities d 1,V z 0 and d 1,M z 0 coincide, and therefore cannot distinguish between the type of perturbation imposed on P h .

On the other hand, we believe that for k > 1, the k-point densities d k,Q z 0 (equivalently, the k-point correlation functions K k,Q z 0 ) can distinguish between the two types of perturbation (still assuming the symmetry (SYM) for the symbol). We have not been able to compute in closed form the densities of the limiting k-point measures d k,M z 0 associated with the random function Gz 0 ; however, the numerical experiments presented in Figure 4, as well as the Proposition 2.7, lead us to the following Conjecture 2.11. The k-point densities d k,M z 0 of the zero point process of the random function Gz 0 described in Theorem 2.9 exhibit a quadratic repulsion at short distance. Namely, for any open set O C, there exists a constant C > 1 depending only on O and k such that, for all pairwise distinct points w 1 , . . . ,

w k ∈ O, C -1 i<j |w i -w j | 2 ≤ d k,M z 0 (w 1 , . . . , w k ) ≤ C i<j |w i -w j | 2 .
In Figure 4 we compare numerical values of the 2-point correlation function with the 2-point correlation function of a well-known spectral point process on C, namely the spectrum of large Ginibre random matrices. This ensemble corresponds to random matrices M ω alone, when the entries are i.i.d. Gaussian ∼ N C (0, 1), in the limit h → 0, or equivalently the limit or large matrices. It has been known since the work of Ginibre [START_REF] Ginibre | Statistical Ensembles of Complex, Quaternion, and Real Matrices[END_REF] that the eigenvalues of these matrices repel each other quadratically at short distance. When the eigenvalues are rescaled such that the mean local density is given by d 1 (w) = σ/π, the 2-point correlation function takes the simple form

K 2,Gin σ (w 1 , w 2 ) = 1 -exp(-σ|w 1 -w 2 | 2 ) .
(2.36)

Hence, in view of our local density (2.35), we draw on Fig. 4 the 2-point function

K 2,Gin z 0 (w 1 , w 2 ) = 1 -exp - 1 2 J i=1 σ i + (z 0 ) + σ i -(z 0 ) |w 1 -w 2 | 2 . (2.37)
This function is markedly different from the scaling function κ(t 2 ) corresponding to the zero GAF process (2.29). It seems rather close to our experimental data of Fig. 4, even though we observe a deviation for values |w 1 -w 2 | ∼ 1. Is this deviation due to the finite value of h used in our numerical experiment? Or does the deviation persist when h → 0, that is in the limiting correlation function K 2,M z 0 ? We conjecture that the latter correlation function K 2,M z 0 differs from the (appropriately rescaled) Ginibre function K 2,Gin z 0 , but that it becomes closer and closer to it when the number of quasimodes J increases (a property which purely concerns the classical symbol p 0 ). Indeed, when J 1 the function Gz 0 is the determinant of a large matrix of independent GAFs. In any case, computing the k-point densities for the process Z Gz 0 seems to us to be an interesting open problem.

Translation invariance

One easy property of the limiting point processes obtained in Theorems 2.6 and 2.9, is that they are homogeneous and isotropic. This property is naturally inherited from the translation invariance of the zero process of individual GAFs, as mentioned in section 1.2.

Proposition 2.12. The limiting point processes Z Gz 0 , resp. Z Gz 0 obtained in Theorems 2.6 and 2.9 are invariant in distribution under the action of the group of translations and rotations on C. More precisely, for arbitrary α, β ∈ C with |α| = 1 let us define the plane isometry τ (w) = αw + β, w ∈ C.

Then, the zero processes of G z 0 and Gz 0 satisfy

Z Gz 0 d = Z Gz 0 •τ , resp. Z Gz 0 d = Z Gz 0 •τ .

Sketch and key ideas of the proof

The proof of the main results is built on two distinct parts. The first part uses linear algebra and semiclassical methods to reduce the eigenvalue problem of the infinite dimensional operator P h , to a nonlinear spectral problem expressed in terms of a finite dimensional matrix (called the effective Hamiltonian), which depends non-linearly on the spectral parameter. This reduction will be applied to the randomly perturbed operators P δ Q as well. The reduction is based on the construction of quasimodes of the unperturbed operator, which we perform in Section 3.In Section 5 we use these quasimodes to construct a wellposed Grushin problem for the operators P h or P δ Q , which leads to the effective Hamiltonian. The spectrum of the random operator P δ Q is now obtained as the zero locus of the determinant of the effective Hamiltonian; in the case of the randomly perturbed operator P δ Q , this determinant is a certain type of random analytic function.

In the second part of the argument, we analyze the statistical properties of this random analytic function. First, we rescale the spectral parameter near a given point z 0 , to the scale of the average spacing between eigenvalues. Then, we show that, for each type of perturbation, the determinant of the effective Hamiltonian (after some "change of gauge") converges in distribution to the universal random analytic function stated in Thm 2.5, resp. Thm 2.9. In Section 6 we provide an overview of the notions and results from the theory of random analytic functions used in this paper. Sections 7 and 8 then complete the proofs of our main theorems.

Let us now give some more details on the successive steps.

Part I -Reduction to an effective Hamiltonian

By (2.12) for all z ∈ Ω and for each point ρ j ± (z), j = 1, . . . , J, in the energy shell p -1 (z), we can construct an h ∞ -quasimode e j ± for the problem P h -z resp. (P h -z) * as in (2.14,2.15). These quasimodes are microlocalized on ρ j ± , i.e. WF h (e j ± ) = {ρ j ± }. The quasimodes e j + (resp. e j -) essentially span the space of singular values of (P h -z) (resp. (P h -z) * ) smaller than h/C. This property will be used later to extend the operator P h -z into a well-posed Grushin problem.

Almost holomorphic quasimodes

The quasimodes are constructed in Section 3, their relevant properties are gathered in Proposition 3.5. For this construction, near each point ρ + = (x + , ξ + ) ∈ p -1 (z) we use the Malgrange preparation theorem (see Section 3.1) to factorize our operator P -z, microlocally near ρ + , into a simple form P = hD x +g + (x, z). The WKB-method (see Section 3.3), then allows to construct a state

e hol + (x, z; h) = a + (x, z; h) e i h φ + (x,z) , (2.38) 
satisfying the quasimode equation

(P h -z)e hol + = O(h ∞ ) e hol + .
(2.39)

For a fixed z this WKB construction is standard [START_REF] Dimassi | Spectral Asymptotics in the Semi-Classical Limit[END_REF], but we also need to control how the quasimodes depend on the parameter z. In [START_REF] Hager | Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints I: un modèle[END_REF] the author treated the case where the symbol p (2.6) is analytic. Here we are only assuming the symbol to be smooth, and we take particular care in Proposition 3.5 to construct quasimodes depending on an almost holomorphic way of z, at least near the reference point z 0 where we study the spectrum.

The almost holomorphicity near z 0 takes the form

e -1 h Φ + (z;h) ∂ z e hol + (z; h) = O(h -1 |z -z 0 | ∞ + h ∞ ). (2.40) 
Because we will eventually focus on z in an O(h 1/2 ) neighbourhood of z 0 , the right hand side will effectively be O(h ∞ ). This holomorphicity implies that the states e hol + (z; h) are not L 2 normalized for all z. Indeed, we show that for z in a neighbourhood of z 0 , their norm takes the form

e hol + (z; h) = e 1 h Φ + (z;h) , (2.41) 
with a phase function

Φ + (z; h) = Φ +,0 (z) + O(h log h), Φ +,0 (z) def = -Im φ + (x + (z), z).
The normalized quasimode for (P h -z), microlocalized on ρ + , as in (2.14), can then be defined as e + (z; h) = e -1 h Φ + (z;h) e hol + (z; h). Similarly, for the adjoint problem (P h -z) * , we construct WKB states e hol -(z; h) which are almost anti-holomorphic w.r.t. z and their normalized version e -(z;

h) = e -1 h Φ -(z;h) e hol -(z; h).
Interaction between the quasimodes In section 4 we analyse the overlaps ("interactions") between nearby quasimodes. These interactions will be relevant when computing the covariance of the components of the effective Hamiltonian. Since two points ρ j + (z), ρ k + (z) (j = k) remain at finite distance, the corresponding quasimodes are essentially orthogonal to each other. On the other hand, we will need to control the the interactions between the quasimodes microlocalized on ρ j + (z) and ρ j + (w) when the energies z, w are close to one another other (in practice, |z -w| = O(h 1/2 )). In Propositions 4.1 and 4.3 we exploit the almost (anti-)holomorphy of e hol,j ± to show that

(e j,hol + (z)|e j,hol + (w)) = e 2 h Ψ j + (z,w;h) + small, Ψ j + (z, w; h) = Ψ j +,0 (z, w) + O(h log h) .
(2.42) Here Ψ j +,0 (z, w) is a polarization of the phase function Φ +,0 (z), such as to be almost zholomorphic and almost w-antiholomorphic near {(z 0 , z 0 )}. In particular it satisfies the second-order Taylor expansion

Ψ +,0 (z 0 + ζ 1 , z 0 + ζ 2 ) = |α|≤2 (∂ α 1 z ∂ α 2 z Φ +,0 )(z 0 ) ζ α 1 1 ζ α 2 2 α! + O(|ζ| 3 ). (2.43)
Remark 2.13. In the case of perturbation by a random potential δV ω , we will also need to compute the interactions between the squared functions (e j -(x, z)) 2 , namely estimate scalar products of the form ((e j -(z)) 2 |(e j + (w)) 2 (see Section 4.2).

Grushin Problem for the perturbed operator P δ h

The next step in the proof is to use the quasimodes e ± (z; h) to construct a well-posed Grusin problem for the operator P h -z. As reviewed in [START_REF] Sjöstrand | Elementary linear algebra for advanced spectral problems[END_REF], in order to analyze the small singular values of a z-dependent operator P (z) = (P -z) : H 1 → H 2 (in particular the spectrum of P ), the general idea of setting up a Grushin problem is to extend this operator into an operator of the form

P(z) def = P (z) R -(z) R + (z) 0 : H 1 ⊕ H --→ H 2 ⊕ H + ,
where H ± (resp. R ± ) are well chosen auxiliary spaces (resp. operators). The Grushin problem is said to be well-posed if the extended operator P(z) is bijective for the range of z under study, with a good control on its inverse. Roughly speaking, the role of R + (z) is to map the the quasi-kernel of P (z) to the auxiliary space, while R -(z) maps the latter to the quasi-cokernel of P (z); both actions finally make P(z) invertible.

In the case where dim H -= dim H + < ∞, on decomposes the inverse operator blockwise as

P (z) R - R + 0 -1 = E(z) E + (z) E -(z) E -+ (z) def = E(z).
The key observation, going back to Schur's complement formula, is the following: the initial operator P (z) is invertible if and only if the finite rank operator E -+ (z) : H + → H -is invertible, in which case both inverses are related by:

P (z) -1 = E(z) -E + (z)E -1 -+ (z)E -(z) .
The finite rank operator E -+ (z) is often called an effective Hamiltonian for the original problem P (z). It depends in a nonlinear way on the spectral parameter z, but it has the advantage of being finite dimensional. In a sense, E -+ (z) encapsulates, in a minimal way, the spectral properties of P . If the spectrum of P is discrete in the z-range under study, its eigenvalues can be obtained as the zeros of det E -+ (z) (with multiplicities).

In our case we construct our Grushin problem using the normalized quasimodes: we take

R + (z) : H(m) → C J (R + (z)u) j = (u|e j + (z)), j = 1, . . . , J, R -(z) : C J → L 2 , R -(z)u -= J j=1 u -(j)e j -(z) .
The roles of R ± (z) are quite transparent: R + (z) indeed maps the quasi-kernel of (P -z) (the quasimodes e j + (z) to the auxiliary space, while R -(z) constructs the quasi-cokernel of (P -z) * ). We thus obtain a well-posed Grushin problem P(z), see Proposition 5.1. Note that this construction was already performed in [START_REF] Hager | Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints I: un modèle[END_REF].

After restricting our random variables to discs of radius Ch -1 , the perturbations δQ of P h are small in norm, i.e. δQ 1. As a result, the Grushin problem is still wellposed if we replace P h by the perturbed operator P δ Q , see Proposition 5.3. The eigenvalues of P δ Q -z are then given by the zeros or det(E δ -+ (z)), where E δ -+ (z) is the perturbed effective Hamiltonian. In Section 5.2 we compute this effective Hamiltonian:

δ -J det(E δ -+ (z)) = (-1) J det Qe j + (z)|e i -(z) i,j≤J + O(δh -5/2 ) .
A crucial feature of this expression is the fact that the effective Hamiltonian is dominated by the random perturbation, in spite of the fact that the latter is of size ∝ δ, which is a small parameter. However, the unperturbed effective Hamiltonian E -+ (z) is actually of size O(h ∞ ), allowing a perturbation of size h N to be comparatively large.

The quasimodes used in the definition of the effective Hamiltonian were normalized, hence E δ -+ (z) is not holomorphic. In Section 5.2 we show that by multiplying det(E δ -+ (z)) by an appropriate nonvanishing function of z, we obtain a holomorphic function, of the following form:

G δ (z; h) = 1 + R 1 det h -1/2 Qe j,hol + (z)|e i,hol -(z) i,j≤J + R 2 , (2.44) 
with R 1 , R 2 some small (z-dependent) error terms. Not surprisingly, the normalized quasimodes have been replaced by their almost (anti-)holomorphic counterparts in the expression. The entries of the matrix on the right hand side are dominated by scalar products (Qe j,hol + (z)|e i,hol -(z)), which represent the coupling between the quasimodes through the perturbation operator Q. Remember that these quasimodes are microlocalized at different phase space points ρ j + (z), ρ i -(z); hence, the coupling will be nonnegligible only if the perturbation operator Q is able to "transport mass" from one point to the other. Remark 2.14. Here a major difference occurs between the two types of perturbations. The random operator M ω (eq. (RM)) will typically be able to couple any pair of quasimodes (e j,hol + , e i,hol -), leading to a full J × J matrix. On the opposite, the multiplication by a random potential V ω will not be able to couple quasimodes localized at different positions x j + = x i -. This is the reason why, in this case, we need to assume the symmetry property (SYM), which ensures that each quasimode e j + admits a dual quasimode e j -with x j + = x j -. The further assumption (HYP-x) ensures that no other quasimode will be localized at x j + : this property makes the matrix (V ω e j,hol + (z)|e i,hol -(z)) i,j≤J approximately diagonal. This diagonal structure, will lead to a limiting random determinant given by the product of J independent GAFs, each one corresponding to one of the diagonal entries. On the opposite, for a random matrix perturbation, the full matrix (M ω e j,hol + (z)|e i,hol -(z)) i,j≤J will lead to a full matrix of GAFs.

Part II -Convergence to Gaussian analytic functions

In the second part we study the point process consisting in the zeros of the random analytic function G δ (z; h) of eq. (2.44). Performing the rescaling z = z w def = z 0 + h 1/2 w, with w contained in some bounded open set O C, we are lead to study the zeros of the rescaled random function:

F δ h (w) def = G δ (z 0 + h 1/2 w; h) = (1 + R 1 ) det (f δ,h i,j (w)) i,j≤J + R 2 .
(2.45)

The terms R 1 and R 2 are small, they converge to 0 in probability sufficiently quickly (see Corollary 7.4 and Lemma 7.5), hence the expression is dominated by det(f δ,h i,j (w)) i,j≤J , where f δ,h i,j (w) = h -1/2 Qe j,hol + (z w )|e i,hol -(z w ) . In Section 6 we have collected some general notions and results concerning random holomorphic functions and the associated zero processes. The key observation [40, Proposition 2.3], see also Proposition 6.11 below, is that if a sequence of random holomorphic functions f n converges in distribution to a random holomorphic function f (which is almost surely ≡ 0), then the zero point processes of f n converges in distribution to the zero point process of f . Therefore, we need to show that the function F δ h (actually, after multiplication by appropriate "gauge" factors) converges in distribution to the random analytic function G z 0 in the case of Thm 2.5, resp. to G z 0 in the case of Thm 2.9. The first casel is treated in Section 8, the second one in Section 7. In this sketch we mostly describe the second case Q = M ω , and highlight the differences with the perturbation by a random potential.

Covariances To show the convergence of F δ h , we will need to show that the entries f δ,h i,j (w) converge in distribution to J 2 independent GAFs. The assumptions (2.16) on the coefficients of the random matrix M ω imply that at each point w the random variable f δ,h i,j (w) is centered. The second step is to compute the covariances

E f δ,h i,j (v)f δ,h l,k (w) = h -1 E (M ω e j,hol + (z v )|e i,hol -(z v ))(e k,hol - (z w )|M ω e l,hol + (z w )) .
Expanding the random operator M ω in the orthonormal family (e m ) m<N (h) leads to the following expression:

E f δ,h i,j (v)f δ,h l,k (w) = h -1 (e j,hol + (z v )|Π N (h) e k,hol + (z w ))(e l,hol -(z w )|Π N (h) e i,hol -(z v )), (2.46)
where Π N (h) is the orthogonal projector on the space spanned by (e m ) m<N (h) . From our assumption on this orthonormal basis, this projector is equivalent with the identity microlocally near Ω; since all our quasimodes are microlocalized inside Ω, the projectors Π N (h) may be removed from the scalar products, up to negligible errors. The covariance is hence expressed in terms of the interations between neighbourhing quasimodes.

From our analysis of these interactions, in Proposition 7.1 we deduce the following expressions for the covariances:

E f δ,h i,j (v)f δ,h l,k (w) ≈ h -1 (e j,hol + (z v )|e k,hol + (z w )) (e l,hol -(z w )|e i,hol -(z v )) ≈ δ i,l δ j,k e 2(∂ 2 z z Φ j +,0 (z 0 )+∂ 2 z z Φ i -,0 (z 0 ))vw e F i,j (v)+F i,j (w) = δ i,l δ j,k e 1 2 (σ j + (z 0 )+σ i -(z 0 ))vw e F i,j (v)+F i,j (w) def = K i,j (v, w) e F i,j (v)+F i,j (w) .
(2.47)

The Kronecker factors already hint at the fact that the random functions f δ,h i,j and f δ,h l,k are statistically independent if (i, j) = (l, k). To obtain the second line, we have expanded the phase function Ψ ±,0 describing the interaction kept up to second order (see the Taylor expansion (2.43)), and have separated the mixed term v w from the separated terms |v| 2 , |w| 2 which we grouped in the functions F i,j (•).

To obtain the third line of (2.47) we used the relation between the phase function Φ j ±,0 describing the L 2 norm of the quasimode, and the local classical density σ j ± , see eq. 2.25. We indeed show in Section 3.5 that

∂ 2 z z Φ j ±,0 (z 0 ) = 1 4 σ j ± (z 0 ) .
In the mixed term corresponds we recognize the covariance of the GAF g σ ij with parameter σ ij = 1 2 (σ j + + σ i -) (see (1.9)). Hence, the whole expression corresponds to the covariance of the modified GAF

f GAF i,j def = e F i,j g σ ij .
Remark 2.15. In the case of a random potential (see Section 8), we perform a similar computation in Proposition 8.2. In that case the covariance will involve scalar products of the type ((e j,hol

-(z v )) 2 |(e k,hol - (z w )) 2
), which will be nonnegligible only if j = k; we also recover the covariance of a GAF multiplied by a gauge factor.

Convergence to a Gaussian functions Computing the covariances is not sufficient to prove the convergence in distribution of the random functions f δ,h i,j towards the modified GAFs f GAF i,j

. The entries of M ω are in general not Gaussian, so neither are the functions f δ,h i,j . How does one prove the convergence of a sequence of random function? Prohorov's Theorem 6.7 shows that to prove the convergence of random functions, it is enough to prove the convergence in the sense of finite dimensional distributions (see Definition 6.5): namely, for any n ∈ N * and any set of points (w 1 , . . . , w n ) ∈ O n , we need to show that the random complex vector

(f δ,h i,j (w 1 ), . . . , f δ,h i,j (w n )) converges in distribution to (f GAF i,j (w 1 ), . . . , f GAF i,j (w n )).
This type of convergence will be denoted by

f δ,h i,j f d → f GAF i,j
. We actually need to show that the various functions f δ,h i,j are asymptotically independent from one another, and converge towards independent GAFs f GAF i,j

The random operator M ω is in general not Gaussian, so to obtain convergences to Gaussian vectors, we need to apply a suitable version of the central limit theorem (Theorem 6.12). The application of the CLT resides on the fact that each quasimode e j ± has nonnegligible overlaps with many of the basis states e m used to construct M ω . Thanks to this property, the higher moments of the f δ,h i,j will involve sums over many i.i.d. random variables α, and hence to a Gaussian law (see Proposition 7.3).

Taking into account the small error terms and applying Prohorov's theorem, this leads to the convergence in distribution of the full determinant

F δ h (•) d -→ det (f GAF i,j (•)) 1≤i,j≤J when h → 0 .
Finally, at the end of Section 7.5 we use the fact that the "gauge" functions split into

F i,j (v) = φ i -(v) + φ j + (v)
. This splitting allows to extract the gauge factors e F i,j from the random matrix as follows:

f GAF i,j (v) i,j = diag(e φ i -(v) ) g σ ij (v) i,j diag(e φ j + (v) ) .
The determinant of the diagonal matrices never vanishes, so the zero process is that of the determinant of matrix of GAFs g σ ij , as in Thm 2.9.

Remark 2.16. In the case of a random potential, the major difference lies in the fact that the off-diagonal entries in (2.45) are negligible; this leads to a product of J independent functions, each one converging to a GAF (compare Corollaries 7.4 and 8.5).

k-correlation functions The convergence of the point processes implies the convergence of the k-point correlation measures. There remains to compute the latter, as given in Theorem 2.6, Corollary 2.10 and Proposition 2.12; the computations are performed in Section 7.6 and 8.4. In the case of a perturbation by a random operator, we can only compute the 1-point function, whereas in the case of a random potential we obtain explicit formulas for the limiting k-point correlation functions.

Quasimodes

Our main objective in this section is the construction of the h ∞ -quasimodes e j ± (z 0 ) for the operator (P h -z 0 ) (resp. (P h -z 0 ) * ), which will be used to set up the Grushin problem in the next section.

For this aim we will first factorize our symbol p into a "nice" form, using semiclassical analysis and the Malgrange preparation theorem in Section 3.1. This factorized form will allow for very explicit expressions of our quasimodes, which will naturally exhibit an almost holomophic (resp. anti-holomorphic) dependence with respect to the spectral parameter z. In Section 3.2 we recall the notion of almost holomorphy and we provide some results needed for the construction of the quasimodes in Section 3.3. Section 3.4 contains additional remarks on the construction of quasimodes in case we assume the symmetry property (SYM). Finally, Section 3.5 provides a link between the quasimode phase functions and the symplectic volume on T * R, which will be used later.

Malgrange preparation theorem

We start by Moyal-factorizing the symbol p of the operator P h in a neighbourhood of each of the points ρ j ± = (x j ± , ξ j ± ) ∈ p -1 0 (z 0 ), see (HYP). The method presented is an adaptation of [START_REF] Hager | Instabilité Spectrale Semiclassique d'Opérateurs Non-Autoadjoints II[END_REF].

Proposition 3.1. Let p(h) in S(R 2 , m) as in (2.6) satisfying (HYP), let Ω C be as in (2.11), and let z 0 ∈ Ω. For j = 1, . . . , J, let U j ± be open neighbourhoods of ρ j ± (z 0 ). Then, there exists

W (z 0 ) ⊂ Ω an open neighbourhood of z 0 , open sets V j ± ⊂ U ± containing ρ j ± (W (z 0 )),
and symbols in S(V j ± , 1):

q ±,j (x, ξ, z; h) ∼ k≥0 h k q ±,j k (x, ξ, z), g ±,j (x, z; h) ∼ k≥0 h k g ±,j k (x, z) , (3.1) 
depending smoothly on z ∈ W (z 0 ), such that for all z ∈ W (z 0 ), p(x, ξ; h) -z ∼ q +,j (x, ξ, z; h)#(ξ + g +,j (x, z; h)) in S(V j + , m), p(x, ξ; h) -z ∼ (ξ + g -,j (x, z; h))#q -,j (x, ξ, z; h) in S(V j -, m).

(3.2)
Furthermore, the principal symbols satisfy q ±,j 0 (x j ± (z), ξ j ± (z), z) = 0 and g ±,j 0 (x j ± (z), z) = -ξ j ± (z).

We recall that # indicates the Moyal product, which translates the operator composition to the symbolic level [START_REF] Dimassi | Spectral Asymptotics in the Semi-Classical Limit[END_REF]Chapter 7]: for any symbols

a j ∈ S(R 2 , m j ), for j = 1, 2, then a w 1 • a w 2 = (a 1 #a 2 ) w . The Moyal product # : S(R 2 , m 1 ) × S(R 2 , m 2 ) → S(R 2 , m 1 m 2 )
is a bilinear and continuous map.

Proof. We will focus on a single point ρ j + (z), and will omit the ± and j sub/superscripts in the proof. The case of the points ρ j -can be treated identically. The condition (HYP) implies that for any z ∈ Ω, we have p 0 (ρ(z)) -z = 0 and ∂ ξ p 0 (ρ(z)) = 0. Fix z 0 ∈ Ω. By the Malgrange preparation theorem [START_REF] Hörmander | The Analysis of Linear Partial Differential Operators I[END_REF]Theorem 7.5.5], there exist open neighbourhoods V ⊂ U of ρ(z 0 ) and W (z 0 ) ⊂ C of z 0 , as well as smooth functions

q 0 ∈ C ∞ (V × W (z 0 )) and g 0 ∈ C ∞ (π x (V ) × W (z 0 )), such that p 0 (x, ξ) -z = q 0 (x, ξ, z)(ξ + g 0 (x, z)), for all (x, ξ, z) ∈ V × W (z 0 ), (3.3) 
and q 0 (x(z 0 ), ξ(z 0 ), z 0 ) = 0, while g 0 (x(z 0 ), z 0 ) = -ξ(z 0 ). We can suppose that q 0 = 0 in V × W (z 0 ) by potentially shrinking V and W (z 0 ). Up to shrinking W (z 0 ) we may also assume that ρ(W (z 0 )) ⊂ V , so that g 0 (x(z), z) = -ξ(z) for all z ∈ W (z 0 ).

Next, we make the formal Ansatz

q(x, ξ, z; h) = k≥0 h k q k (x, ξ, z), g(x, z; h) = k≥0 h k g k (x, z),
and group together the terms of the Moyal product

q(x, ξ, z; h)#(ξ + g(x, z; h)) = e ih 2 (D ξ Dy-DxDη) q(x, ξ, z; h)(η + g(y, z; h)) y=x η=ξ
with the same power of h. The symbols q k , g k can then be computed by induction. For N ≥ 1, assume we already know q k , g k for 0 ≤ k < N . Equating the coefficient of h N of the above asymptotic expansion with the symbol p N , we obtain

G N (x, ξ, z) = q N (x, ξ, z) q 0 (x, ξ, z) ξ + g 0 (x, z) + g N (x, z), (3.4) 
where

G N (x, ξ, z) = 1 q 0 (x, ξ, z) p N (x, ξ) - N -1 l=1 q N -l (x, ξ, z)g l (x, z) + N -1 k=0 i 2 (D ξ D y -D x D η ) N -k q k (x, ξ, z)η + k r=0 q k-r (x, ξ, z)g r (y, z) y=x η=ξ (3.5) 
Notice that G N only depends on q k , g k , for k < N , and on p N . We can then determine the functions q N and g N : since

ξ(z) + g 0 (x(z), z) = 0, ∂ ξ (ξ + g 0 (x, z)) = 1,
the Malgrange preparation theorem implies the existence of smooth functions q N /q 0 and g N in V × W (z 0 ) satisfying (3.4). This way we obtain all symbols

q k ∈ C ∞ (V × W (z 0 )), g k ∈ C ∞ (π x (V ) × W (z 0 )), k ≥ 1,
which allows us to construct full symbols q(x, ξ, h) and g(x, h) by Borel summation, which satisfy (3.1) and (3.2).

Almost holomorphic extensions

We did not assume the symbol p(x, ξ, h) to be real analytic in the variables x, ξ, so the functions q(ρ, z) and g(x, z) constructed in Prop. 3.1 are, a priori, not holomorphic in z.

Yet, we show below that they are almost holomorphic near the classical energy shell. We begin by recalling the notion of almost holomorphic extension of a smooth function. It has been introduced by Hörmander [START_REF] Hörmander | Lecture notes at the nordic summer school of mathematics[END_REF] and Nirenberg [START_REF] Nirenberg | A proof of the malgrange preparation theorem[END_REF] in different contexts. Definition 3.2. Let X ⊂ C n be an open set and let Γ ⊂ X be closed. If f ∈ C ∞ (X), we say that f is almost holomorphic at Γ if ∂ z f vanishes to infinite order there, i.e. for any

N ∈ N there exists a constant C N > 0 such that for all z in a small neighbourhood of Γ in X |∂ z f (z)| ≤ C N dist (z, Γ) N .
In this case we write

∂ z f (z) = O(dist (z, Γ) ∞ ). In the case Γ = X ∩ R n , we simply say that f is almost holomorphic. If f, g ∈ C ∞ (X)
are almost holomorphic at Γ and if f -g vanishes to infinite order there, then we say that f and g are equivalent at Γ. If Γ = X ∩ R n , then we simply say that f and g are equivalent and we write f ∼ g.

Any f ∈ C ∞ (X ∩ R n
) admits an almost holomorphic extension, uniquely determined up to equivalence, see e.g [START_REF] Hörmander | Lecture notes at the nordic summer school of mathematics[END_REF][START_REF] Melin | Fourier integral operators with complex-valued phase functions[END_REF]. Before we continue, we recall parts of a technical lemma from [START_REF] Melin | Fourier integral operators with complex-valued phase functions[END_REF]Lemma 1.5].

Lemma 3.3. Let Ω ⊂ R d be an open set and suppose that u ∈ C ∞ (Ω). Let v(x) be a Lipschitz continuous function on Ω. Suppose that for any Ω Ω and all N ∈ N, we have

|u(x)| ≤ C N,Ω |v(x)| N , x ∈ Ω .
Then for any Ω Ω, any multi-index α ∈ N d and any N ∈ N, there is a constant

C N,Ω ,α s.t. |v(x)| |α| |D α x u(x)| ≤ C N,Ω ,α |v(x)| N , x ∈ Ω .
We will use this Lemma in the construction of almost holomorphic extensions of the function g 0 (x, z) from Proposition 3.1. Lemma 3.4. Under the hypotheses and notations of Proposition 3.1, let g ±,j 0 be an almost x-holomorphic extension of g ±,j 0 , for j = 1, . . . , J. Then, there exists an open bounded neighbourhood W (z 0 ) of z 0 , open bounded sets X j ± ⊂ R and small complex neighbourhoods X j ± of X j ± , such that x j ± (W (z 0 )) ⊂ X j ± , and such for any N ∈ N and any α, β, γ ∈ N, there exists a constant C α,β,γ N > 0 such that

|∂ α x ∂ β z ∂ γ+1 z g ±,j 0 (x, z)| ≤ C α,β,γ N |x -x j ± (z)| N , ∀z ∈ W (z 0 ), ∀x ∈ X j ± . (3.6)
Moreover, for any higher order symbol g ±,j k , k ∈ N, for any α ∈ N and any N ∈ N, there exists a constant C ± N,α,k,j > 0 such that

|∂ α x ∂ z g ±,j k (x, z)| ≤ C ± N,α,k,j |x -x j ± (z)| N , x ∈ X j ± , z ∈ W (z 0 ). (3.7) 
In particular that (3.6) implies

|∂ z g ±,j 0 (x, z)| ≤ C N |x -x j ± (z)| N , ∀x ∈ X j ± , z ∈ W (z 0 ) . (3.8)
Proof of Lemma 3.4. Again, we focus only on the + case and omit the superscripts j and +. Let

q 0 (x, ξ, z) ∈ C ∞ (V × W (z 0 )) and g 0 (x, z) ∈ C ∞ (π x (V ) × W (z 0 )) be as in Prop. 3.1, with V an open bounded set containing ρ + (W (z 0 )).
As in the proof of that Proposition, we may suppose that q 0 (x, ξ, z) = 0 in V × W (z 0 ). For V a small bounded complex neighbourhood of V , we construct q 0 (x, ξ, z) an almost (x, ξ)-holomorphic extension of q 0 (x, ξ, z) defined on V × W (z 0 ), such that

q 0 (x, ξ, z) = 0, (x, ξ, z) ∈ V × W (z 0 ). (3.9) 
Although z appears as a parameter in the construction, we can ensure that q 0 is smooth w.r.t. z, and that any function

∂ α z ∂ β z q 0 is an almost (x, ξ)-holomorphic extension of ∂ α z ∂ β z q 0 .
Similarly, we construct g 0 (x, z), for x ∈ π x ( V ), an almost x-holomorphic extension of g 0 (x, z). Using these two functions to extend the equation (3.3), we obtain the function

p 0 (x, ξ, z) def = q 0 (x, ξ, z)(ξ + g 0 (x, z)), (x, ξ, z) ∈ V × W (z 0 ).
(3.10) p 0 (x, ξ, z) is naturally an almost (x, ξ)-holomorphic extension of p 0 (x, ξ) -z. It is also the case of its ∂ z derivative, so that

∂ z p 0 (x, ξ, z) = O(|Im (x, ξ)| ∞ ) . (3.11) 
By (HYP), we have that ∂ ξ p 0 (ρ + (z)) = 0 for all z ∈ W (z 0 ). By potentially shrinking V , W (z 0 ) and V we can arrange that ρ + (W (z 0 )) ⊂ V and that ∂ ξ p 0 (x, ξ, z) = 0 for all (x, ξ, z) ∈ V × W (z 0 ). Recall from Proposition 3.1 that g 0 (x + (z), z) = -ξ + (z) for all z ∈ W (z 0 ). Hence, by potentially shrinking V and W (z 0 ) and by restricting g 0 (•, z) to an open bounded convex complex neighbourhood X of X def = π x (V ) ⊂ R, with X π x ( V ), we can arrange that x + (W (z 0 )) ⊂ X and (x, -g 0 (x, z)) ∈ V , for all x ∈ X.

Taking ξ = -g 0 (x, z) in (3.10) and then taking the ∂ z derivative of that equation, taking into account (3.11), we get for all x ∈ X and all z ∈ W (z 0 ),

∂ ξ p 0 (x, -g 0 (x, z))∂ z g 0 (x, z) + ∂ξ p 0 (x, -g 0 (x, z))∂ z g 0 (x, z) = O(|Im (x, ξ)| ∞ ).
Since p 0 is almost (x, ξ)-holomorphic, while ∂ ξ p 0 is bounded away from zero, we find for any N ∈ N:

|∂ z g 0 (x, z)| ≤ C N |Im g 0 (x, z)| N + |Im x| N , x ∈ X, z ∈ W (z 0 ) .
Since g 0 (x + (z), z) = -ξ + (z) ∈ R, one has Im g 0 (x + (z), z) = 0; and since g 0 is a bounded smooth function on X × W (z 0 ), it follows by Taylor expansion that

|∂ z g 0 (x, z)| ≤ C N |x -x + (z)| N , x ∈ X, z ∈ W (z 0 ).
(3.12)

This proves (3.6) in the case α = β = γ = 0. Now, observe that, since (x -x + (z)) is a smooth function of (x, z), it follows by Lemma 3.3 that after slightly shrinking X and W (z 0 ), for any α, β, γ ∈ N,

|∂ α x ∂ β z ∂ γ+1 z g 0 (x, z)| ≤ C α,β,γ N |x -x + (z)| N . (3.13)
In particular, restricting x to the value x + (z) ∈ X + , we find

∀α, β, γ ∈ N, (∂ α x ∂ β z ∂ γ+1 z g 0 )(x + (z), z) = 0, z ∈ W (z 0 ). (3.14) 
Next, using (3.3) and that g 0 (x + (z), z) = -ξ + (z), see Proposition 3.1, we obtain by a direct computation of {p 0 , p 0 }(ρ + (z)) that

Im (∂ x g 0 )(x + (z), z) = {p 0 , p 0 }(ρ + (z)) 2i|q 0 (ρ + (z), z)| 2 < 0, (3.15) 
where the last inequality is a consequence of (HYP). Finally, by differentiating (3.10) with respect to x and z and by evaluating it at the point (ρ + (z), z) we find (∂ z q 0 )(ρ + (z), z) = 0. By repeated differentiation of (3.10) and using the Leibniz rule, this generalizes to

∀η ∈ N 2 , ∂ η ρ ∂ z q 0 (ρ, z) ρ=ρ + (z) = 0. (3.16) 
Let us now consider the higher order symbols. We recall that for any N > 0, the symbols q N ∈ C ∞ (V × W (z 0 )) and g N ∈ C ∞ (π x (V ) × W (z 0 )) were constructed by solving the equation (3.4), with G N defined in (3.5) in terms of the lower order symbols. We will as well construct the almost holomorphic extensions of these symbols iteratively.

Assume that for all 0 ≤ k < N , we have extended q k (resp. g k ) into almost ρholomorphic extension q k (resp. almost x-holomorphic extension g k ). denote almost (x, ξ)holomorphic (resp. almost x-holomorphic) extensions. Injecting these extensions on the right hand side (3.5) (the derivatives D x , D ξ etc. being now understood as holomorphic derivatives) defines G N , an almost holomorphic extension of G N . Then we extend q N into q N . Injecting in (3.4) G N , q N and the previously defined extensions q 0 , g 0 ends up with the definition of g N , which almost holomorphically extends g N .

Let us show by induction that the symbols satisfy

∀α ∈ N, ∂ α x ∂ z g N (x, z) x=x + (z) = 0 (3.17) ∀η ∈ N 2 , ∂ η ρ ∂ z q N (ρ, z) ρ=ρ + (z) = 0 . (3.18)
We already know from (3.13,3.16) that this is the case at the level N = 0. Differentiating the equation (3.5) defining G N by z and ρ, one finds that

∀η ∈ N 2 , ∂ η ρ ∂ z G N (ρ, z) ρ=ρ + (z) = 0. (3.19)
Like we did before, taking ξ = -g 0 (x, z) in (3.4), differentiating w.r.t. z and x, and evaluating the expression at x = x + (z), results in the following identities:

∀α ∈ N, ∂ α x ∂ z G N (ρ, z) ρ=ρ + (z) = ∂ α x ∂ z g N (x, z) x=x + (z) .
Eq. (3.19) shows that the above expression vanishes, thus proving (3.17).

Let us now treat the symbol q N . Differentiating the right hand side of (3.4) by z and ρ, and evaluating at ρ = ρ + (z), we find using (3.19) and (3.17):

∂ η ρ ∂ z q N (x, ξ, z) q 0 (x, ξ, z) (ξ + g 0 (x, z)) ρ=ρ + (z) = 0.
Our knowledge of g 0 and q 0 at the point ρ + (z) implies the desired equation (3.18). Using a Taylor expansion near x = x + (z) and taking into account the x-almost holomorpy of ∂ z g N (x, z), the equation (3.17) leads to the property

∀α ∈ N, ∂ α x ∂ z g N (x, z) = O(|x -x + (z)| ∞ ), x ∈ X, z ∈ W (z 0 ).
When restricting to real arguments x ∈ X, this gives the required equation (3.7).

Construction of the quasimodes

From now on we will always assume that the symbol p 0 satisfies the hypothesis (HYP) (each energy shell p -1 (z) consists of 2J different points). Using the factorization of Proposition 3.1, we will construct quasimodes for the operators P h -z and (P h -z) * following the WKB method.

Proposition 3.5 (Almost holomorphic quasimodes). Let p(•; h) ∈ S(R 2 , m) be as in (2.6) and satisfy (HYP). Let Ω C be as in (2.11), and take z 0 ∈ Ω. Let W (z 0 ) and X j ± , j = 1, . . . , J, be as in Proposition 3.1. Let χ j ± ∈ C ∞ 0 (X j ± , [0, 1]), such that χ j ± ≡ 1 in a small neighbourhood of x j ± (W (z 0 )). Then, there exist functions

e j,hol ± (x, z; h) = a j ± (x, z; h) χ j ± (x) e i h ϕ ± (x,z) , x ∈ R z ∈ W (z 0 ), ϕ j + (x, z) = - x x j + (z 0 ) g j,+ 0 (y, z)dy, ϕ j -(x, z) = - x x j -(z 0 )
g j,- 0 (y, z)dy.

(3.20)

Here g ±,j 0 are as in Proposition 3.1, depending smoothly on x ∈ X j ± and z ∈ W (z 0 ). The symbol a j ± (x, z; h) ∼ (a ±,j 0 (x, z) + ha ±,j 1 (x, z) + . . . ) is also smooth in x, z, with all derivatives uniformly bounded as h → 0.

Moreover, the states e j,hol ± have the following properties:

1. Their L 2 norms satisfy

e j,hol ± (z; h) = e 1 h Φ j ± (z;h) , Φ j ± (z; h) = -Im ϕ j ± (x j ± (z), z) + h log h 1 4 A j ± (z; h) , (3.21) 
with Im ϕ j ± (x j ± (z), z) ≤ 0, with equality iff z = z 0 , and A j ± (z; h) ∼ A j,± 0 (z) + hA j,± 1 (z) + . . . depending smoothly on z such that all derivatives with respect to z, z are bounded when h → 0.

2.

The states e j,hol ± are almost z-holomorphic (resp. almost z-anti-holomorphic) at z 0 , in the sense that

e -1 h Φ j + (z;h) ∂ z e j,hol + (z; h) = O(h -1 |z -z 0 | ∞ + h ∞ ), z ∈ W (z 0 ) e -1 h Φ j -(z;h) ∂ z e j,hol -(z; h) = O(h -1 |z -z 0 | ∞ + h ∞ ) z ∈ W (z 0 ). (3.22)
3. The corresponding normalized states,

e j ± (x, z; h) def = e j,hol ± (x, z; h) e -1 h Φ j ± (z;h) , (3.23) 
are h ∞ -quasimodes of (P h -z), resp. (P h -z) * :

(P h -z)e j + (z; h) = O(h ∞ ), (P h -z) * e j -(z; h) = O(h ∞ ). (3.24)
4. For any cutoffs

ψ j ± ∈ C ∞ 0 (R 2 , [0, 1]), such that ψ j ± ≡ 1 near ρ j ± (W (z 0 ))
, and any order function m , For future use, we voluntarily introduced two versions of the quasimodes: the normalized ones e j + (z; h), and the almost holomorphic ones e j,hol ± (z; h).

(1 -(ψ j ± ) w )e j ± (z; h) H(m ) = O(h ∞ ), j = 1, . . . , J, z ∈ W (z 0 ) . ( 3 
Proof of Proposition 3.5. We will give the proof of this Proposition only in the "+" case, since the "-" case is similar. We will suppress the superscript j until further notice. We begin with the following result:

Lemma 3.6. Let p(•; h) ∈ S 2 (R 2 , m) be as in (2.6) and satisfy (HYP). Let Ω C be as in (2.11), and let z 0 ∈ Ω. Let W (z 0 ) and X + with x + (W (z 0 )) ⊂ X + be as in Proposition 3.1. Let g + (x, z; h) be the symbol constructed in Proposition 3.1.

Then, the equation

(hD x + g + (x))f + (x, z; h) = 0, (x, z) ∈ X + × W (z 0 ) , (3.26) 
admits a solution f hol + (x, z; h) of the form

f hol + (x, z; h) = a + (x, z; h) e i h ϕ + (x,z) , (x, z) ∈ X + × W (z 0 ) with ϕ + (x) = - x x + (z 0 )
g + 0 (y, z)dy .

(3.27)

The symbol a + (x, z; h) ∼ a + 0 (x, z) + ha + 1 (x, z) + • • • depends smoothly on x and z, such that all derivatives are bounded as h → 0. Moreover, for all z ∈ W (z 0 ) and any α ∈ N,

(∂ α x ∂ z a + )(x + (z), z; h) = O(|z -z 0 | ∞ + h ∞ ). (3.28) 
Proof. For any h ∈]0, 1] and z ∈ W (z 0 ), the first order equation (3.26) can be easily solved by the Ansatz

f hol + (x, z; h) def = exp - i h x x 0 g + (y, z; h) dy ,
where we choose to take the reference point x 0 = x + (z 0 ) independent of z. Taking into account the expansion (3.1) of the symbol g + , its primitive may be expanded as

- x x 0 g + (y, z; h) dy ∼ ϕ + 0 (x, z) + hϕ + 1 (x, z) + • • • , ϕ + k (x, z) def = - x x 0 g + k (y, z) dy .
Separating the first term ϕ + = ϕ + 0 from the subsequent ones, we may write

f hol + (x, z; h) = e i h ϕ + (x,z) a + (x, z; h) , with the symbol a + (h) ∈ C ∞ (X + × W (z 0 )) admitting an expansion a + (h) ∼ a + 0 + ha + 1 + h 2 a + 2 + • • • . Each term a + j ∈ C ∞ (X + × W (z 0 )) depends on the functions {ϕ + k , 1 ≤ k ≤ j + 1}.

Alternatively, the expansion

h j a + j can be constructed order by order through a WKB construction (see e.g. [START_REF] Dimassi | Spectral Asymptotics in the Semi-Classical Limit[END_REF]): one iteratively solves the transport equations

-i∂ x a + n (x, z) + n k=0 g + n+1-k (x, z)a + k (x, z) = 0, n ≥ 0 ,
by the expressions

a + 0 (x, z) = e -i x x 0 g + 1 (y,z;h) dy , a + n (x, z) = -i a + 0 (x, z) x x 0 n-1 k=0 g + n+1-k a + k a + 0 (y, z) dy . (3.29) 
Let us make some remarks about the phase function ϕ + . It is the unique solution to the eikonal equation ∂ x ϕ + (x, z) + g + 0 (x, z) = 0, satisfying the boundary condition

ϕ + (x 0 , z) = 0. By Proposition 3.1, ∂ x ϕ + (x + (z); z) = ξ + (z) ∈ R, therefore x + (z) is a critical point of Im ϕ + . Furthermore, by (3.15), Im ∂ 2 x ϕ + (x + (z), z) = -Im (∂ x g + 0 )(x + (z), z) > 0, (3.30) 
showing that x + (z) is a non-degenerate critical point of Im ϕ + (•, z). By potentially shrinking W (z 0 ) and X + , we can arrange that x + (W (z 0 )) ⊂ X + and that (3.30) holds for all x ∈ X + , so that x + (z) is the unique critical point of Im ϕ + (•, z) in X + . By iteratively differentiating the equations (3.29) and using the estimates (3.7) on the g k , we find that for any n ∈ N and any α ∈ N,

(∂ α x ∂ z a + n )(x, z) = O(|x -x + (z)| ∞ + |x + (z 0 ) -x + (z)| ∞ ), x ∈ X + , z ∈ W (z 0 ).
By Taylor expanding x + (z) around z = z 0 , the above estimate becomes at the critical points:

(∂ α x ∂ z a + n )(x + (z), z) = O(|z -z 0 | ∞ ).
Summing over all the symbols, we finally control the full symbol, as in (3.28).

Remark 3.7. In the "-" case we construct a solution for (hD x +g -(x, z))f -= 0. Hence, the phase function reads ϕ -(x; z) = -x x -(z 0 ) g - 0 (y, z)dy. Moreover, the transport equations depend on g - 0 (y, z), which is almost anti-holomorphic w.r.t. z at the point (x + (z), z). Hence, for any α ∈ N we obtain

(∂ α x ∂ z a -)(x -(z), z; h) = O(|z -z 0 | ∞ + h ∞ ).
Let us now proceed with the proof of Proposition 3.5. Let χ + ∈ C ∞ 0 (X + , [0, 1]), such that χ + ≡ 1 in a small neighbourhood of x + (W (z 0 )). We define the function

e hol + (x, z) def = χ + (x) f hol + (x, z; h), (x, z) ∈ X + × W (z 0 ) ,
smoothly extended by e hol + (x, z) = 0 for x ∈ R\X + . Recall from (3.30) and the discussion afterwards, that x + (z) is the unique critical point of Im ϕ(•, z) in X + , and is a nondegenerate minimum. In particular Im ϕ + (x, z) -Im ϕ + (x + (z), z) ≥ 0 for all x ∈ X + , with a strict inequality for x = x + (z). Hence, applying the method of stationary phase, we find that e hol

+ = h 1/4 A + (z; h) e 1 h Φ +,0 (z) def = e 1 h Φ + (z;h) (3.31)
with the phase function

Φ +,0 (z) = -Im ϕ + (x + (z), z)
and a symbol A + (z; h) ∼ A + 0 (z) + hA + 1 (z) + . . . depending smoothly on z, with all derivatives in z, z uniformly bounded when h → 0. The principal symbol 

A + 0 (z) = π|a + 0 (x + (z), z)| 2 Im ∂ 2 x ϕ + (x + (z), z) 1/4 > 0. ( 3 
∀α ∈ N, (∂ α x ∂ z ϕ)(x(z), z) = O(|x(z) -x(z 0 )| ∞ ) = O(|z -z 0 | ∞ ). ( 3 
e -1 h Φ + ∂ z e hol + ≤ e -1 h Φ + (∂ z a + )χ + e i h ϕ + + e -1 h Φ + a + χ + (ih -1 ∂ z ϕ + )e i h ϕ + = O(h -1 |z -z 0 | ∞ + h ∞ ), (3.34) 
which is the estimate (3.22) the Proposition 3.5.

Let us now check the point 3 of the Proposition. Using Lemma 3.6, we have

(hD x + g + )χ + f hol + = [hD x , χ + ]f hol + . (3.35) 
Using that x + (z) / ∈ supp χ + and the fact that -Im ϕ + (x, z) reaches its maximum only at x = x + (z), we find the norm estimate

[hD x , χ + ]f hol + = O(e -1/Ch )e 1 h Φ +,0 (z) ,
which shows that ) such that ψ = 1 near ρ + (z). Then we have

(hD x + g + (z)) e hol + (z) = O(e -C/h ) e hol + (z) . ( 3 
(1 -ψ) w e + (z; h) H( m) = O(h ∞ ).
(3.37)

Proof. We smoothly extend

g + ∈ C ∞ (X + ) to 7 g + in C ∞ (R), such that g + (x, z; h) = -i C (x -x + (z))
for |x| ≥ C, C > 0 large enough, and such that ξ + g + ∈ S(R 2 , ρ ) is elliptic outside ρ + (z). This is possible due to the monotonicity property (3.30). Thus, the operator hD x + g + = (ξ + g + ) w .

Since supp χ + ⊂ X + , we have g + = g + on the support of e + (z; h). Hence, by (3.35),

η def = (hD x + g + ) * (hD x + g + )e + , (3.38) 
η = e -1 h Φ + (z;h) [hD x , [hD x , χ + ]]f hol + -2iIm g + [hD x , χ + ]f hol + .
We see that for any α, β ∈ N

x α ∂ β x η(x, z; h) = d α,β (x, z; h) h -n e -1 h Φ + (z;h) e i h ϕ + (x,z) ,
for some symbol d α,β (x, z; h) ∼ d 0 α,β (x, z) + hd 1 α,β (x, z) + • • • depending smoothly on x and z, such that all derivatives are bounded as h → 0. Moreover, its support with respect to x is contained in supp ∂χ + . Since x + (z) is not in this support, and the fact that -Im ϕ + (x, z) reaches its maximum only at x = x + (z), cf. (3.30), we deduce that for any order function m, η H( m) = O(e -C/h ).

Taking into account the cutoff

ψ ∈ C ∞ 0 (R 2 , [0, 1]) of the Lemma, we choose a "thin- ner" cutoff χ ∈ C ∞ 0 (R 2 , [0, 1]
), such that χ = 1 near ρ + (z), while ψ = 1 near supp χ. We use it to define the operator q w = (hD x + g + ) * (hD x + g + ) + χ w .

(3.39)

The symbol of this operator,

q(x, ξ, z; h) = |ξ + g + 0 (x, z)| 2 + χ(x, ξ) + O(h) S(R 2 , ρ 2 ) ,
is elliptic in S(R 2 , ρ 2 ). Hence, for h > 0 small enough, q w admits a bounded inverse b w , b ∈ S(R 2 , ρ -2 ). Notice that by (3.38), (3.39),

e + = b w η + (b# χ) w e + .
We may now apply the operator (1 -ψ) w to this decomposition. Since (1 -ψ) w and b w are bounded on H( m), it follows that

((1 -ψ)#b) w η H( m) = O(e -C/h ).
Besides, since our cutoff ψ = 1 near supp χ, pseudodifferential calculus shows that for any order function m,

(1 -ψ)#b# χ = O(h ∞ ) S(R 2 , m -1 ) , as a consequence (1 -ψ) w b w χ w e + H( m) = O(h ∞ ).
Adding the two contributions, we get the estimate (3.37). 7 This notation should not be confused with the notation g + 0 used for the almost holomorphic extension of g + 0 in Lemma 3.4.

Combining Proposition 3.1 with the Lemmata 3.6 and 3.8, we may use any cutoff ψ ∈ C ∞ 0 (R 2 ), ψ = 1 near ρ + (z), to show that e + (z) is a quasimode of (P h -z):

(P h -z)e + = (P h -z)ψ w e + + (P h -z)(1 -ψ) w e + = (ψ#q + #(ξ + g + )) w e + + [P h , ψ w ]e + + O(h ∞ ) = O(h ∞ ). (3.40) 
Here the first term in the second line is O(h ∞ ) by (3.36). The second term is O(h ∞ ) by Lemma 3.8, since the wavefront set of the commutator is disjoint from a fixed neighbourhood of ρ + (z). This proves the quasimode property (3.24) of the state e j + (z; h).

This concludes the proof of Proposition 3.5 in the "+" case. The "-" case can is proved following the same steps to construct a quasimode for (P h -z) * , using the microlocal factorization of this operator into (q -,w ) * (hD x + g -) by Proposition 3.1.

Quasimodes for symmetric symbols

Let us now assume that the symbol p satisfies the symmetry property (SYM):

p(x, ξ; h) = p(x, -ξ; h).
Then the formal adjoint (P h -z) * satisfies (P h -z) * = Γ(P h -z)Γ, where we recall that (Γu)(x) def = u(x).

(3.41)

Moreover, (SYM) implies that if ρ = (x, ξ) ∈ p -1 0 (z) with {Re p, Im p}(ρ) < 0, as in (HYP), then (x, -ξ) ∈ p -1 0 (z) as well, with {Re p, Im p}(x, -ξ) > 0. The hypotheses (HYP), (HYP-x) can thus be written as

p -1 0 (z) = {ρ j ± (z) = (x j ± (z), ξ j ± (z))
def = (x j (z), ±ξ j (z)); j = 1, . . . , J}, with ± {Re p, Im p}(ρ j ± (z)) < 0, and

x i = x j , if i = j. (3.42) 
For j = 1, . . . , J, let us consider the "+" quasimode e j,hol + constructed in Proposition 3.5. We may define the corresponding "-" quasimode as: 

e j,hol -(z; h) def = Γe j,hol + (z; h). ( 3 
e j -(z; h) = e j,hol -(z; h) e -1 h Φ j + (z;h) = Γe j + (z; h) , (3.45) 
is a quasimode of (P h -z) * :

(P h -z) * e j -(z; h) = O(h ∞ ).
Using the fact that complex conjugation microlocally acts as (x, ξ) → (x, -ξ), we also obtain from Lemma 3.8 that for all

ψ ∈ C ∞ 0 (R 2 ), ψ = 1 near ρ j -(z), (1 -ψ w )e j -(z; h) H(m ) = O(h ∞ ). (3.46) 
Later we will have to deal with the squared states

(e j + (x, z; h)) 2 = χ j + (x) 2 a j + (x, z; h) 2 e 2i h ϕ + (x,z) e -2 h Φ + (z;h) .
A simple computation using (3.31) shows that the L 2 norm of this state is of order Ch -1/4 . Using the same method as in Lemma 3.8, one shows that this state is microlocalized on (x j + (z), 2ξ j + (z)). Similarly, the squared state (e j -(z; h)) 2 is microlocalized on the point (x j -(z), 2ξ j -(z)). Namely, for any

ψ 2 ∈ C ∞ 0 (R 2 , [0, 1]), χ 2 = 1 near the point (x j -(z), 2ξ j -(z)), (1 -ψ w 2 )(e j -(z; h)) 2 H(m ) = O(h ∞ ). (3.47) 

Relation with the symplectic volume

In this section we will study the phase functions Φ j ± (z; h) governing the L 2 norms of the holomorphic quasimodes (see Prop. 3.5), and show how they are connected with the symplectic volume in T * R. This link will be crucial when computing the universal limiting GAFs described in Theorems 2.5 and 2.9, as well as for the k-point correlation functions in Theorem 2.6, see also (2.30), and in Corollary 2.10, see also (2.35). Indeed, we will see in Sections 7.3 and 8.1 that the covariances of these GAFs involve the "interactions" between neighbouring quasimodes; these interactions will be studied in Section 4 below. We will see (for instance in Proposition 4.1) that they can be described by polarising the phase function Φ j ± (z; h). After rescaling the spectral parameter to the microscale, the dominant part of this polarisation will be a term of the form ∂ 2 z z Φ j ± (z 0 ; h)z w, see (7.25) and (8.19), which in turn is determined (3.54) by the Lebesgue density of p 0 (|dξ ∧ dx|) of (2.25).

We will strongly make use of the almost holomorphy of the symbol g ±,j expressed in Lemma 3.4. From the expression (3.21) for the phase function, let us write

Φ j ± (z; h) = Φ j ±,0 (z) + h log h 1 4 A ± j (z; h) , Φ j ±,0 (z) def = -Im ϕ j ± (x j ± (z), z). (3.48)
From now on, we will focus on the function Φ j + (z; h), and omit to indicate the super/subscript j + on all quantities.

By (3.33) we have

∂ z Φ 0 (z) = ∂ z ϕ(x, z) -ϕ(x, z) 2i x=x(z) -∂ z (x(z))Im ∂ x ϕ)(x, z) x=x(z) = i 2 ∂ z ϕ(x, z) x=x(z) +O(|z -z 0 | ∞ ) . (3.49)
To obtain the last line we used (3.33), and the fact that x(z) is a critical point of x → Im ∂ x ϕ)(x, z). Indee, by Proposition 3.1 and (3.20), we have

∂ x ϕ(x, z) = -g 0 (x, z), in particular ∂ x ϕ(x(z), z) = ξ(z).
Differentiating this last expression w.r.t. z, we get

(∂ 2 xx ϕ)(x(z), z) ∂ z x(z) + (∂ 2 xz ϕ)(x(z), z) = ∂ z ξ(z). (3.50) 
Differentiating w.r.t. z and using (3.33), we obtain

(∂ 2 xx ϕ)(x(z), z) ∂ z x(z) + O(|z -z 0 | ∞ ) = ∂ z ξ(z).
Eq. (3.33) is a form of almost holomorphy of ϕ at the point (x(z 0 ), z 0 ). Using Eq. (3.13) allows us to further differentiate it w.r.t. z:

(∂ 2 z z ϕ)(x, z) x=x(z) = - x(z) x(z 0 ) (∂ 2 z z g 0 )(y, z)dy = O(|z -z 0 | ∞ ) ,
where we used that |x(z) -x(z 0 )| = O(|z -z 0 |). Let us now fix x = x(z), and differentiate ϕ(x(z), z) w.r.t. z, z. Using the above estimate, the almost holomorphy of ϕ and expression (3.50), we compute

∂ 2 z z ϕ(x(z), z) = ∂ z ξ(z)∂ z x(z) + ξ(z)∂ 2 z z x(z) + O(|z -z 0 | ∞ ) .
Notice that ξ(z)∂ 2 z z x(z) ∈ R, since ξ(z) and x(z) are real-valued smooth functions and ∂ 2 z z is a real differential operator. Thus, taking the imaginary part of the above equation produces

2 i ∂ 2 z z Φ 0 (z) = ∂ z ξ(z)∂ z x(z) -∂ z ξ(z)∂ z x(z) + O(|z -z 0 | ∞ ). (3.51) 
We now restore the +, j notations, and write this expression using 2-forms:

-dξ j + ∧ dx j + (z) = ∂ z ξ j + (z)∂ z x j + (z) -∂ z ξ j + (z)∂ z x j + (z) dz ∧ dz = 4∂ 2 z z Φ j +,0 (z) + O(|z -z 0 | ∞ ) dz ∧ dz 2i . (3.52)
This expressions provides the connection between the volume form in phase space dξ∧dx, and the volume form in energy space dz∧dz 2i . One can perform the symmetric computations for the functions Φ j -,0 (z), and obtain

dξ j -∧ dx j -(z) = ∂ z ξ j -(z)∂ z x j -(z) -∂ z ξ j -(z)∂ z x j -(z) dz ∧ dz = 4∂ 2 z z Φ j -,0 (z) + O(|z -z 0 | ∞ ) dz ∧ dz 2i . ( 3 

.53)

Let us now express the factor 4∂ 2 z z Φ j +,0 (z) in terms of the symbol p 0 . Differentiating the identity p 0 (ρ j ± (z)) = z w.r.t. z or z, we obtain the linear system

∂ ξ p 0 (ρ j ± )∂ z ξ j ± + ∂ x p 0 (ρ j ± )∂ z x j ± = 1 ∂ ξ p 0 (ρ j ± )∂ z ξ j ± + ∂ x p 0 (ρ j ± )∂ z x j ± = 0,
which can be solved by

∂ z ξ j ± (z) = -∂ x p 0 {p 0 , p 0 } (ρ j ± (z)), ∂ z x j ± (z) = ∂ ξ p 0 {p 0 , p 0 } (ρ j ± (z)).
Using the fact that x j ± , ξ j ± are real, we get by (3.51), and by a similar computation for Φ j -,0 , that

4∂ 2 z z Φ j ±,0 (z) = ∓1 1 2i {p 0 , p 0 }(ρ j ± (z)) + O(|z -z 0 | ∞ ) .
It follows from (HYP) that the first term on the RHS is positive, hence that the functions Φ j ± are strictly subharmonic near z 0 .

Identifying the Lebesgue measure L(dz) on the energy plane with the volume form dz∧dz 2i , and denoting by |dξ ∧ dx| the symplectic volume on T * R, the expression (3.52) (resp. (3.53)) relates an infinitesimal volume in the energy space, with an infinitesimal volume near the phase space point ρ j + (resp. ρ j -). Adding the contributions of all the 2J points in p -1 0 (z), we obtain the following expression for the push-forward of the symplectic volume |dξ ∧ dx| through the principal symbol p 0 :

(p 0 ) * (|dξ ∧ dx|) = J j=1 σ j + (z) + σ j -(z) L(dz), with σ j ± (z) def = 4∂ 2 z z Φ j ±,0 (z) + O(|z -z 0 | ∞ ) . (3.54)
Observe that in case we assume the symmetry (SYM), we get σ j + (z) = σ j -(z).

Remark 3.9. The error term O(|z -z 0 | ∞ ) will be very small in the following, because we will investigate values of z in some h 1/2 -neighbourhood of z 0 .

Interaction between the quasimodes

In this section we study the "interactions" (scalar products) between nearby quasimodes. These interactions will be fundamental in the derivation of the limiting point processes, they will determine the covariances of the limiting Gaussian analytic functions, see Sections 7.3, 7.5 as well as 8.1, 8.3 below.

In our notations, the L 2 scalar product (u|v) is linear w.r.t. u and antilinear w.r.t. v. The assumption (HYP) implies that we may shrink the neighbourhood W (z 0 ) (see Proposition 3.5) to ensure that

ρ j ± (W (z 0 )) ∩ ρ k ± (W (z 0 )) = ∅ for any j = k. (4.1)
Thus, from (4.1) and the microlocalization property (3.25), we have

(e j + (z)|e k + (z)) = δ jk + O(h ∞ ), (e j -(z)|e k -(z)) = δ jk + O(h ∞ ), (4.2) 
uniformly for all z ∈ W (z 0 ) (here δ jk denotes the Kronecker symbol). More generally, one obtains that for any z, w ∈ W (z 0 ),

(e j ± (z)|e k ± (w)) = O(h ∞ ), for any j = k. (4.3) 
This quasi-orthogonality reflects the fact that for j = k, the points ρ j ± (z) and ρ k ± (w) remain at positive distance from each other, uniformly when z, w ∈ W (z 0 ), as embodied by (4.1).

The next subsection we will be devoted to the computation of the "diagoal" scalar products (e j ± (z)|e j ± (w)). Notice that, in case our symbol satisfies the further hypothesis (HYP-x), we may even assume (up to shrinking W (z 0 )) that the cutoff functions χ j ± used to construct our quasimodes have disjoint supports:

supp χ j ± ∩ supp χ k ± = ∅, for any j = k, (4.4) 
in which case the remainders O(h ∞ ) in the above estimates vanish.

Overlaps between nearby quasimodes

The scalar product between quasimodes localized on nearby points is given in the following Propositions. The first one deals with the overlaps between the "+" quasimodes.

Proposition 4.1. Let (e j,hol + (z)) z∈W (z 0 ) be the quasimodes constructed in Proposition 3.5. Recall the notation Φ j +,0 (z; h) from (3.48). Then, for |z -w| ≤ c, with c > 0 sufficiently small, (e j,hol + (z)|e j,hol

+ (w)) = e 2 h Ψ j + (z,w;h) + O(h ∞ )e 1 h Φ j +,0 (z)+ 1 h Φ j +,0 (w) (4.5) with Ψ j + (z, w; h) = Ψ j +,0 (z, w) + h 2 log h 1 2 b j + (z, w; h) . (4.6) 
Here Ψ j +,0 (z, w) is almost z-holomorphic and almost w-antiholomorphic at {(z 0 , z 0 )}, and b j + (z, w; h) ∼ b +,j 0 (z, w)+hb +,j 1 (z, w)+. . . is smooth in z and w, with any derivative uniformly bounded as h → 0. Moreover,

• Ψ j + (w, z; h) = Ψ j + (z, w; h), • Ψ j +,0 (z, z) = Φ j +,0 (z), • b j + (z, z; h) = A j + (z, h) 2 , with A j + (z, h) given in Proposition 3.5,
• for |ζ i | ≤ c, i = 1, 2, c > 0 sufficiently small, and for any N ∈ N,

Ψ +,0 (z 0 + ζ 1 , z 0 + ζ 2 ) = |α|≤N (∂ α 1 z ∂ α 2 z Φ +,0 )(z 0 ) ζ α 1 1 ζ α 2 2 α! + O(|ζ| N +1 ), where α ∈ N 2 are multiindices, |α| = α 1 + α 2 .
The second proposition, symmetric to the previous one, deals with the overlaps between nearby "-" quasimodes. 

+ O(h ∞ )e 1 h Φ j -,0 (z)+ 1 h Φ j -,0 (w) , (4.7 
)

with Ψ j -(z, w; h) = Ψ j -,0 (z, w) + h 2 log h 1 2 b j -(z, w; h) , (4.8) 
Here Ψ j -,0 (z, w) is almost z-antiholomorphic and almost w-holomorphic at {(z 0 , z 0 )}, and Φ j -,0 (z; h) is the function defined in (3.48). The symbol b j -(z, w; h) ∼ b -,j 0 (z, w) + hb -,j 1 (z, w) + . . . is smooth in z and w, with any derivative uniformly bounded as h → 0. Moreover,

• Ψ j -(w, z; h) = Ψ j -(z, w; h), • Ψ j -,0 (z, z) = Φ j -,0 (z), • b j -(z, z; h) = A j -(z, h) 2 with A j -(z, h) as in Proposition 3.5,
• for |ζ i | ≤ c, i = 1, 2, c > 0 small enough, and for any N ∈ N,

Ψ -,0 (z 0 + ζ 1 , z 0 + ζ 2 ) = |α|≤N (∂ α 1 z ∂ α 2 z Φ -,0 )(z 0 ) ζα 1 1 ζ α 2 2 α! + O(|ζ| N +1 ).
Proof of Proposition 4.1. Until further notice we will suppress the superscript j. By Proposition 3. 

Im (∂ 2 xx ψ)(x, z, z) > 0 for all x ∈ supp χ + , (4.12) 
To estimate the integral I(z, w) we will apply the method of stationary phase for complex valued phase functions [START_REF] Melin | Fourier integral operators with complex-valued phase functions[END_REF]Theorem 2.3].

Let us fix a value z ∈ W (z 0 ), and view w ∈ W (z 0 ) as a parameter. In the case w = z the stationary point ∂ x Θ occurs at x = x + (z), with a real valued phase value. In order to estimate I(z, w) for w = z, we extend ψ(•, z, w) almost holomorphically w.r.t. x, into a function ψ(x, z, w) defined in some complex neighbourhood x ∈ X of supp χ + . From (4.10) and (3.20), this can be done by using the almost x-holomorphic extension g + 0 of g + 0 constructed in Lemma 3.4, and then defining ϕ + (x, z) = -x x 0 g0 (y, z) dy by taking as contour of integration the straight line connecting x 0 to x ∈ X, and then take

ψ(x, z, w) = ϕ + (x, z) -ϕ + (x, w) . (4.13)
Notice that the exact relation ∂ x ϕ + (x, z) = -g + 0 (x, z) is then replaced by an approximate one: for any α, β ∈ N,

∂ α z ∂ β z ∂ x ϕ + (x, z) = -∂ α z ∂ β z g + 0 (x, z) + O α,β (|Im x| ∞ ), z ∈ W (z 0 ), x ∈ X , (4.14)
with the implied constants uniform w.r.t. z ∈ W (z 0 ). As long as |z -w| is sufficiently small (hence, up to shrinking W (z 0 )), the nondegeneracy condition (4.12) extends to this complex neighbourhood:

∂ 2 xx ψ(x, z, w) = 0, ∀x ∈ X, ∀z, w ∈ W (z 0 ) ,
where ∂ 2 xx denotes the holomorphic derivative. This ensures that for any z, w ∈ W (z 0 ), ψ(•, z, w) admits a unique, nondegenerate critical point x = x c (z, w) ∈ X, satisfying

∂ x ψ(x c (z, w), z, w) = 0, (4.15) 
where ∂ x denotes the holomorphic derivative. Notice that when w = z, the critical point x c (z, z) = x(z) is real valued. We also need almost holomorphic extensions w.r.t. x of the symbols a + (•, z; h) into ã+ (•, z; h), and replace a + a + in the integral I(z, w) by the almost holomorphic expression ã+ (x, z; h)ã + (x, w; h).

We are now equipped to apply the stationary phase theorem [START_REF] Melin | Fourier integral operators with complex-valued phase functions[END_REF]Theorem 2.3] to the integral I(z, w), and obtain the expansion

I(z, w) = h 1 2 b + (z, w; h) e 1 h (2Ψ +,0 (z,w)-Φ +,0 (z)-Φ +,0 (w)) + O(h ∞ ),
z, w ∈ W (z 0 ). (4.16) Here Ψ +,0 (z, w) is given by

Ψ +,0 (z, w) = i ψ(x c (z, w), z, w), (4.17) 
in particular on the diagonal Ψ +,0 (z, z) = Φ +,0 (z).

The symbol b + (z, w; h) ∼ b +,0 (z, w) + hb +,1 (z, w) + . . . can be expressed in terms of derivatives of a + (x, z; h) a + (x, w; h) w.r.t. x at the point x = x c (z, w), it depends smoothly on z and w, uniformly as h → 0. The normalization I(z, z) = 1 set by (4.9), (3.21) shows that we may take b + (z, z; h) = A + (z; h) 2 , with A + (z; h) as in Proposition 3.5.

As explained in the proof of [START_REF] Melin | Fourier integral operators with complex-valued phase functions[END_REF]Theorem 2.3], the arbitrariness in the almost holomorphic extensions ψ, ã+ is absorbed in the O(h ∞ ) remainder. Let us check the symmetry relations satisfied by the functions Ψ +,0 and

Ψ + def = Ψ +,0 + h 2 log h 1 2 b + .
The symmetry between z and w in (4.13) and (4.17), shows that x c (z, w) = x c (w, z), hence that Ψ +,0 (w, z) = Ψ +,0 (z, w).

(4.18)

The expression of b + shows that this symmetry also concerns the "full" function Ψ + (z, w; h) = Ψ + (w, z; h).

Let us now show that the function Ψ +,0 of (4.17) is the "polarization" of the real valued function Φ +,0 . We first show that the critical point x c (z, w) is almost z-holomorphic and almost w-antiholomorphic at the diagonal {(z, z), z ∈ W (z 0 )}. Differentiating (4.15) with respect to z and z, one obtains by (4.13) that

∂ z x c (z, w) = -(∂ 2 xz ϕ + ) x c (z, w), z + O(|Im x c (z, w)| ∞ ) 2∂ 2 xx ψ x c (z, w), z, w , ∂ z x c (z, w) = -(∂ 2 xz ϕ + ) x c (z, w), z + O(|Im x c (z, w)| ∞ ) 2∂ 2 xx ψ x c (z, w), z, w , (4.19) 
where we used that ψ is almost x-holomorphic. Now, Eq. (4.14) and Lemma 3.4 imply that

∂ xz ϕ + x c (z, w), z = O(|x c (z, w) -x + (z)| ∞ ), hence ∂ z x c (z, w) = O(|x c (z, w) -x + (z)| ∞ ) = O(|z -w| ∞ ) ,
where for the last equality we used the smoothness of x c w.r.t. z, w. Using (4.17), (4.13) and (3.33),we then draw that the function Ψ +,0 (z, w) is almost z-holomorphic at the point z = w = z 0 :

-i∂ z Ψ +,0 (z, w) = (∂ x ψ) x c (z, w), z, w ∂ z x c (z, w)+ + (∂ x ψ) x c (z, w), z, w ∂ z x c (z, w) + 1 2 ∂ z ϕ + x c (z, w), z = O(|z -w| ∞ + |z -z 0 | ∞ ),
From the symmetry (4.18), this function is also almost w-antiholomorphic at that point.

Taking into account the identity Ψ +,0 (z, z) = Φ +,0 (z), we deduce that the Taylor expansion of Ψ +,0 at the point (z 0 , z 0 ) takes the following form: for any N ∈ N,

Ψ +,0 (z 0 +ζ 1 , z 0 +ζ 2 ) = |α|≤N (∂ α 1 z ∂ α 2 z Φ +,0 )(z 0 ) ζ α 1 1 ζ α 2 2 α! +O(|ζ| N +1 ), ζ j ∈ W (z 0 )-z 0 , j = 1, 2.
It is in this sense that Ψ +,0 "polarizes" Φ +,0 . In particular, keeping the expansion up to second order, we find the following identity:

2Re Ψ +,0 (z, w) -Φ +,0 (z) -Φ +,0 (w) = = -∂ 2 z z Φ +,0 (z 0 )|z -w| 2 + O((|z -z 0 |, |w -z 0 |) 3 ).
The proof of Proposition 4.2 is identical to the one of Proposition 4.1 we have just given, so we don't repeat it.

Symmetric symbols

Assuming (SYM), the additional symmetry of the symbol p(x, ξ; h), we will also need to compute the interaction between the squared quasimodes (e j -(z)) 2 , when considering perturbations by a random potential. The construction of these quasimodes was discussed in Section 3.4. The properties of these squared quasimodes are very similar to those of the original e -(z), the main difference being that most quantities will now bear a subscript s (for "squared").

Notice that by (3.42), (3.47) and the assumption (4.4), we have for all z, w ∈ W (z 0 )

(e j -(z)) 2 (e k -(w)) 2 = 0, for j = k. (4.20)
Like in the proof of Proposition 3.5, one obtains by the method of stationary phase that

(e j,hol -(z)) 2 = e 1 h Φ j s (z;h) , Φ j s (z; h) def = Φ j s,0 (z) + h log h 1 4 A j s (z; h) , Φ j s,0 (z) def = 2Φ j +,0 (z) (4.21)
where Φ j +,0 (z) is as in (3.48) and, in view of (3.42), x j + = x j -= x j . We remind that Φ j +,0 (z) ≥ 0, with equality if and only if z = z 0 , and A j s (z; h) ∼ A j,s 0 (z) + hA j,s 1 (z) + . . . depends smoothly on z such that all derivatives with respect to z and z are bounded when h → 0. Moreover,

A j,s 0 (z) = π|a + 0 (x + (z); z)| 4 2Im ∂ 2 xx ϕ + (x + (z), z) 1/4 > 0, (4.22) 
where a + 0 is as in (3.29). One may compare the expression for this norm with the one in (3.31), (3.32) for e j,hol -(z) . The following proposition describes the overlaps between nearby squared quasimodes. The expressions are very similar to the ones of the previous section. where Ψ j s,0 (z, w) is almost z-antiholomorphic and almost w-holomorphic at {(z 0 , z 0 )} and b j s (z, w; h) ∼ b s,j 0 (z, w) + hb s,j 1 (z, w) + . . . is smooth in z and w and all derivatives are bounded as h → 0. Moreover,

• Ψ j s (z, w; h) = Ψ j s (w, z; h), • Ψ j s,0 (z, z) = Φ j s,0 (z) = 2Φ j +,0 (z), • b j s (z, z; h) ∼ A j s (z, h) 2 with A j s (z, h) as in (4.21),
• for |ζ i | ≤ c, i = 1, 2, c > 0 small enough, and for any N ∈ N,

Ψ j s,0 (z 0 + ζ 1 , z 0 + ζ 2 ) = 2 |α|≤N (∂ α 1 z ∂ α 2 z Φ +,0 )(z 0 ) ζ α 1 1 ζ α 2 2 α! + O(|ζ| N +1 ).
Proof. The proof exactly mimics the one of Proposition 4.1.

Finite rank truncation of the quasimodes

In this section we show that the quasimodes {e j ± (z), z ∈ Ω} essentially live in a finite dimensional subspace of L 2 (R), which we build using the orthonormal eigenbasis (e m ) m∈N of the harmonic oscillator H = -∂ 2

x +x 2 , corresponding to the eigenvalues λ m = 2m+1. Roughly speaking, we show that if C 1 > 0 is chosen large enough, the truncated basis (e m ) m≤C 1 /h 2 microlocally covers a part of phase space which contains the region p -1 (Ω), inside which all our quasimodes are microlocalized.

For any N ∈ N, let us call Π N the orthogonal projector on the subspace of L 2 spanned by the states {e m } 0≤m≤N . In the following Lemma we show that if N is chosen large enough, this projection does essentially not modify our quasimodes. Lemma 4.4. Let {e j ± (z), z ∈ W (z 0 )} be the normalized quasimodes constructed in Proposition 3.5. Then, if C 1 > 0 is chosen sufficiently large, taking

N (h) = C 1 /h 2 , we have ∀z ∈ W (z 0 ), ∀j = 1, . . . , J, (1 -Π N (h) ) e j ± (z) = O(h ∞ ). (4.25)
In the case of a symmetric symbol (SYM), the same estimate applies to the squared quasimodes:

∀z ∈ W (z 0 ), ∀j = 1, . . . , J, (1 -Π N (h) ) (e j ± (w)) 2 = O(h ∞ ). ( 4 

.26)

In both cases the O(h ∞ ) remainder is uniform w.r.t. z ∈ W (z 0 ) and h ∈]0, 1].

Proof. We will focus on proving the first estimate, the estimate for squared quasimodes being very similar. Let U R 2 be a bounded open set, so that

J j=1 ρ j ± W (z 0 ) ⊂ U. (4.27)
Our proof will amount to show that if C 1 is chosen large enough, the projector Π N (h) is microlocally equal to the identity in a neighbourhood of

U . Let ψ ∈ C ∞ c (R 2 , [0, 1]
) such that ψ ≡ 1 in a neighbourhood of U and supp ψ ⊂ B(0, R) ⊂ R 2 the ball of radius R centered at 0, for some sufficiently large R > 0 . Then, by the microlocalization property (3.25), we have

(1 -ψ w )e j ± (z) = O(h ∞ ), uniformly in z ∈ W (z 0 ). (4.28)
For our aims, it will suffices to prove that there exists a constant

C 1 > 0 such that ∀m > N (h) = C 1 /h 2 , ψ w (x, hD x ) e m = O(λ -∞ m ) , (4.29) 
where the implied constants are uniform w.r.t. m > N (h), h ∈]0, 1]. Indeed, the above bounds imply that

(1 -Π N (h) )ψ w e i ± (z) 2 = m>N (h) |(ψ w e i ± (z)|e m )| 2 = O(h ∞ ) . (4.30)
Together with (4.28), this shows the requested estimate (4.25).

The right hand side O(λ -∞ m ) in (4.29) is sharper than the standard remainder O(h ∞ ) produced by the h-pseudodifferential calculus (remember that λ m ≥ C 1 /h 2 ). This hints at the fact that to obtain a remainder O(λ -∞ m ), we should use a semiclassical calculus whose small parameter is h = hm def = λ -1 m , rather than h. We will do it by rescaling the coordinates appropriately (see e.g. [51, Theorem 6.5] for a similar rescaling procedure). Namely, we let U λm be the unitary transformation on L 2 (R) given by U λm u(x) = λ

1/4 m u(λ 1/2 m x).
The nonsemiclassical harmonic oscillator can be written H = q w (x, D x ), where q(x, ξ) = ξ 2 + x 2 . A direct computation shows that

U λm (H -λ m )U -1 λm = λ m q w (x, λ -1 m D x ) -1 = h-1 q w (x, hD x ) -1 . (4.31)
Let us insert the dilation U λm in the expression we want to estimate:

ψ w (x, hD x )e m = U λm ψ w (x, hD x )U -1 λm ẽm , ẽm = U λm e m . ( 4 

.32)

The rescaled state ẽ satisfies the eigenvalue equation (q w (x, hD x ) -1)ẽ m = 0. From standard elliptic estimates (see e.g. [START_REF] Zworski | Semiclassical Analysis[END_REF]Theorem 6.4]), the state ẽm is h-microlocalized on the energy shell q -1 (1), that is the unit circle in R 2 . As a consequence, for any χ ∈ S(1) supported inside the disk B(0, 2/3) ⊂ R 2 , we will have

χ w (x, hD x )ẽ m = O( h∞ ) . (4.33)
Let us come back to (4.32), and interpret U λm ψ w (x, hD x )U -1 λm as a pseudodifferential operator in the h-calculus:

U λm ψ w (x, hD x )U -1 λm = ψw (x, hD x ), for the symbol ψ(x, ξ) = ψ( h-1/2 x, h h-1/2 ξ) .
After this rescaling, the required estimate (4.29) has been transformed to

ψw (x, hD x )ẽ m = O( h∞ ). (4.34)
The symbol ψ is supported in the square {|x| ≤ R, |ξ| ≤ R}, so the rescaled symbol ψ will be supported in the rectangle

{|x| ≤ R h1/2 , |ξ| ≤ R h1/2 /h ≤ R (2C 1 ) -1/2 },
where in the second inequality we used our assumption that λ m ≥ 2C 1 /h 2 . We choose C 1 large enough, so that this rectangle is contained inside the disk B(0, 1/2). However, we cannot directly apply the estimate (4.33) to our symbol ψ, because the latter is not in the class S(1), its derivatives growing, when h → 0, as:

|∂ α x ∂ β ξ ψ| ≤ C h-(|α|+|β|)/2 .
These estimates indicate that ψ belongs to the exotic class S 1/2 (1) in the h calculus (see e.g. [START_REF] Zworski | Semiclassical Analysis[END_REF]Chapter 4]). Eventhough the Moyal product between two symbols in the class S 1/2 (1) does usually not admit an asymptotic expansion, the Moyal product between a symbol ψ ∈ S 1/2 (1) with a symbol χ ∈ S(1) does admit an expansion in powers of h. As a result, if we take a symbol χ ∈ S(1) supported inside B(0, 2/3), with χ ≡ 1 inside the ball B(0, 1/2), the Moyal product expansion for ψ# χ implies that

ψ(x, hD x ) χ(x, hD x ) = ψ(x, hD x ) + O( h∞ ) . (4.35)
Since supp χ ⊂ B(0, 2/3), the operator χw (x, hD x ) satisfies (4.33). Combined with (4.35) this finally gives the estimate (4.34), which achieves to prove the Lemma.

The previous Lemma implies that each quasimode can be essentially reconstructed by taking linear combinations of N (h) basis states e m . This number is not optimal, however the following Lemma shows that quasimodes cannot be reconstructed from only a few basis states. This fact will be relevant in Section 7.5. Lemma 4.5. Let e j,hol ± (z) be the quasimodes constructed in Proposition 3.5. Take as before {e m } m∈N the orthonormal eigenbasis of the harmonic oscillator H, associated with the eigenvalues {λ m = 2m + 1}. Then,

∀m ≥ 0, (h -1/4 e j,hol ± (z)|e m ) = O(h 1/4 ) (2m + 1) -1/6 e 1 h Φ j ±,0 (z) , (4.36) 
where Φ j ±,0 (z) is given in (3.48). Similarly, the squared quasimodes satisfy

∀m ≥ 0, (h -1/4 (e j,hol -(z)) 2 |e m ) = O(h 1/4 ) λ -1/6 m e 2 h Φ j +,0 (z) .
In both estimates the implied constant is uniform w.r.to m ∈ N, h ∈]0, 1] and z ∈ W (z 0 ).

Proof. We only show the case of the nonsquared quasimodes, the other case being similar. By the Hölder inequality,

|(h -1/4 e j,hol ± (z)|e m )| ≤ (h -1/4 e j,hol ± (z) L 1 e m L ∞ .
Using (3.30), the method of stationary phase yields

h -1/4 e j,hol ± (z) L 1 = O(h 1 4 ) e 1 h Φ j +,0 (z) ,
where Φ j +,0 (z) is as in (3.48). By [START_REF] Koch | l p eigenfunction bounds for the hermite operator[END_REF]Corollary 3.2], there exists a constant C > 0, such that for all m ∈ N, e m ∞ ≤ Cλ -1/6 m e m L 2 . (4.37)

Remark 4.6. The choice of the orthonormal basis (e m ) m≥0 used to define the truncation operator is rather arbitrary, as explained in [START_REF] Hager | Instabilité Spectrale Semiclassique d'Opérateurs Non-Autoadjoints II[END_REF][START_REF] Hager | Eigenvalue asymptotics for randomly perturbed nonselfadjoint operators[END_REF]. What is needed is the fact that for N = N (h) large enough, the projection Π N (h) on the subspace spanned by a collection of N (h) of those states is microlocally equivalent to the identity in some given bounded region U ⊂ R 2 . Any orthonormal basis of L 2 (R) will have this property, but the number N (h) of necessary state will depend on the choice of basis.

In [START_REF] Hager | Instabilité Spectrale Semiclassique d'Opérateurs Non-Autoadjoints II[END_REF] the author used the eigenbasis of the semiclassical harmonic oscillator q w (x, hD x ), in which case it was sufficient to include only O(h -1 ) eigenstates. Our choice to use the nonsemiclassical harmonic oscillator H requires to include a larger number N (h) ≥ C 1 h -2 of states. This choice was guided by the extra requirement that each quasimode e j ± (z) should essentially decompose into many basis states e m (as shown by Lemma 4.5), a fact which will be important in Section 7.5 when applying the Central Limit Theorem.

Setting up the Grushin Problem

We begin by giving a short refresher on Grushin problems. They have become an important tool in spectral theory and are employed in a vast number of works, especially when dealing with spectral studies of nonselfadjoint operators. As reviewed in [START_REF] Sjöstrand | Elementary linear algebra for advanced spectral problems[END_REF], the central idea is to analyze the operator P (z) = (P -z) : H 1 → H 2 by extending it into a larger operator of the form

P (z) R -(z) R + (z) 0 : H 1 ⊕ H --→ H 2 ⊕ H + ,
where H ± (resp. R ± (z)) are well-chosen auxiliary spaces (resp. operators). The Grushin problem is said to be well-posed if this matrix of operators is invertible for the range of z under study, with a good control on its inverse. In the cases where dim H -= dim H + < ∞, on writes the inverse operator blockwise as

P (z) R -(z) R + (z) 0 -1 = E(z) E + (z) E -(z) E -+ (z) .
The key observation, going back to Schur's complement formula, is the following: the operator P (z) : H 1 → H 2 is invertible if and only if the finite rank operator E -+ (z) : H + → H -is invertible, in which case both inverses are related by:

P (z) -1 = E(z) -E + (z)E -+ (z) -1 E -(z).
For this reason, the finite rank operator E -+ (z) is often called an effective Hamiltonian for the original problem P (z). As opposed to P (z), it depends in a nonlinear way on the variable z, but has the advantage of being finite dimensional. E -+ (z) encapsulates, in a compact way, the spectral properties of P .

Grushin problem for our unperturbed nonselfadjoint operator

Hager [START_REF] Hager | Instabilité Spectrale Semiclassique d'Opérateurs Non-Autoadjoints II[END_REF] showed how to construct an efficient Grushin problem for our nonselfadjoint operator P h , using the quasimodes constructed in Proposition 3.5.

Proposition 5.1 (Unperturbed Grushin). Let p(•; h) ∈ S(R 2 , m) be as in (2.6) and satisfy (2.8), (HYP). Let a small energy range W (z 0 ) C satisfying (4.1), and the corresponding normalized quasimodes {e j ± (z), z ∈ W (z 0 )}, j = 1, . . . , J constructed in Proposition 3.5.

For z ∈ W (z 0 ) let

P(z) = P h -z R -(z) R + (z) 0 : H(m) × C J -→ L 2 × C J , with (R + (z)u) j def = (u|e j + (z)), u ∈ H(m), R -(z)u - def = J j=1 u j -e j -(z), u -∈ C J . (5.1)
Then, P(z) is bijective for all z ∈ W (z 0 ), with bounded inverse denoted by:

E(z) = E(z) E + (z) E -(z) E -+ (z) : L 2 × C J -→ H(m) × C J .
The blocks E ± (z) have the following forms:

(E -(z)v) j = (v|e j -(z)) + O(h ∞ )v, v ∈ L 2 , E + (z)v + = J j=1 v j + e j + (z) + O(h ∞ )v + , v + ∈ C J .
(5.

2)

The blocks of E(z) admit the following bounds in the semiclassical limit:

E(z) L 2 →H(m) = O(h -1/2 ), E + (z) C J →L 2 = O(1), E -(z) L 2 →C J = O(1), E -+ (z) C J →C J = O(h ∞ ), (5.3) 
uniformly for z ∈ W (z 0 ).

Proof. One can follow line by line, with the obvious changes, the proof of [23, Proposition 4.1].

Remark 5.2. As explained in Section 2.7.1, the role of R + (z) is to "absorb" the elements in the quasi-kernel of P (z), namely the linear combinations of the quasimodes {e j + (z), 1 ≤ j ≤ J}; similarly, the role of R -(z) is to "fill" the quasi-cokernel of P (z), using the auxiliary space C J . As a result, the extended operator P(z) has no more quasikernel nor quasi-cokernel, and is thus invertible, with the norm of its inverse being under control.

Grushin problem for the perturbed operator

We wish to study the eigenvalues of

P δ = P h + δQ, (5.4) 
where δ > 0 satisfies (1.6) and Q is given by a random matrix M ω , as in (2.18), or by a random potential V ω , as in (2.19).

Recall from (2.20) that we want to restrict the random variables used to construct M ω and V ω , to the disc of radius C/h. If we denote by

PD N (0, R) = D(0, R) N ⊂ C N
the N -dimensional polydisc of radius R centred at 0, then the restricted probability space M h ⊂ M in the case of the random matrix M ω , resp. of the random polynomial V ω , is defined by the following events: q = (q j,k ) j,k<N (h) ∈ PD N (h) 2 (0, C/h), (5.5) resp. v = (v j ) j<N (h) ∈ PD N (h) (0, C/h) .

(5.6)

By the tail estimate (2.17) and by the fact that N (h) = C 1 /h 2 , this restriction holds with high probability as h → 0, for both the matrix and potential cases. More precisely there exists a constant C 2 > 0 such that

P q ∈ PD N (h) 2 (0, C/h) ≥ 1 -κN (h) 2 h 4+ε 0 = 1 -C 2 h ε 0 , P v ∈ PD N (h) (0, C/h) ≥ 1 -κN (h)h 4+ε 0 = 1 -C 2 h 2+ε 0 . (5.7)
In their restricted spaces, the random matrix, resp. random potential, satisfy the following bounds

M ω HS = N (h) -1 i,j<N (h) |q i,j | 2 1/2 ≤ Ch -1 , (5.8) respectively V ω ∞ ≤ N (h) -1 n<N (h) |v n | e n ∞ ≤ C h -1 .
(5.9)

This proves the estimates (2.21) and (2.22) on the size of the perturbations in the restricted space.

Until further notice we will work in this restricted probability space M h , so that (5.8), respectively (5.9) holds. Using Proposition 5.1, we obtain a well-posed Grushin Problem for the perturbed operator P δ . Proposition 5.3 (Perturbed Grushin). Let P h and W (z 0 ) be as in Proposition 5.1, and P δ be the perturbed operator as in (5.4) with δ > 0 satisfying (1.6). For any z ∈ W (z 0 ) let

P δ (z) = P δ -z R -(z) R + (z) 0 : H(m) × C J -→ L 2 × C J
with the operators R + (z), R -(z) defined in (5.1). Then, for any realization of the perturbation Q ω in the restricted probability space (5.7), the operator P δ (z) is bijective with bounded inverse

E δ (z) = E δ (z) E δ + (z) E δ -(z) E δ -+ (z) : L 2 × C J -→ H(m) × C J .
Moreover, the perturbed blocks E δ ± , E δ -+ are related as follows with the unperturbed ones of Proposition 5.1:

E δ -= E -+ O(δh -3/2 ), E δ + = E + + O(δh -3/2 ), (5.10 
)

and E δ -+ = E -+ -δE -QE + + O(δ 2 h -5/2 ), (5.11) 
Uniformly w.r.t. the perturbation in the restricted probability space.

Proof. The result follows from an application of the Neumann series. Let E be as in Proposition 5.1, then

P δ E = PE + δQ 0 0 0 E = 1 + δQE δQE + 0 0 def = 1 + K.
Putting together the bounds (1.6), (5.8) (resp. (5.9)) and (5.3), we get

K ≤ δ Q ( E + E + ) = O(δh -3/2 ) 1 , h → 0.
Thus, (1 + K) can be inverted by Neumann series, which provides the inverse

E δ = E(1 + K) -1 for P δ : E δ def = E δ (z) E δ + (z) E δ -(z) E δ -+ (z) =   ∞ n=0 (-1) n E(δQE) n ∞ n=0 (-1) n (δEQ) n E + ∞ n=0 (-1) n E -(δQE) n E -+ + δ ∞ n=1 (-1) n E -(δQE) n-1 QE +   .
(5.12)

The estimates (5.10), (5.11) easily follow, which concludes the proof.

Using Propositions 3.5, 5.1 and (5.11), we get

(E δ -+ (z)) i,j = -δ(Qe j + |e i -) + O(δh ∞ ) + O(h ∞ ) + O(δ 2 h -5/2 ). (5.13) 
Remark 5.4. A salient feature of the expansion (5.13) is that, with high probability, the matrix E δ -+ is dominated by the first term in the right hand side, namely is the random perturbation term. This fact could appear strange, since the perturbation had a small norm ∝ δ. However, the unperturbed matrix E -+ (z) is even smaller (O(h ∞ )), a consequence of the strong pseudospectral effect. This dominance of the random perturbation in our effective Hamiltonian is crucial in the analysis of the perturbed spectrum.

Using the assumption (1.6) on the size of δ and taking the determinant, we get

det δ -1 E δ -+ (z) = (-1) J det (Qe j + (z)|e i -(z)) i,j≤J + O(δh -5/2 ) . (5.14) 
As explained in Section 2.7.1, the spectrum of P δ corresponds to the zero locus of the function z → det[E δ -+ (z)]. Since we used the normalized quasimodes, this function is not holomorphic in z ∈ W (z 0 ). Because we want to make a connection with z-analytic functions, we will transform this determinant into a z-holomorphic function (without modifying its zero locus), using the fact that it satisfies a ∂-equation. To see this, we take the ∂ z derivative of the equation P δ E δ = 1 L 2 ×C J , and get:

∂ z E δ = -E δ ∂ z P δ E δ .
The lower right block of this matrix reads:

∂ z E δ -+ = -E δ -+ (∂ z R + )E δ + -E δ -(∂ z R -)E δ -+ .
This, together with the identity ∂ z log(det

E δ -+ ) = tr (E δ -+ ) -1 ∂ z E δ -+ then yields ∂ z det(E δ -+ ) = -tr (∂ z R + )E δ + + E δ -(∂ z R -) det(E δ -+ ) def = -k δ det(E δ -+ ) . (5.15) 
Let us study the factor k δ (z). Using the expressions (5.1), (5.2), (5.10), we find

(∂ z R + )E δ + jj = (e j + (z)|∂ z e j + (z))+O(δh -5/2 ), E δ -∂ z R -) jj = (∂ z e j -(z)|e j -(z))+O(δh -5/2 ).
Here, we used the fact (easily drawn from the expressions for the quasimodes in Prop.

3.5) that ∂ z e j + (z) = O(h -1 ), ∂ z e j -(z) = O(h -1 ); for instance, ∂ z e j + = e -1 h Φ j + ∂ z e j,hol + -h -1 (∂ z Φ j + )e j,hol + = O(h -1 ) L 2 .
(5.16)

Putting these estimates together, we obtain

k δ = J j=1 (e j + |∂ z e j + ) + (∂ z e j -|e j -) + O(δh -5/2 ), (5.17) 
uniformly in z ∈ W (z 0 ). We now want to compute the function k δ (z), using the properties of the almost holomorphic quasimodes e j,hol ± (z) we had constructed in Proposition 3.5. Taking the ∂ z derivative of e j,hol + (z) 2 = e 2Φ j + (z)/h (see (3.21)), we get

2h -1 ∂ z Φ j + = e -2 h Φ j + (∂ z e j,hol + |e j,hol + ) + (e j,hol + |∂ z e j,hol + ) = e -2 h Φ j
+ (e j,hol + |∂ z e j,hol

+ ) + O(h -1 |z -z 0 | ∞ + h ∞ ), (5.18) 
where in the last line we used the almost holomorphy property (3.22). Taking the zderivative of e j + (z) = e -Φ j + (z)/h e j,hol + (z) (see (3.23)), we find

∂ z e j + = -h -1 ∂ z Φ j + e j + + e -1 h Φ j + ∂ z e j,hol + ,
and hence

(e j + |∂ z e j + ) = -h -1 ∂ z Φ j + + e -2 h Φ j
+ (e j,hol + |∂ z e j,hol + ).

Using this identity together with (5.18), we obtain

(e j + |∂ z e j + ) = h -1 ∂ z Φ j + + O(h -1 |z -z 0 | ∞ + h ∞ ). (5.19) 
A similar computation shows that

(∂ z e j -|e j -) = -h -1 ∂ z Φ j -+ e -2 h Φ j -(∂ z e j,hol -|e j,hol -) = h -1 ∂ z Φ j -+ O(h -1 |z -z 0 | ∞ + h ∞ ), (5.20) 
which finally results in the following expression for the function k δ (z):

k δ (z) = h -1 J j=1 ∂ z Φ j + (z) + ∂ z Φ j -(z) + O(h -1 |z -z 0 | ∞ + δh -5/2 ).
The function k δ (z) depends smoothly on z ∈ W (z 0 ), the equation ∂ z l δ = hk δ can be solved exactly in W (z 0 ) (see e.g. [27, Theorems 1.2.2, 1.4.4] or [22, page 6]) with a solution of the form

l δ (z) = -2Jh log(h 1/4 ) + J j=1 Φ j + (z; h) + Φ j -(z; h) + O(|z -z 0 | ∞ + δh -3/2 ). (5.21)
Here we added the constant term -2Jh log(h 1/4 ) in order to balance the behaviour of Φ j ± (z 0 ; h) = h log(h 1/4 ) + O(1). From (5.15) we obtain the following holomorphic function in z ∈ W (z 0 ):

G δ (z; h) def = (-δ) -J e 1 h l δ (z) det E δ -+ (z) = e 1 h l δ (z) det (Qe j + (z)|e i -(z)) i,j≤J + O(δh -5/2 ) . (5.22) 
It will be convenient to introduce the diagonal matrices containing the norms of the almost holomorphic quasimodes:

Λ ± = Λ ± (z) def = diag h -1/4 e 1 h Φ j ± (z) j=1,...,J . (5.23) 
We draw from (5.21) that

e 1 h l δ (z) = det(Λ -Λ + ) 1 + O(h -1 |z -z 0 | ∞ + δh -5/2 ) .
Injecting this expression in (5.22) and using (3.23), we finally express G δ in terms of the almost holomorphic quasimodes:

G δ (z; h) = 1 + R 1 det Λ -(Qe j + (z)|e i -(z)) i,j≤J Λ + + Λ -O(δh -5/2 )Λ + = 1 + R 1 det (Qh -1/4 e j,hol + (z)|h -1/4 e i,hol -(z)) i,j≤J + R 2 , (5.24) 
where the two remainder terms satisfy, uniformly for z ∈ W (z 0 ):

R 1 def = R 1 (z; h) = O(h -1 |z -z 0 | ∞ + δh -5/2 ), R 2 def = R 2 (z; h) def = Λ -O(δh -5/2 )Λ + . (5.25) 
It seems natural that the almost holomorphic, resp. almost anti-holomorphic quasimodes appear in the expression of the holomorphic function G δ . Indeed, if e + j (z) (resp. e - j (z))) were exactly holomorphic (resp. exactly antiholomorphic), then the dominant entries (Qe j,hol + (z)|e i,hol -(z)) in the determinant would be holomorphic as well. The important output of this section is that the eigenvalues of P δ in W (z 0 ) are given (with multiplicities) by the zeros of the holomorphic function G δ (z; h); for this reason, we will call this holomorphic function an effective spectral determinant for the operator P δ . Our future task will thus be to analyze the zeros of this function. We will do it in Sections 7 and 8, after recalling general properties of random analytic functions.

Random analytic function

In this section we provide background material and references concerning the theory of random analytic functions, which are needed for the proofs in Sections 7 and 8. We begin by recalling some standard notions and facts about random analytic functions and stochastic processes, as discussed for instance in [START_REF] Kallenberg | Foundations of modern probability, Probability and its Applications[END_REF][START_REF] Hough | Zeros of Gaussian Analytic Functions and Determinantal Point Processes[END_REF].

Let O ⊂ C be an open, simply connected domain, and let H(O) denote the space of holomorphic function on O. Giving ourselves an exhaustion by compact subsets K j O of the domain O, we endow H(O) with the metric

d(f, g) = ∞ j=1 1 2 j f -g K j 1 + f -g K j , (6.1) 
where f K j def = max z∈K j |f (z)|. This metric induces the topology of uniform convergence of analytic functions on compact sets. This makes H(O) a complete separable metric space, in other words a Polish space, and we may equip it with its Borel σ-algebra B(H(O)). This makes (H(O), B(H(O))) a measurable space. Definition 6.1. Let (M, A, ν) be a probability space. Then, any measurable map

f : (M, A) -→ (H(O), B(H(O)))
is called a C-valued stochastic process on O with paths in H(O). We will call such an f simply a random analytic function on O.

The Borel σ-algebra B(H(O)) is equal to the σ-algebra generated by the evaluation maps

π z : H(O) -→ C, π z g def = g(z), z ∈ O, namely it is the smallest σ-algebra in H(O) such that π z is measurable for every z ∈ O. As a consequence, a function f : (M, A) → (H(O), B(H(O))) is measurable if and only if π z f : (M, A) → (C, B(C)) is measurable for all z ∈ O, where B(C) denotes the Borel σ-algebra in C.
Hence, any measurable function f : M -→ H(O) can be regarded as well as a measurable function from O × M to C:

f (z, ω) = π z f (ω), (z, ω) ∈ O × M.
Due to the above measurability property, f can be considered as a collection of random complex variables (f (z)) z∈O . The finite-dimensional distributions of f describe the joint laws of finite vectors (f (z 1 ), . . . , f (z k )). Precisely, for a given set of points (z 1 , . . . , z k ) ∈ O k , the joint distribution of the random vector (f (z 1 ), . . . , f (z k )) ∈ C k is the probability measure on C k defined by:

µ z 1 ,...,z k = (f (z 1 ), . . . , f (z k )) * (ν), z 1 , . . . , z k ∈ O, k ∈ N * .
The next result states that these finite-dimensional distributions fully determine the law of a random analytic function, i.e. the direct image measure f * ν on H(O), see e.g. [START_REF] Kallenberg | Foundations of modern probability, Probability and its Applications[END_REF]Proposition 2.2]. Below the notation X d = Y between two random variables denotes the equality in distribution, namely the fact that the laws of X and Y are equal to one another. Theorem 6.2. Let f and g be two random analytic functions, then

f d = g ⇐⇒ (f (z 1 ), . . . , f (z k )) d = (g(z 1 ), . . . , g(z k )), ∀(z 1 , . . . , z k ) ∈ O k , ∀k ∈ N * .
Next, let us recall that a C k -valued random variable X is said to have a centred symmetric complex Gaussian distribution with a covariance matrix Σ k ∈ GL k (C), in short X ∼ N C (0, Σ k ), if its distribution is given by

X * ν = (det πΣ k ) -1 e -X * Σ -1 k X L(dX),
where L(dX) is the Lebesgue measure on C k . The covariance matrix Σ k must be Hermitian definite positive. This Gaussian distribution is characterized by its means and variances: 

E[X i ] = 0, E[X i X j ] = 0, E[X i X j ] = (Σ k ) ij , 1 ≤ i, j ≤ k.
(f (z 1 ), . . . , f (z k )) ∼ N C (0, Σ k ) for some covariance matrix Σ k .
The matrix Σ k depends on (z 1 , . . . , z k ). Each of its entries (Σ k ) ij is given by the covariance kernel

K(z i , zj ) def = E[f (z i )f (z j )],
which is a z i -holomorphic and z j -anti-holomorphic function on O × O. Hence, the complete distribution of the GAF is fully characterized by the covariance kernel.

For more details on the theory of Gaussian analytic functions we refer the reader to [START_REF] Hough | Zeros of Gaussian Analytic Functions and Determinantal Point Processes[END_REF].

Sequences of random analytic functions

We now review some notions and results concerning the convergence of sequences of random analytic functions. Definition 6.4. Let X n , n ∈ N, and X be random variables taking values in a Polish space (S, d), these variables being defined on probability spaces (M n , F n , ν n ), n ∈ N, respectively (M, F, ν). We say that (X n ) n converges in distribution to X if the induced probability measures on S converge in the weak- * topology:

(X n ) * ν n w * -→ X * ν, n → ∞, equivalently if for any bounded continuous function on S, φ ∈ C b (S, R), Mn φ(X n )dν n -→ M φ(X)dν, n → ∞.
When this is the case we simply write X n d → X. Definition 6.5. Let O ⊂ C be an open, simply connected domain. Let f n , n ∈ N, and f be random analytic functions on O (not necessarily defined on the same probability space). We say that f n converges in the sense of finite dimensional distributions to f if for all k ≥ 1 and all (z 1 , . .

. , z k ) ∈ O k , (f n (z 1 ), . . . , f n (z k )) d -→ (f (z 1 ), . . . , f (z k )), n → ∞.
When this is the case we write

f n f d → f .
As discussed in Thm 6.2, the distribution of each random analytic function is uniquely determined by its finite dimensional distributions. However, the convergence of a sequence of random analytic functions in the sense of finite dimensional distributions does in general not imply the convergence in distribution of the sequence of random functions. To achieve this implication, one needs to add a tightness condition, which provides the relative compactness of the sequence. Definition 6.6. Let (µ n ) n be a sequence of probability measures on some Polish space (S, B(S)). The sequence (µ n ) n is said to be tight if

sup K S lim inf n→∞ µ n (K) = 1,
where the supremum is taken over all compact sets K S.

Similarly, a sequence of random variables

(X n ) n taking values in S is called tight if sup K S lim inf n→∞ P[X n ∈ K] = 1,
where we use the standard notation that P[

X n ∈ K] = (X n ) * ν n (K) def = µ n (K)
is the probability measure induced by X n on S.

Tightness ensures that the probability measures µ n do not "escape to infinity" when n → ∞: for any > 0, there exists a compact set K S and n ∈ N such that µ n (K ) ≥ 1for any n ≥ n .

An important result due to Prohorov (see e.g. [START_REF] Kallenberg | Foundations of modern probability, Probability and its Applications[END_REF]Theorem 14.3]) is the following.

Theorem 6.7 (Prohorov). For any sequence of random variables (X n ) n taking values in a Polish space, tightness is equivalent to relative compactness in distribution, i.e. the sequence of probability measures (µ n ) n on S induced by (X n ) n is relatively compact in the weak- * topology.

Remark 6.8. As a consequence of this theorem, for a tight sequence of probability measures on a Polish space S, convergence with respect to the weak- * topology of C b (S) (where test functions are continuous and bounded), is equivalent to convergence with respect to the weak- * topology of C c (S) (test functions are continuous with compact supports). The latter topology is sometimes referred to as the vague topology.

Shirai [40, Proposition 2.5] provides a useful criterion for the tightness of sequences of random analytic functions: Proposition 6.9. [START_REF] Shirai | Limit theorems for random analytic functions and their zeros[END_REF] Let f n , n ∈ N, and f be random analytic functions on an open simply connected set O ⊂ C. Suppose that for any compact set K O, the sequence of random real variables (

f n L ∞ (K) ) n is tight , i.e. lim r→∞ lim sup n→∞ P[ f n L ∞ (K) > r] = 0.
Then, the sequence (f n ) n is tight in the space of random analytic functions on O, and

f n f d -→ f as n → ∞ implies that f n d -→ f as n → ∞.
This property naturally extends to a family of functions (f h ) h depending on a continuous parameter h ∈ (0, h 0 ]: it holds for any sequence (f hn ) n such that h n → 0 as n → ∞.

Point processes given by the zeros of a random analytic function

Let us first recall the definition of a random point process. Let O ⊂ C be an open connected domain, and let M (O) denote the space of complex valued, locally finite Borel measures on O, which we endow with the vague topology of C c (O) . This topology is metrisable, and it makes M (O) a Polish space, which we can equip with its Borel σalgebra. An M (O)-valued random variable is called a random measures on O.

Inside M (O) we distinguish the space P M (O) of integer valued measures in M (O), which forms a closed subspace of M (O). Any element µ ∈ P M (O) is a point measure: it can be expressed as µ =

z i δ z i
where δ z i denotes the Dirac measure on the point z i ∈ O. The points {z i } i form a finite or countable set, which has no accumulation point (yet each z i can be repeated finitely many times). From this characterization, a P M (O)-valued random variable is called a point process on O.

Let f be a nontrivial analytic function on O. Then, we call

Z f def = λ∈f -1 (0) δ λ (6.2)
the point measure defined by its set of zeros (counted with multiplicities). If f is a random analytic function (with f ≡ 0 a.s.), then Z f defines a point process on O, which we will call a zero point process. This is indeed a point process: f is measurable and for every test function ϕ ∈ C c (O, R), the functional π ϕ :

H(O) \ {0} → R, π ϕ (f ) = Z f , ϕ , is continuous on (H(O)\{0}, d),
for d the metric defined in (6.1). This was observed for instance by Shirai [START_REF] Shirai | Limit theorems for random analytic functions and their zeros[END_REF].

Remark 6.10. An easy extension is that for any M ∈ N and any tensor product function ϕ ⊗M ∈ M j=1 C c (O, R), the linear mapping

π ϕ ⊗M : (H(O)\{0}) M → R (f 1 , . . . , f M ) → Z f 1 , ϕ 1 • • • Z f M , ϕ M , is continuous with respect to the metric d(f, g) = M i=1 d(f i , g i ) on H(O) M .
The following result is essentially due to Shirai [ Suppose that f n , f ≡ 0 almost surely, and suppose that f n converges in distribution to f . Then the zero point processes Z fn converge in distribution to Z f . Moreover, for any ϕ ⊗M ∈ M j=1 C c (O, R), we have the following convergence of real random variables:

Z fn , ϕ 1 • • • Z fn , ϕ M d -→ Z f , ϕ 1 • • • Z f , ϕ M .
Proof. The convergence in distribution of the point processes Z fn to Z f is equivalent to

Z fn , ϕ d -→ Z f , ϕ .
for all ϕ ∈ C c (O, R). As discussed in Remark 6.10, the mapping π ϕ ⊗M is continuous. Hence, the continuous mapping theorem, stating that the convergence in distribution of random variables is preserved through continuous mappings between metric spaces (see e.g. [START_REF] Kallenberg | Foundations of modern probability, Probability and its Applications[END_REF]Theorem 3.27]), implies the claimed results.

A central limit theorem for complex valued random variables

The random matrix M ω , respectively the random potential V ω forming the perturbation are generally not Gaussian (see our general assumptions (2.16) on the law of the variables generating M ω and V ω ). In order to obtain a limiting Gaussian random analytic function, we will need to apply some Central Limit Theorem. We present below the version of the CLT for complex valued random variables, which we will use.

Theorem 6.12. Let σ > 0 and let ξ ∼ N C (0, σ) be a complex Gaussian random variable with mean 0 and variance σ. Let {ξ nj } n∈N,1≤j≤N (n) be a triangular array, with N (n) → +∞, as n → +∞, of row-wise independent complex-valued random variables, satisfying (i)

N (n) j=1 |E[ξ nj ]| -→ 0, as n → +∞, (ii) 
N (n) j=1 E[ξ 2 nj ] -→ 0, as n → +∞, (iii) 
N (n) j=1 E[|ξ nj | 2 ] -→ σ, as n → +∞,
Because the variables q j,k , j, k < N (n), are i.i.d. with the law of the variable α (2.16), and the restriction to M h is a product of identical restrictions, the restricted variables q h j,k are as well i.i.d., with common law described by the restricted variable α h :

P[α h ∈ A] = P[α ∈ A| |α| ≤ C/h] = P[{α ∈ A} ∩ {|α| ≤ C/h}] P[|α| ≤ C/h] , ∀A ⊂ C. (7.
3) Let us study the law of the restricted variables α h . By (2.17), the denominator in (7.3) takes values

P[|α| ≤ C/h] = 1 + O(h 4+ε 0 ). (7.4) 
The first two conditions in (2.16) imply that

E[α n 1l {|α|≤C/h} ] = -E[α n 1l {|α|>C/h} ], n = 1, 2. (7.5) 
Furthermore, by Fubini's Theorem, we have the following useful identities for n = 1, 2:

E[|α| n 1l {|α|>C/h} ] = ∞ 0 P {|α| > t 1/n } ∩ {|α| > C/h} dt = O(h 4+ε 0 -n ) , (7.6) 
where we used the tail estimate (2.17) to obtain the last line. Using (7.3)-(7.6), we obtain the following estimate of the average and variance of the restricted random variable:

E[(α h ) n ] = 1 P[|α| ≤ C/h] E[α n 1l {|α|>C/h} ] ≤ 1 P[|α| ≤ C/h] E[|α n |1l {|α|>C/h} ] = O(h 4+ε 0 -n ).
Thus, the first two identities in (2.16) are replaced by

E[α h ] = O(h 3+ε 0 ), E[(α h ) 2 ] = O(h 2+ε 0 ) . (7.7)
Finally, using (2.16), (2.17) as well as (7.4)-(7.6), we obtain the variance

E[|α h | 2 ] = 1 P[|α| ≤ C/h] E[|α| 2 ] -E[|α| 2 1l {|α|>C/h} ] = 1 + O(h 2+ε 0 ). (7.8)
Finally, with (2.16) it is easy to check that the (4 + 0 )-moment of α h remains uniformly bounded when h → 0:

E[|α h | 4+ 0 ] ≤ C, ∀h ∈ (0, 1] . (7.9)

Rescaling our spectral determinant

Next, let Ω Σ be as in (2.11) and pick a z 0 ∈ Ω. By the Grushin problem constructed in Proposition 5.3, the eigenvalues of the perturbed operator P δ , in the small neighborhood W (z 0 ) of z 0 constructed in Prop. 5.1, are precisely the zeros of the random holomorphic function obtained in (5.24):

G δ (z; h) = 1+R 1 (z; h) det (M ω h -1 4 e j,hol + (z)|h -1 4 e i,hol -(z)) i,j≤J + R 2 (z; h) , (7.10) 
with the remainder terms estimated in (5.25).

Since the spectrum of

P δ in W (z 0 ) is discrete, G δ (•; h) ≡ 0 in W (z 0 ).
To compute the local spectral statistics near the point z 0 , we rescale the spectral parameter z by the average distance between nearest neighbours, which is of order h 1/2 , namely we write

z = z w = z 0 + h 1/2 w , w ∈ C. (7.11)
For z an eigenvalue of P δ in W (z 0 ), we will call the corresponding w a rescaled eigenvalue, which forms the rescaled spectrum. We will focus on the eigenvalues in a microscopic neighbourhood of z 0 . Namely, we will consider an arbitrary open, connected and bounded set O C, and only consider the points w ∈ O. For h > 0 small enough, the rescaled eigenvalues are precisely the zeros of the w-holomorphic function

F δ h (w) def = G δ (z w ; h) = (1 + R 1 (w; h)) det (f δ,h i,j (w)) i,j≤J + R 2 (w; h) , w ∈ O. (7.12) with f δ,h i,j (w) def = (M ω h -1 4 e j,hol + (z w )|h -1 4 e i,hol -(z w )), 0 ≤ i, j ≤ J, R 1 (w; h) def = R 1 (z w ; h), R 2 (w; h) def = R 2 (z w ; h). (7.13)
We may call F δ h a rescaled spectral determinant. We have F δ h ≡ 0 in O hence, by the discussion in Section 6.1, the random measure

Z h def = w∈(F δ h ) -1 (0)∩O δ w (7.14)
is a well-defined point process on O (the zeros are repeated according to their multiplicities). This is the rescaled spectral point process Z M h,z 0 of (2.24), restricted to the set O. Our next goal is to analyze the statistical properties of this point process.

Covariance

In this section we study the covariance kernel of the random functions f δ,h i,j (w) defined over w ∈ O C. This kernel will be a crucial ingredient in the analysis of Z h . Proposition 7.1. Let σ j ± (z 0 ) be the classical densities at the point z 0 , as in (3.54); let f δ,h i,j (•), for 0 ≤ i, j ≤ J, be the random functions as in (7.13).

The covariance kernel of those functions, admits the following expression, uniformly for v, w ∈ O:

E f δ,h i,j (v)f δ,h l,k (w) e -F i,j (v;h)-F l,k (w;h) = δ i,l δ j,k K i,j (v, w)(1 + O(h 1/2 )) + O(h 2 ). (7.15) 
Here δ i,j is the Kronecker symbol. The most important part of the above formula is the kernel

K i,j (v, w) = exp 1 2 σ j + (z 0 ) + σ i -(z 0 ) vw . (7.16)
The other ingredients are the "gauge functions"

F i,j (v; h) = φ j + (v; h) + φ i -(v; h), (7.17) 
where

φ j ± (v; h) = 1 2 log A j ± (z 0 ; h) + (∂ 2 zz Φ j ±,0 )(z 0 )v 2 , (7.18) 
with A j ± (z 0 ; h) ∼ A j,± 0 (z 0 ) + hA j,± 1 (z 0 ) + . . . as in Proposition 3.5 and Φ j ±,0 (z) is given in (3.48). We already notice that K i,j (v, w) is the covariance kernel for the GAF presented in Theorem 2.9 (see (2.34)). We recall from (3.32) that A j,± 0 (z 0 ) > 0. The above proposition implies the limit

E f δ,h i,j (v)f δ,h l,k (w) e -F i,j (v;h)-F l,k (w;h) h→0 --→ δ i,l δ j,k K i,j (v, w), (7.19) 
uniformly for v, w ∈ O. The "gauge factors" e F i,j (•;h) never vanish and are deterministic, so the point process could be defined as well as the zero set of the random holomorphic function e F i,j (•;h) f δ,h i,j (•).

Proof of Proposition 7.1. For v, w ∈ O, we have by (7.13), (RM),

hK i,j,l,k h (v, w) def = hE f δ,h i,j (v)f δ,h l,k (w) = n,m,n ,m E q h n,m q h n ,m ζ i,j n,m (v) ζ l,k n ,m (w), (7.20) 
where all indices are summed in the range [0, N (h)), and we use the notation

ζ i,j n,m (w) = (e j,hol + (z w )|e m )(e n |e i,hol -(z w )), (7.21) 
and z w = z 0 + h 1/2 w as in (7.11). By (7.7), (7.8) and the independence of the coefficients q h n,m , the expression (7.20) is equal to 

(1 + O(h 2+ε 0 ))
|(e j,hol

+ (z v )|e n )| ≤ N (h) 1/2 e j,hol + (z v ) (1 + O(h ∞ )) .
Since N (h) = O(h -2 ), and through another application of Lemma 4.4, we get

hK i,j,l,k h (v, w) =(e j,hol + (z v )|e k,hol + (z w )) (e l,hol -(z w )|e i,hol -(z v )) + O(h 2+ε 0 ) e j,hol + (z v ) e i,hol -(z v ) e k,hol
+ (z w ) e l,hol -(z w ) . 3), we get the expression:

hK i,j,l,k h (v, w) =δ i,l δ j,k e 2 h Ψ j + (zv,zw;h)+Ψ i -(zw,zv;h) + O(h 2+ε 0 )e 1 h (Φ j + (zv;h)+Φ k + (zw;h)+Φ i -(zv;h)+Φ l -(zw;h)) . (7.23) 
Now, recall from (3.20), (3.48) that the phase functions Φ j ±,0 had been "centered" at the point z 0 , so that

Φ j ±,0 (z 0 ) = 0, ∂ z Φ j ±,0 (z 0 ) = 0, (∂ z Φ j ±,0 )(z 0 ) = 0.
Taking into account that

∂ α log A j ± (•; h) = O(1) in W (z 0 ), the Taylor expansion of Φ j ± (•; h) around z 0 gives 1 h Φ j ± (z v ; h) = log(h 1/4 ) + (∂ 2 z z Φ j ±,0 )(z 0 )vv + φ j ± (v; h) + φ j ± (v; h) + O(h 1/2 ), (7.24) 
where we used the notation (7.18). Similarly, by Proposition (4.1), we have:

1 h Ψ j + (z v , z w ; h) = log(h 1/4 ) + (∂ 2 z z Φ j +,0 )(z 0 )vw + φ j ± (v; h) + φ j + (w; h) + O(h 1/2 ) = log(h 1/4 ) + 1 4 σ j + (z 0 )vw + φ j + (v; h) + φ j + (w; h) + O(h 1/2
), (7.25) where in the second line we used (3.54). We also have

1 h Ψ j -(z w , z v ; h) = log(h 1/4 ) + 1 4 σ j -(z 0 )wv + φ j -(w; h) + φ j -(v; h) + O(h 1/2 ). (7.26)
In all estimates the error terms are uniform in z, w ∈ O. Thus, combining (7.23) with (7.24-7.25) and using the notation (7.17), we obtain

K i,j,l,k h (v, w) = δ i,l δ j,k e 1 2 (σ j + (z 0 )+σ i -(z 0 )
)vw e F i,j (v;h)+F l,k (w;h)+O(h 1/2 ) + O(h 2+ε 0 ).

Notice that the factor h on the left hand side of (7.23) is facing four factors h 1/4 on the right hand side, so we removed them all. This estimate gives the equation (7.15) of the proposition.

Tightness of the rescaled spectral determinant

We will now show that the family of random analytic functions (F δ h (•)) h→0 on O, defined in (7.12), is tight, namely the function F δ h has a small probability to be large on O, uniformly w.r.t. h → 0. Proposition 7.2. There exists h 0 > 0 such that the family of random analytic functions (F δ h (•)) 0<h≤h 0 defined in (7.12), is tight in the sense used in Prop. 6.9.

Proof. Recall the estimates (5.25) for the remainders R 1 , R 2 ; for z ∈ O, we get |z -

z 0 | = O(h 1/2 ), so all terms |z -z 0 | ∞ = O(h ∞ ).
Besides, the expansion (7.24) for 1 h Φ j ± (z v ; h) implies that the diagonal matrices Λ ± (z v ) of (5.23) are of order O(1), so that

R 1 (v; h) = O(δh -5/2 ) = O(h 1/2 ), R 2 (v; h) = O(δh -5/2 ) = O(h 1/2 ), (7.27) 
uniformly in v ∈ O and in the restricted probability space M h . Here we used the assumption (1.6) on the perturbation parameter δ.

Let K O be some compact subset. Pick ε > 0 small enough such that its εneighbourhood K ε = K + D(0, ε) O. By Proposition 7.1, we have for h 0 > 0 small enough:

sup 0<h≤h 0 E f h,δ i,j 2 
L 2 (Kε) ≤ C(K ε ) < +∞. (7.28) 
Since F δ h is holomorphic, Hardy's convexity theorem [START_REF] Shirai | Limit theorems for random analytic functions and their zeros[END_REF]Lemma 2.6] implies that for any p > 0,

F δ h p L ∞ (K) ≤ (πε 2 ) -1 Kε |F δ h (w)| p L(dw). (7.29)
To estimate the size of F δ h , we will use the following inequality, valid for any J ×J matrix M :

| det(M )| ≤ M J HS .

(7.30)

Markov's inequality, shows that for any r > 0, sup

0<h<h 0 P F δ h L ∞ (K) > r = sup 0<h<h 0 P F δ h 2/J L ∞ (K) > r 2/J ≤ sup 0<h<h 0 r -2/J E F δ h 2/J L ∞ (K) .
From (7.29), the definition (7.12) of F δ h and the algebraic inequality (7.30), the expectation

E F δ h 2/J L ∞ (K) is bounded above by (πε 2 ) -1 sup 0<h<h 0 E 1 + R 1 2/J L ∞ (Kε) Kε 2 (f h,δ i,j (w)) i,j≤J 2 
HS + R 2 (w; h) 2 HS L(dw) .
Finally, using the estimates (7.27) on the R i and the uniform bounds (7.28), we get

sup 0<h<h 0 P F δ h L ∞ (K) > r ≤ C(K, ε) r -2/J . (7.31)
This proves the tightness of the family (F δ h ) 0<h≤h 0 .

Weak convergence to a Gaussian analytic function

Next we will show that the random analytic function F δ h converges in distribution to a Gaussian analytic function when h → 0. By Prop. 6.9 and Section 7.4, it is sufficient to prove the convergence of the finite-dimensional distributions of F δ h . We recall that, in general, the coefficients q i,j are not Gaussian distributed.

We begin with the following result:

Proposition 7.3. Let f h,δ i,j be as in (7.13), and let K i,j (z, w) be as in (7.16). Then the matrices of random functions on O:

(f h,δ i,j ; 1 ≤ i, j ≤ J) f d -→ (f GAF i,j ; 1 ≤ i, j ≤ J), h → 0 . (7.32)
Here f GAF i,j are independent Gaussian analytic functions with covariance kernels K i,j (v, w) e F i,j (v;0)+F i,j (w;0) , z, w ∈ O. (7.33) K i,j was defined in (7.16), and the function F i,j (w; 0) is the limit as h 0 of the function defined in (7.17), (7.18).

Before proving this Proposition, we draw an immediate consequence. We recall the expression (7.12) for the rescaled spectral determinant:

F δ h (w) = (1 + R 1 (w; h)) det (f δ,h i,j (w)) i,j≤J + R 2 (w; h) ,
where both terms R i = O(h 1/2 ), uniformly on the restricted probability space.

Corollary 7.4. Under the notations of Proposition 7.3, we have

F δ h d -→ det (f GAF i,j
) i,j , h → 0. (7.34)

Proof. We start by proving that the perturbation of (7.32) by the perturbation R 2 is irrelevant for the limit:

(f h,δ i,j + ( R 2 i,j ) 1≤i,j≤J f d -→ f GAF i,j 1≤i,j≤J , h → 0. (7.35)
Equivalently, for any L ∈ N * and any (w 1 , . . . , w L ) ∈ O L , we want to show that the J 2 L-dimensional vector of complex random variables

(f h,δ i,j (w l ) + ( R 2 ) i,j (w l )) 1≤i,j≤J 1≤l≤L d -→ (f GAF i,j (w l )) 1≤i,j≤J 1≤l≤L , h → 0, (7.36) 
The Proposition 7.3 proves the convergence of the first term. The uniform bounds (7.27) imply that the J 2 L-vector ( R 2 (w l )) 1≤l≤L converges to zero everywhere as h → 0, therefore it converges in probability. The application of the Lemma 7.5 below, in the case N = J 2 L, thus proves the convergence (7.36).

In a second step, from the Definition 6.4, it is easy to check that the convergence in distribution is preserved through the composition by a continuous function [START_REF] Kallenberg | Foundations of modern probability, Probability and its Applications[END_REF]Theorem 4.27]. As a result, we draw from (7.36) the convergence of the determinants

D δ h (w) def = det (f h,δ i,j ) i,j + R 2 f d -→ det (f GAF i,j ) i,j , h → 0. (7.37) 
Third, we split

F δ h = (1 + R 1 ) D δ h = D δ h + R 1 D δ h .
For any (w 1 , . . . , w L ) ∈ O L , and use the tightness of (D δ h (w l ))) 1≤L and the uniform decay of the R 1 (w l ) to show that the C L -random vector R 1 (w l ) D δ h (w l ) 1≤l≤L converges to zero in probability as h → 0. One more application of the Lemma 7.5 then proves the convergence of F δ h (w l ) 1≤L , and thus convergence of F δ h (w) to the right hand side of (7.34) in the sense of finite dimensiional distributions.

Finally, since F δ h is a tight sequence of random analytic functions, see Section 7.4, then Prop. 6.9 implies its convergence is distribution stated in the Corollary. Lemma 7.5. Let (X n ) n∈N , X and (R N ) n∈N be random vectors in C N , such that X n d → X, while R n converges in probability to zero as n → ∞, namely:

∀ε > 0 lim n→+∞ P[|R n | > ε] = 0. (7.38) Then X n + R n d → X.
Proof. By a standard result [START_REF] Kallenberg | Foundations of modern probability, Probability and its Applications[END_REF]Lemma 4.8], the convergence X n d → X implies that (X n ) n∈N is a tight sequence of random vectors. From the assumption (7.38), it also easily follows that (X n + R n ) n∈N is tight.

As a result, from Definition (6.4) and Remark (6.8), to test the convergence of this latter sequence it suffices to consider compactly supported test functions. Let us thus choose φ ∈ C c (C N ; R), fix some arbitrary ε > 0. Since the function φ is uniformly continuous, there exists a δ > 0 such that for any |X -Y | < δ, Splitting the expectation

E[φ(X n + R n ) -φ(X n )] ≤ E[φ(X n + R n ) -φ(X n ) |R n | < δ] P[|R n | < δ] + E[φ(X n + R n ) -φ(X n ) |R n | ≥ δ] P[|R n | ≥ δ] ,
the second term is then bounded above by ε/2. In turn, the assumption (7.38) allows us to choose n δ > 0, so that for all n ≥ n δ , P[|R n | ≥ δ] < ε/4 φ L ∞ ; the second term is then bounded above by ε/2.

Proof of Proposition 7.3. The proof is an adaptation of the proof of [START_REF] Shirai | Limit theorems for random analytic functions and their zeros[END_REF]Theorem 4.4]. Our goal is to prove the convergence (7.36), in absence of the terms R 2 . By the Cramér-Wold Theorem [START_REF] Kallenberg | Foundations of modern probability, Probability and its Applications[END_REF]Corollary 5.5], it suffices to show that for any λ = (λ i,j l ; 1 ≤ i, j ≤ J, 1 ≤ l ≤ L) ∈ C J 2 L , the complex valued random variable

S(λ) def = i,j,l λ i,j l f h,δ i,j (w l )
converges in distribution, as h → 0, to the complex Gaussian random variable

S GAF (λ) def = i,j,l λ i,j l f GAF i,j (w l ). (7.39) 
Let us write S(λ) in terms of our restricted complex random variables q h n,m :

S(λ) = n,m<N (h) q h n,m G n,m , G n,m = i,j,l λ i,j l h -1/2 ζ i,j n,m (w l ), (7.40) 
where we used the notation of (7.21). Since the coefficients q h n,m are not Gaussian, to prove the limit S(λ) d → S GAF (λ) we will invoke the Central Limit Theorem 6.12. We thus need to check that the family of random variables (S(λ)) 0<h≤h 0 satisfies the four conditions stated in the theorem.

Let us first estimate the average of S(λ): from the left of (7.7), we get

E[S(λ)] ≤ O(h 3+ε 0 ) n,m<N (h) |G n,m | (7.41) ≤ O λ (h 3+ε 0 ) i,j,l m<N (h) (h -1/4 e j,hol + (z w l )|e m ) n<N (h) (h -1/4 e i,hol -(z w l )|e n ) (7.42) ≤ O λ (h 3+ε 0 )N (h) i,j,l h -1/4 e j,hol + (z w l ) (h -1/4 e i,hol -(z w l ) (7.43) ≤ O λ (h 1+ε 0 ) . (7.44) 
Here O λ just indicates that the implied constant depends on the vector λ. To obtain the third line we have used twice the Cauchy-Schwarz inequality, and for the last one the fact that h -1/4 e j,hol ± (z w ) = O(1) uniformly when w ∈ O. This proves the point (i) in Theorem 6.12.

Let us now check condition (ii) of the Theorem. Using the right of (7.7), we obtain the bound

n,m<N (h) E[(q h n,m ) 2 ]G 2 n,m ≤ n,m<N (h) E[(q h n,m ) 2 ]G 2 n,m ≤ O(h 2+ε 0 ) m,n |G n,m | 2 ≤ O λ (h 2+ε 0 ) i,j,l m<N (h) (h -1/4 e j,hol + (z w l )|e m ) 2 n<N (h) (h -1/4 e i,hol -(z w l )|e n ) 2 ≤ O λ (h 2+ε 0 ) . (7.45)
The computation of the variance of S(λ) needs more care. By (7.8) and (7.40):

E n,m<N (h) |q h n,m G n,m | 2 = E[|α h | 2 ] n,m<N (h) |G n,m | 2 = (1 + O(h 2+ε 0 )) i,j,l,r,s,t λ i,j l λ r,s t n,m<N (h) h -1 ζ i,j n,m (w l )ζ r,s n,m (w t ) .
By (7.21) and Lemma 4.4, this is equal to

(1 + O(h 2+ε 0 )) i,j,l,r,s,t λ i,j l λ r,s t h -1 e j,hol + (z w l )|e s,hol + (z wt ) × e r,hol -(z wt )|e i,hol -(z w l ) + O λ (h ∞ ). (7.46) 
To control the remainder we have used again that e k,hol ± (z w ) = O(h 1/4 ) uniformly for w ∈ O. From the quasi-orthogonality (4.3) we see that the only nonnegligible terms in (7.46) should satisfy i = r and j = s. Using the notations of Proposition 7.1, we then obtain as h → 0:

E n,m<N (h) |q h n,m G n,m | 2 -→ i,j,l,t
λ i,j l λ i,j t K i,j (w l , w t ) e F i,j (w l ;0)+F i,j (wt;0) def = σ(λ, w).

(7.47) In order to check the condition (iv) of Thm 6.12, we use the following connection with (4 + ε 0 )-moments: for any ε > 0,

n,m<N (h) E |q h n,m G n,m | 2 1 {|q h n,m Gn,m|>ε} ≤ ε -(2+ε 0 ) n,m<N (h) E |q h n,m G n,m | 4+ε 0
From (7.9) and the Hölder inequality, the above right hand side is bounded above by

C n,m<N (h) i,j,l λ i,j l h -1/2 ζ i,j n,m (w l ) 4+ε 0 ≤ C λ i,j,l m<N (h) (h -1/4 e j,hol + (z w l )|e m ) 4+ε 0 n<N (h) (h -1/4 e i,hol -(z w l )|e n ) 4+ε 0 . Splitting | • | 4+ε 0 = | • | 2 | • | 2+ε 0 ,
using the bound (4.36) of Lemma 4.5 on the individual overlaps and the fact that {e m } forms an orthonormal basis, one finds that the above quantity is bounded above by

= O λ (h 1+ε 0 /2 ) i,j,l h -1/4 e j,hol + (z w l )) 2 h -1/4 e i,hol -(z w l ) 2 e 2 h Φ i -,0 (zw l ) e 2 h Φ j +,0 (zw l ) = O λ (h 1+ε 0 /2 ).
In the last line we used the fact that both the norms and the exponentials are O(1) uniformly for w ∈ O. This checks the condition (iv) of Theorem 6.12.

Remark 7.6. It is especially to control this (4 + ε 0 )-moment that we need all the overlaps (h -1/4 e j,hol ± (z w )|e m ) to be small, and for this very reason that we chose our auxiliary basis (e m ) m∈N to have different microlocalization properties than our quasimodes.

Havind checked that the four conditions of Thm 6.12 are satisfied by the sum S(λ) of (7.40), we may apply this CLT, to show that S(λ) converges in distribution to the complex Gaussian random variable N C (0, σ(λ, w) 2 ), with variance given in (7.47). On the other hand, since the (f GAF i,j

) i,j≤J are independent Gaussian analytic functions with covariance kernel (7.33), the sum S GAF (λ) of (7.39) is a complex centred Gaussian variable, with variance

E i,j,l λ i,j l f GAF i,j (w l ) 2 = i,j,l,r,s,t λ i,j l λ r,s t E f GAF i,j (w l )f GAF r,s (w t ) = i,j,l,t
λ i,j l λ i,j t K i,j (w l , w t ) e F i,j (w l ;0)+F i,j (wt;0)

= σ(λ, w).

(7.48)

Since a complex centred Gaussian random variable is uniquely determined by its variance, we conclude that S(λ) d → S GAF (λ). This achieves to prove the Proposition.

Let us come back to the result of Corollary 7.4 and Proposition 7.3. The covariance kernels of the GAFs f GAF i,j were defined (see (7.33), (7.17), (7.18)) by

K i,j (v, w) e F i,j (v;0) e F i,j (w;0) , F i,j (v; 0) = φ i -(v; 0) + φ j + (v; 0), where φ i ± (v; 0) = 1 2 log A j,± 0 (z 0 ) + (∂ 2 zz Φ j ±,0 )(z 0 ) v 2 .
Since e F i,j (•;0) is a nonvanishing deterministic holomorphic function on O, we define the random analytic function

g i,j z 0 (•) def = f GAF i,j ( 
•) e -F i,j (•;0) , i, j = 1, . . . , J.

Then {g i,j z 0 ; i, j = 1, . . . , J} are the independent GAFs on O, with covariance kernels K i,j (v, w), presented in Theorem 2.9. If we define the diagonal matrices

Λ ± (v) = diag(e -φ i ± (v;0) ) 1≤i≤J ,
we get the equality between random analytic functions:

T (v) def = det (f GAF i,j (v)) i,j = det(Λ -(v)Λ + (v)) det (g i,j z 0 (v)) i,j def = det(Λ -(v)Λ + (v)) Gz 0 (v).
Since, det(Λ -Λ + )(v) never vanishes, the zero point processes associated with the random functions T and Gz 0 coincide. Hence, from the Corollary (7.4) we draw

Z F δ h d -→ Z T = Z Gz 0 when h → 0. (7.49)
Together with the discussion at the beginning Section 7 and the fact that

Z F δ h = Z M h,z 0
represents the set of rescaled eigenvalues of P δ , this concludes the proof of Theorem 2.9.

k-point measures

In this subsection we show that the k-point measures µ k of the point process Z M h,z 0 , defined in (2.26), converge to the k-point measures µ k of the point process Z Gz 0 defined in Theorem 2.9. We begin with a technical Lemma 7.7. Let F δ h (w) be as in (7.12), and let Gz 0 (w) be as in Theorem 2.9, with w ∈ O. Then, for any K O, the distribution of the numbers n h F (K) (resp. n Gz 0 (K)) of zeros of F δ h (resp. Gz 0 ) in K has exponential tail. Namely, there exist constants C 1 , C 2 > 0 so that for any λ > 0,

∀h ≤ h 0 , P[n h F (K) > λ] ≤ C 1 e -C 2 λ , P[n Gz 0 (K) > λ] ≤ C 1 e -C 2 λ .
Proof. From [30, Theorem 3.2.1], to prove the first part of the Lemma it suffices to show that, for some c > 0, b > 0, the random analytic function F δ h satisfies the bounds

E |F δ h (w)| ±c ≤ b, uniformly for w ∈ O and h ≤ h 0 , (7.50) 
and the second part requires a similar estimate for the random function Gz 0 (w).

Fix w ∈ O. Recall the bounds (7.27) on the terms R 1 (w), R 2 (w). We start with the following bound on the random variable F δ h (w):

E |F δ h (w)| 2/J ≤ C 1 E | det (f δ,h i,j (w)) i,j + R 2 (w) | 2/J ≤ C 1 E (f δ,h i,j (w)) i,j + R 2 (w) 2 HS ≤ 2C 1 E (f δ,h i,j (w)) i,j 2 
HS + R 2 (w) 2 HS ≤ 2C 1 J i,j=1 K i,j (w, w)e 2Re F i,j (w;h) (1 + O(h 1/2 )) + O(h) ≤ O(1), uniformly in w ∈ O and h ≤ h 0 . (7.51)
where on the second line we used the inequality (7.30), and in the two last inequalities we used Proposition 7.1.

We also need to check that the inverse function F δ h (w) -1 is not too large on average: 

E |F δ h (w)| -1/J = ∞ 0 P |F δ h (w)| -1/J ≥ t dt = ∞ 0 P |F δ h (w)| 1/J ≤ τ τ -2 dτ. ( 7 
P |F δ h (w)| 1/J ≤ τ ≤ P | det(f GAF i,j (w) 
) i,j | 1/J ≤ τ . (7.53) 
Our next goal is to compute the probability on the right hand side. We thus fix some w ∈ O and study the random determinant at this point w. From (7.48), the variables (f GAF i,j (w)) 1≤i,j≤J are independent centred complex Gaussian variables, with variances K i,j (w, w)e 2Re F i,j (w;0) = e

1 2 σ i -(z 0 )|w| 2 +2Re φ i -(w;0) e 1 2 σ j + (z 0 )|w| 2 +2Re φ j + (w;0) def = β i -(w)β j + (w) = 0.
Using this factorization of the variances, we set β ± (w) = diag (β i ± (w)) 1≤i≤J , which allows to factorize the limiting random determinant as follows:

det(f GAF i,j (w)) = det β + (w) det β -(w) det v 1 (w), . . . , v J (w) , (7.54) v j (w) = (v 1j (w), . . . , v Jj (w)) T , (7.55) 
where the entries (v ij (w)) 1≤i,j≤J are i.i.d. complex Gaussian random variables with distribution N C (0, 1) (in other words, the matrix (v ij (w)) is a Ginibre random matrix of size J × J). Until further notice we suppress w in the notation. Each column v j is a Gaussian vector in C J , with the identity I as covariance matrix, i.e with distribution N C (0, I). As a result, the real variable r = |v ij | 2 has the exponential distribution f (r)dr with

f (r) = e -r H(r), H(r) = 1 [0,∞[ (r), of Fourier transform f (ρ) = 1 1 + iρ .
Since the components (v ij ) i≤J are independent, the squared norm |v j | 2 is distributed according to the J-th convolution power f *

• • • * f (r)dr = f * J dr. A direct computation shows that f * J (r) = r J-1 e -r (J -1)! H(r),
which is the χ 2 2J distribution in the variable 2r. We now compute the law of | det(v 1 , . . . , v J )|. For this, we perform J -1 linear operations on the matrix (v 1 , • • • , v J ), setting v 1 = v 1 , and interatively for j = 2, . . . , J, taking for v j the orthogonal projection of v j onto the orthogonal complement of the space V j-1 def = span C {v 1 , . . . , v j-1 }. Elementary linear algebra then allows to write

| det(v 1 , . . . , v J )| = | det( v 1 , . . . , v J )| = J j=1 | v j |, Once v 1 , • • • , v j-1 , hence V j-1 ,
are chosen, the vector v j is distributed as a complex Gaussian random vector in V ⊥ j ≡ C J-j+1 , with distribution N C (0, I) (this follows from the fact that the initial distribution N C (0, I) is invariant under unitary transformations on C J ). As a result {| v j | 2 , 1 ≤ j ≤ J} are independent random variables with χ 2 2(J-j+1) distributions.

Setting η = η(w) def = (det β + (w)β -(w)) 1/J and using that the | v j | 2 are independent, we get by (7.54) and a straightforward computation:

P | det(f GAF i,j (w))| 1/J ≤ τ = P | det(v 1 , . . . , v J )| 1/J ≤ τ /η = P J j=1 | v j | 2 1/J ≤ (τ /η) 2 = 1 -P J j=1 | v j | 2 ) 1/J > (τ /η) 2 ≤ 1 - J j=1 P | v j | 2 > (τ /η) 2 = 1 -e -τ 2 η 2 J-1 j=1 J-j k=0 (τ /η) 2(J-j-k) (J -j -k)! .
Each sum on the right hand side is larger or equal to 1, so is their product, hence we get the bound:

P | det(f GAF i,j (w))| 1/J ≤ τ ≤ 1 -e -τ 2 η 2 J ≤ τ 2 η(w) 2 J.
Combining this with (7.52), (7.53) and splitting the integral into

[0, 1] ∪ [1, ∞[, we obtain E[|F δ h (w)| -1/J ] = O(1), uniformly in w ∈ O and h ≤ h 0 . (7.56)
Together with (7.51), this proves the bounds (7.50) with c = 1/J, hence the first part of the Lemma. An easy adaptation of the above computations shows that the function Gz 0 (w) satisfies similar bounds, and hence the second part of the Lemma.

Using Lemma 7.7, we see that for all ϕ ∈ C c (O, R + ) and any p > 0 and h < h 0 :

E | Z F δ h , ϕ | p ≤ ϕ p ∞ E[(n h F (supp ϕ)) p ] ≤ ϕ p ∞ +∞ 0 P[(n h F (supp ϕ)) p ≥ t] dt ≤ C 1 ϕ p ∞ ∞ 0 e -C 2 t 1/p dt ≤ C(ϕ, p) < ∞ .
Hence, for all ϕ l ∈ C c (O, R + ), l = 1, . . . , k, the positive random variable Z F δ h , ϕ ) defined on O in Theorem 2.9. Then, for any ϕ

E[ Z F δ h , ϕ 1 • • • Z F δ h , ϕ k ] -→ E[ Z Gz 0 , ϕ 1 • • • Z Gz 0 , ϕ k ], as h → 0.

Since linear combinations of functions in

k j=1 C c (O, R + ) form a dense set in C c (O k , R + ),
∈ C c (O k , R + ), O k ϕ dµ k,M h,z 0 -→ O k ϕ dµ k,M z 0 , h → 0.
Choosing our test functions supported away from the generalized diagonal, this Theorem gives the Corollary 2.10.

To end this section on the matrix perturbations, let us compute the formula (2.35) for the 1-point density. The Lelong formula states that, in the sense of distributions,

Z Gz 0 = 1 π ∂ w∂ w log | det Gz 0 | 2 .
Hence, the 1-point measure is given by

µ 1 (dw) = 1 π ∂ w∂ w E[log | det Gz 0 (w)| 2 ]L(dw). ( 7 

.57)

Recall from Theorem 2.6 that for any fixed w ∈ O, the matrix elements g i,j z 0 (w) of Gz 0 (w) are complex Gaussian variables with variance e 

d 1,M z 0 (z) = 1 2π J i=1 (σ j + (z 0 ) + σ i -(z 0 )).
8 Local Statistics of the eigenvalues of P h perturbed by a random potential V ω

In this section we are interested in the local statistics of the eigenvalues of the operator perturbed by a random potential,

P δ = P h + δV ω , (8.1) 
where the symbol of the initial operator P h satisfies the symmetry assumption (SYM), and the random potential V ω is defined in (RP). We will prove Theorem 2.5 on the limiting process. The steps of the proof are the same as for the proof of Theorem 2.9 in Section 7. However, some details are different, in particular the random potential acts locally in space, and can therefore only connect quasimodes localized near the same point x i . As a result, the effective Hamiltonian E δ -+ (z) obtained through the Grushin problem is essentially a diagonal matrix, as opposed to the case of a random matrix perturbation, leading to the factorized limiting zero process of Theorem 2.5. Finally, we provide the proofs of Theorem 2.6 in subsection 8.4, and Proposition 2.12 in subsection 8.5.

As explained in (2.20), we restrict the random variables used in the construction of V ω to large polydiscs:

v = (v k ) k<N (h) ∈ PD N (h) (0, C/h), (8.2) 
which implies the estimate (5.9). Like in Section [START_REF] Bourgade | Local Circular Law for Random Matrices[END_REF], denote the restricted probability space M h , and draw the i.i.d. restricted random variables (v h k ) k<N (h) , distributed according to the law of α h , (7.3). Like in section 7, we pick a z 0 ∈ Ω. The Grushin problem constructed in Proposition 5.3, leading to (5.24), shows that that the eigenvalues of the perturbed operator P δ in W (z 0 ), a relatively compact neighbourhood of z 0 , are given by the zeros of the holomorphic function

G δ (z; h) = 1 + R 1 (z; h) det (V ω h -1 4 e j,hol + (z)|h -1 4 e i,hol -(z)) i,j≤J + R 2 (z; h) , (8.3) 
with the error terms R 1 , R 2 satisfying the bounds (5.25):

R 1 (z; h) = O(|z -z 0 | ∞ + δh -5/2 ) (R 2 (z; h)) i,j = e 1 h (Φ i +,0 (z)+Φ j -,0 (z)+O(|z-z 0 | ∞ )) O(δh -3 ) , (8.4) 
uniformly in z ∈ W (z 0 ) and in the restricted probability space. Since the spectrum of

P δ in W (z 0 ) is discrete, G δ (•; h) ≡ 0 in W (z 0 ).
Recall from (3.43) that the assumption (SYM) implies that the ± quasimodes are complex conjugate of one another:

e i,hol -(z; h) = e i,hol + (z; h), (8.5) 
The further assumptions (HYP-x), (4.4) directly imply that

∀i = j, ∀z, z ∈ W (z 0 ), V ω e i,hol + (z) e j,hol -(z ) = 0 , (8.6) 
showing that the dominant matrix on the right hand side of (8.3) is diagonal. Like in the previous section, we rescale the spectral parameter around z 0 by the factor h 1/2 , setting z = z w = z 0 +h 1/2 w, and we restrict w ∈ O C, a bounded open connected set. For h < h 0 , the rescaled eigenvalues in O are precisely the zeros of the holomorphic function

F δ h (w) def = h J/4 G δ (z w ; h) = (1 + R 1 (w; h)) det diag f δ,h j (z w ); j = 1, . . . , J + R 2 (w; h) , (8.7) 
with the notations

f δ,h j (w) def = V ω h -1/4 e j,hol -(z w ) 2 , 1 ≤ j ≤ J, R 1 (w; h) def = R 1 (z w ; h), R 2 (w; h) def = h 1/4 R 2 (z w ; h). (8.8) 
The need for the normalisation by the factor of h J/4 will become apparent later on.

Remark 8.1. A direct consequence of the locality of the random potential is that the dominant term in (8.7) is given by a diagonal matrix. In the case of perturbation by random matrix, we had found a full matrix (7.12) instead.

From now on we fix the bounded open domain O C, and take h 0 > 0 be small enough such that (8.7) is well defined for all h ≤ h 0 . From the above discussion, F δ h ≡ 0 is a random holomorphic function in O, so according to section 6.1 the random measure

Z h def = w∈(F δ h ) -1 (0)
δ w (8.9) is a well-defined point process on O. Our aim is to study the statistical properties of this process, in the limit h → 0.

Covariance

In this section we study the covariance of the random functions f δ,h j .

Proposition 8.2. Let (f δ,h i ) 1≤i≤J be the rescaled random functions on O, defined in (8.8). Then, for any u, w ∈ O, the covariance kernel E f δ,h j (u)f δ,h k (w) e -2φ j s (u;h)-2φ k s (w;h) = δ j,k K j (u, w)(1 + O(h with A j s (z 0 ; h) ∼ A j,s 0 (z 0 ) + hA j,s 1 (z 0 ) + . . . as defined in Section 4.2. The error terms are uniform in u, w ∈ O.

Recall from (4.22) that A j,± 0 (z 0 ) > 0, so this proposition implies that E f δ,h j (u)f δ,h k (w) e -2φ j s (u;h)-2φ k s (w;h) -→ δ j,k K j (u, w) (8.12)

uniformly in v, w ∈ O as h → 0.

Proof of Proposition 8.2. The proof parallels that of Prop. Here, the correlations are only determined by the squared quasimodes (e j -) 2 . This is different from the case of perturbation by random matrix, where the covariance involved all possible combinations of interactions between the quasimodes e j -and between the e j + , see (7.22).

By eq. (4.26) in Lemma 4.4, n<N

(e j,hol -(z u )) 2 e n ≤ N (h) 1/2 (e j,hol -(z u )) 2 (1 + O(h ∞ )).

Here, we used as well that h -1/4 (e j,hol -(z u )) 2 1, which follows directly from (4.21) and (8.18) Next, recall the expansion (4.21) for the phase functions, and write similar to (3.48):

Φ j s (z) = 2Φ j +,0 (z) + h log A j s (z; h), Φ j +,0 (z 0 ) = -Im ϕ j + (x j + (z), z).

By (3.20) and (3.49), at the point z 0 the phase function satisfies:

Φ j +,0 (z 0 ) = (∂ z Φ j +,0 )(z 0 ) = (∂ z Φ j +,0 )(z 0 ) = 0.

Moreover, by the discussion after (4.21) we see that ∂ α h log h 1/4 A j s (z; h) = O(h), for all α ∈ N 2 , uniformly in z ∈ W (z 0 ). Thus, by Taylor expanding around z 0 , we have for u ∈ O and h < h 0 : 1 h Φ j s (z u ; h) = log h 1/4 + 2(∂ 2 z z Φ j +,0 )(z 0 )uu + φ j s (u; h) + φ j s (u; h) + O(h 1/2 ), (8.18) uniformly in u ∈ O. Here φ j s (u; h) is as in the statement of the Proposition. Similarly, by Proposition (4.3) and (3.54), we have for u, w ∈ O:

1 h Ψ j
s (z u , z w ; h) = log h 1/4 + 2(∂ 2 z z Φ j +,0 )(z 0 )uw + φ j s (u; h) + φ j s (w; h) + O(h 1/2 ) = log h 1/4 + 1 2 σ j + (z 0 )uw + φ j s (u; h) + φ j s (w; h) + O(h 1/2 ), (8.19) where the error term is uniform in u, w ∈ O. Thus, combining (8.17) with (8.18 -8.19), and using the fact that φ j s (u; h) is uniformly bounded for u ∈ O, we obtain the estimate of the Proposition.

Tightness

We will follow the same arguments as in section 7.4, to show the tightness of the sequence of random analytic functions (f h,δ j (w)) h<h 0 defined in (8.8), in the limit h → 0. Recall that the "error terms" satisfy (5.25), uniformly in z ∈ W (z 0 ) and in the restricted probability space. Similar as in (7.24), it follows from Proposition 3.5 and Taylor expansion that the exponentials e 

where all the constants are independent of r > 0. In the above we used the algebraic bounds det diag(f δ,h j (w)) j=1,...,J + R 2 (w; h) Hence, in view of Proposition 6.9, we conclude that F δ h is a tight sequence of random analytic functions.

Weak convergence to a Gaussian analytic function

In this section we will show that the random analytic functions F δ h , cf. (8.7), converge in distribution, when h → 0, to a product of independent Gaussian analytic functions. We start by the following result, analogue of Prop. Here (f GAF j ) 1≤j≤J are independent Gaussian analytic functions on O with covariance kernels K j (u, w) e 2φ j s (u;0)+2φ j s (w;0) , u, w ∈ O, (8.25) where K j is the kernel of (8.10), while φ j s (u; 0) is the quadratic polynomial described in (8.11).

We have the following immediate consequence, proved similarly as the Corollary 7.4: 

v h n G n , G n = j,l λ j l h -1/4 ζ j n (z w l ),
where ζ j n is as in (8.14). We are going to show that for any such λ, S(λ) converges in distribution to the complex valued random variable

S GAF (λ) def = j,l λ j l f GAF j (w l ) .
By the Cramér-Wold Theorem this implies the convergence (8.24).

To prove the limit S(λ) d → S GAF (λ), we will use the central limit theorem expressed in Theorem 6.12. We thus need to check that the family of random variables (S(λ)) 0<h≤h 0 satisfies the four conditions stated in the theorem, remembering that the variables v h j are distributed like α h in (7.3). We begin by estimating the average of S(λ). Using from (7.7), we get

n<N (h) E[v h n G n ] ≤ O(h 3+ε 0 ) n<N (h) |G n | ≤ O(h 3+ε 0 ) j,l n<N (h)
h -1/4 (e j,hol -(z w l ) 2 |e n ≤ O(h 3+ε 0 )N (h) j,l h -1/4 (e j,hol -(z w l )) 2

≤ O(h 1+ε 0 ) .

(8.27)

In the third line we used two Cauchy-Schwarz inequalities, and in the last one the fact that the states h -1/4 (e j,hol -(z w )) 2 = O(1) uniformly when w ∈ O. This proves the point (i) in Theorem 6.12.

Let us now check condition (ii). Using again (7.7) and (4.26), we draw the bound Here, we used as well h -1/4 e k,hol ± (z w l ) = O(1). By (4.20) we see that the terms in (8.29) with j = s vanish. Similar to the proof of Proposition 8.2, we then obtain the limit

n<N (h) E[(v h n ) 2 G 2 n ] ≤ O(h 2+ε 0 ) n |G n | 2 ≤ O(h 2+ε 0 ) j,l n<N (h) h -1/4 (
E n<N (h) |v h n G n | 2 h→0
--→ j,l,t λ j l λ j t K j (w l , w t ) e 2φ j s (w l ;0)+2φ j s (wt;0) def = σ(λ, w) (8.30) which settles the condition iii).

To check condition iv), we use as in (7.5) a bound by (4+ 0 )-moments: for any ε > 0,

n<N (h) E |v h n G n | 2 1 {|v h n Gn|>ε} < ε -(2+ε 0 ) n<N (h) E |v h n G n | 4+ε 0 -→ 0, (8.31) 
By (7.9) and the Hölder inequality, we find Using that {e m } is an orthonormal basis of L 2 (R), as well as the uniform estimates O(h = O(h (2+ε 0 )/4 ).

In the last line we used again uniform bounds for the norms and the exponentials e throughout O, as in (8.18), to see that the exponentials are of order O(1).

After checking the four conditions, we may apply the central limit theorem of Theorem 6.12, to show that S(λ) converges in distribution to the random Gaussian variable ∼ N C (0, σ(λ, w)), with variance given in (8.30).

On the other side, since (f GAF j ) j≤J are independent Gaussian analytic functions with covariance kernel (8.25), it follows that j,l λ j l f GAF j (w l ) is a complex centred Gaussian variable, with variance E j,l λ j l f GAF j (w l ) 2 = j,l,s,t λ j l λ s t E f GAF j (w l )f GAF s (w t ) = j,l,t λ j l λ j t K j (w l , w t ) e 2φ j s (w l ;0)+2φ j s (wt;0) = σ(λ, w), (8.32) where in the last line we recover the expression (8.30). We conclude that S(λ) d → S GAF (λ) for any λ ∈ C JL , which implies the convergence (8.24).

The GAFs f GAF j appearing in Proposition 8.4 and Corollary 8.5 have covariance kernels K j (u, w) e 2φ j s (u;0) e 2φ j s (w;0) . Since e 2φ j s (u;0) is a nonvanishing deterministic holomorphic function on O, we may divide by this "gauge factor", to obtain a Gaussian analytic function on O with covariance kernel K j (u, w), as in the statement of Theorem 2.5. Besides, the J random functions (g j z 0 (w)) 1≤j≤J are independent of each other.

It is clear that the random holomorphic functions J j=1 f GAF j (w) and G z 0 (w) = J j=1 g j z 0 (w) admit the same zero process Z Gz 0 on O. Hence, by (8.26) and Proposition 6.11, we obtain the convergence

Z F δ h d -→ Z Gz 0 , h → 0.
Taking into account the discussion at the beginning of Section 7 and the expression (7.16) for the covariance kernel, this achieves the proof of Theorem 2.5.

Correlation functions

Let µ h k = µ k,V h,z 0 be the k-point density measure of the process Z V h , and µ k = µ k,V z 0 be the k-point density measure of the point process Z Gz 0 , defined in Theorem 2.6. Following the same arguments as in Section 7.6, we obtain the first part of Theorem 2.6: for any test function ϕ ∈ C c (O k \∆, R + ), ϕ dµ h k -→ ϕ dµ k as h → 0.

Recall from Theorem 2.5 that G z 0 (z) = J j=1 g j z 0 (z) where the g j = g j z 0 are independent Gaussian analytic functions. To complete the proof of Theorem 2.6, we will show, using the simple product structure of G z 0 (z), that the k-point measure µ k has a continuous Lebesgue density d k G , called the k-point density, which can be explicitly computed, using the expressions of the k -point densities of the GAFs g j . This is not surprising, remembering that the process Z Gz 0 is the superposition of the J independent processes Z g j . This contrasts with the case of the point process associated with random matrix perturbations of P h (see Thm 2.9), for which the computation of the limiting k-densities remains an open problem.

Denoting ∆ w = ∂ w∂ w and w = (w 1 , . . . , w k ), the generalization of (7.57) reads:

µ k (dw) = (2π) -k k i=1 ∆ w i E log |G z 0 (w 1 )| • • • log |G z 0 (w k )| L(dw) def = d k G (w) L(dw), (8.33) 
in the sense of distributions. This follows from the Poincaré Lelong formula and Fubini's theorem, see e.g. [START_REF] Hough | Zeros of Gaussian Analytic Functions and Determinantal Point Processes[END_REF]. Applying the product structure of G z 0 , we obtain

d k G (w) = J β 1 ,...,β k =1 k i=1 ∆ w i E log |g β 1 (w 1 )| • • • log |g β k (w k )| . (8.34)
Since the g j are mutually independent, for each term β = (β 1 , . . . , β k ) the expectation in (8.34) factorizes, each factor grouping together the identical GAF g β i = g j . Upon applying the relevant derivatives ∆ w i , each such factor yields a certain density associated with the GAF g j .

According to [START_REF] Hough | Zeros of Gaussian Analytic Functions and Determinantal Point Processes[END_REF]Cor.3.4.2], for any Gaussian analytic function f on an open set U ⊂ C with covariance kernel K f (u, w), if the determinant det K f (w i , w j ) 1≤i,j≤k does not vanish anywhere on U k \∆, then the k-point measure of Z f has a continuous Lebesgue where perm(•) denotes the Permanent of a matrix and A, B, C are complex k×k-matrices with entries A i,j (w) = K(w i , w j ), B i,j (w) = (∂ w K)(w i , w j ), C i,j (w) = (∂ ww K)(w i , w j ).

Let us investigate the k-densities d k g j associated with individual processes Z g j . Theorem 2.5 shows that for any of j = 1, . . . , J and any k ≥ 1, the covariance kernel of the GAF g j (w) leads to the determinant det A(w) = det (K j (w n , w m )) 1≤n,m≤k = det (e σ j + (z 0 )wnwm ) 1≤n,m≤k .

This determinant vanishes if and only if w i = w j for some i = j, that is if w is in the diagonal ∆. Therefore, the k-point density functions d k g j exist, and can be expressed in the form (8.35).

Any k-density is symmetric with respect to permutations of its entries: denoting by S k be the permutation group of k elements

d k f (w) = 1 k! τ ∈S k d k f (w τ ( 
1) , . . . , w τ (k) ). (8.36) Let us come back to the decomposition (8.34). First, any k-density is symmetric with respect to permutations of its entries, so denoting by S k be the permutation group of k elements, we have Since we sum over all permutations τ ∈ S k , the sum over each β ∈ A α corresponds to all possible orderings for a fixed configuration α, it follows together with the first line of (8.35) that

d k G (w) = 1 k! τ ∈S k d k f (w τ ( 
d k G (w) = α∈N J ,|α|=k 1 k! k α τ ∈S k J j=1 d α j g j (w τ (α 1 +•••+α j-1 +1) , . . . , w τ (α 1 +•••+α j ) ),
where

k α = k! α! def = k! α 1 !α 2 !•••α J !
is the multinomial coefficient. This is exactly the expression (2.27), and therefore achieves the proof of Theorem 2.6.

To end this presentation, we show the explicit formula (2.30) for the 2-point correlation function of the limiting point process Z Gz 0 . Notice first that

d 1 G (w) = J j=1 d 1 g j (w).
From (8.35) one calculates directly that Next, as a particular case of (2.27), we find

d 2 (z 1 , z 2 ) = J j=1 d 2 g j (z 1 , z 2 ) + J i,j=1 i =j d 1 g i (z 1 )d 1 g j (z 2 ).
A cumbersome but straightforward calculation, using (8.35), shows that for any w 1 = w 2 ,

d 2 g j (w 1 , w 2 ) = σ j + (z 0 ) π 2 κ σ j + (z 0 ) 2 |w 1 -w 2 | 2 ,
where κ(t) = (sinh 2 t + t) cosh t -2t sinh t sinh 3 t , t ≥ 0.

Figure 1 :

 1 Figure 1: Numerically computed spectra of the operators -h 2 ∂ 2x + e 3ix + δQ acting on L 2 (T), with h = 10 -3 and δ = 10 -12 . The perturbation Q is either a Gaussian random matrix M ω (left), or a Gaussian random potential V ω (right). The region plotted is the same, it is part of the bulk (the units on the axes are arbitrary). In the region the number of quasimodes is 2J, J = 6.

Figure 4 :

 4 Figure 4: Blue points: values of the 2-point correlation functions, obtained by numerically computing the spectra of the operators P h,1 (left) and P h,3 (right) perturbed by a Gaussian random matrix δM ω . The parameters z 0 , h, δ are as in Figure 3. Red curves: the 2-point correlation function for the Ginibre ensemble, K 2,Gin z 0 , as given in (2.37). The horizontal coordinate is the rescaled square distance |w 1 -w 2 | 2 .

. 25 )

 25 In all equations above, the O(h ∞ ) remainders are uniform w.r.t. z ∈ W (z 0 ).

. 32 )

 32 It follows from(3.30) and the property ϕ + (x + (z 0 ), z) = 0 that Φ +,0 (z) ≥ 0 for any z ∈ W (z 0 ), with equality precisely when z = z 0 . Hence, for points such that |z -z 0 | ≥ 1/C, the norms of the states e hol + (z; h) are exponentially large. Let us now prove that the state e hol + (z; h) is almost z-holomorphic at z 0 . Using the equations (3.7), (3.20) and a Taylor expansion of x(z) at z 0 , we easily obtain that

. 36 )

 36 Next, using(3.31), we define the L 2 -normalised state as in(3.23): e + (x, z; h)def = e hol + (x, z; h) e -1 h Φ + (z;h) . This state is in C ∞ c (X + ),and depends smoothly on z ∈ W (z 0 ). It microlocalized on the point ρ + (z), as shown in the next Lemma 3.8. Under the assumptions of Lemma 3.6, take any order function m, an arbitrary point z ∈ W (z 0 ), and choos a cutoff function ψ ∈ C ∞ 0 (R 2 , [0, 1]

. 43 )

 43 It is then clear form Proposition 3.5 that for all z ∈ W (z 0 )e j,hol -(z; h) = e j,hol + (z; h) = e 1 h Φ j + (z;h) . (3.44) Moreover, by (3.40) and (3.41), it is obvious that the normalized state

Proposition 4 . 2 .

 42 Let (e j,hol -(z) z∈W (z 0 ) be the quasimodes constructed in Proposition 3.5. Then, for |z -w| ≤ c, with c > 0 sufficiently small, (e j,hol -(z)|e j,hol -(w)) = e 2 h Ψ j -(z,w;h)

Proposition 4 . 3 .

 43 Suppose that (SYM) holds and that the neighbourhood W (z 0 ) Ω, as in Proposition 3.5, satisfies (4.1),(4.4). Let Φ j s (z; h), z ∈ W (z 0 ), be as in (4.21). Then, for |z -w| ≤ c, with c > 0 sufficiently small, (e j,hol -(z)) 2 (e j,hol -(w)) 2 = e 2 h Ψ j s (z,w;h) + O(h ∞ )e

Definition 6 . 3 .

 63 (Gaussian analytic function -GAF) Let O ⊂ C be an open simply connected complex domain. A random analytic function f on O is called a Gaussian analytic function on O if its finite-dimensional distributions are centred symmetric complex Gaussian, namely if for all k ∈ N * and all z 1 , . . . , z k ∈ O, the random vectors

m

  (e j,hol+ (z v )|e m )(e m |e k,hol + (z w )) n (e l,hol -(z w )|e n )(e n |e i,hol -(z v )) + O(h 6+2ε 0 ) n,m,n ,m|(e j,hol+ (z v )|e m )| |(e n |e i,hol -(z v ))| |(e k,hol + (z w )|e m )| |(e n |e l,hol -(z w ))|.From Lemma 4.4, n<N

(7. 22 )Using Proposition 3 . 5 ,

 2235 Proposition 4.1, (7.22) and (4.

1 2

 1 (σ j + (z 0 )+σ i -(z 0 ))|w| 2 . If we consider the diagonal matrices Λ ± (w) = diag(e 1 4 σ i ± (z 0 )|w| 2 ; 1 ≤ i ≤ J).then the elements of the matrix G(w)def = Λ -(w) -1 Gz 0 (w) Λ + (w) -1 are i.i.d. ∼ N C (0,1). As a consequence, E log | det G(w)| 2 is independent of w. When applying the Lelong formula (7.57), the differentiations will only act on log | det Λ -(w)| 2 | + log | det Λ + (w)| 2 , and yield the 1-point density

7 . 1 . 2 +

 712 We define the following function on O × O:h 1/2 K j,k h (u, w) def = h 1/2 E f δ,h j (u)f δ,h k ) = e n (e j,hol -(z u )) 2 . (8.14)Using the law of the restricted coefficients v h j , we estimate (8.13) by(1 + O(h 2+ε 0 )) m (e k,hol -(z w ) 2 e m e m (e j,hol -(z u )) O(h 6+ε 0 ) n,m(e j,hol -(z u )) 2 e n (e k,hol -(z w )) 2 e m .

1 h 0 E f h,δ j 2 L 2 ( 0 P F δ h 2 LE

 102202 (Φ j +,0 (zw)+Φ j -,0 (zw)) = O(1), uniformly in w ∈ O. By(5.25),(8.8) we deduce the boundsR 1 (w; h) = O(δh -3/2 ), R 2 (w; h) = O(δh -11/4 ),(8.20)uniformly in w ∈ O and in the restricted probability space.Let K O, and choose ε > 0 small enough, such that K ε = K + D(0, ε) O. By Proposition 8.2, we have for h 0 > 0 small enough thatsup 0<h<h Kε) < C(K ε ) < +∞. (8.21)Since F δ h is holomorphic, we show as for (7.29) thatF δ h p L ∞ (K) ≤ C Kε Kε |F δ h (w)| p L(dw).(8.22)Using Markov's inequality, (8.20) and (8.7) in combination with(8.22) for p = 2/J, one obtains that for h 0 > small enoughsup 0<h<h ∞ (K) > r ≤ r -1/J C Kε sup 0<h<h 0 E Kε |F δ h (w)| 2/J L(dw) ≤ r -1/J C 1 C Kε sup 0<h<h 0 J j=1 |f h,δ j (w)| 2 L(dw) + C 2 ≤ O(r -1/J ),

≤ 2 2 HS + 2 R 2 (w; h) 2 HS ≤ 2 J

 222222 diag(f δ,h j (w)) j=1,...,J j=1 |f h,δ j (w)| 2 + 2 R 2 (w; h) 2 HS .

7 . 3 : 8 . 4 .

 7384 Proposition The random functions f h,δ j defined in (8.8) satisfy the convergence (f h,δ j )

Corollary 8 . 5 . 4 .

 854 Under the assumptions of Proposition 8.4, we have the convergence The proof is similar to that of Proposition 7.3. For L ∈ N * let w 1 , . . . , w L ∈ O and λ = (λ j l ; 1 ≤ j ≤ J, 1 ≤ l ≤ L) ∈ C J•L . Consider the following complex valued random variableS(λ) def = j,l λ j l f h,δ j (w l ) = n<N (h)

  n<N (h) E |v h n G n | 4+ε 0 ≤ C λ j,l n<N (h) |h -1/4 ζ j n (z w l )| 4+ε 0 = C λ j,l m<N (h) h -1/4 (e j,hol -(z w l )) 2 |e m 4+ε 0 .

  density d k f (w), given byd k f (w) = (2π) -k k i=1 ∆ w i E log |f (w 1 )| • • • log |f (w k )| = perm C(w) -B(w)A -1 (w)B * (w) π k det A(w) ,(8.35)

1 )∆

 1 , . . . , w τ (k) ).(8.37) Then, simple combinatorics allows us decompose the index set in(8.34) as follows:{1 ≤ β 1 , . . . , β k ≤ J} = α∈N J ,|α|=k A α , A α = {β ∈ N k ;for each j = 1, . . . , J, there are α j indices β i = j}.(8.38) Here we used the notation |α| = α 1 + • • • + α J for a multiindex α ∈ N J . Applying the decomposition(8.38) and the permutation symmetry to(8.34), we writew i E log |g β 1 (w τ (1) )| • • • log |g β k (w τ (k) )| .

  w log K j (w, w) = σ j + (z 0 ) 0 ), for all w ∈ C.

  we plot the function t → κ(t 2 ); it behaves
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	Figure 2: Plot of the function t → κ(t 2 ), see (2.29).

  5 and (3.48) we have that for z, w ∈ W (z 0 ),

	(e hol + (z)|e hol + (w)) = e	1 h Φ +,0 (z)+ 1 h Φ +,0 (w) I(z, w),
	I(z, w) = χ + (x) a + (x, z; h) a + (x, w; h) e	i h Θ(x,z,w) dx,	(4.9)
	with the phase function		
	Θ(x, z, w) = ϕ + (x, z) -ϕ + (x, w) + iΦ +,0 (z) + iΦ +,0 (w) = 2ψ(x, z, w) + iΦ +,0 (z) + iΦ +,0 (w) def	(4.10)
	By (3.48), (3.30) and the ensuing discussion, we have ϕ(x, z) ≥ ϕ(x

+ (z), z), with equality only if x = x + (z). As a result, for all x ∈ supp χ + and z, w ∈ W (z 0 ) we have

Im Θ(x, z, w) ≥ 0,

(4.11)

with equality on the submanifold {(x + (z), z, z)} composed of the critical points ∂ x ψ(x + (z), z, z) = 0. Actually (3.30) implies that

  40, Proposition 2.3]. Proposition 6.11. Let O ⊂ C be an open, simply connected domain. Let f n , n ∈ N, and f be random analytic functions on O, not necessarily defined on the same probability space.

  • • • Z F δ h , ϕ k is integrable, uniformly w.r.t. h ≤ h 0 . By Proposition 6.11 and (7.49) it then follows that

  we have obtained the following

	Theorem 7.8. Take any O	C open, relatively compact connected domain. Let µ k,M h,z 0
	(resp. µ k,M z 0 ) be the k-point density measure (see (2.26)) of the point process Z M h,z 0 (resp.
	Z Gz 0	

  1/2 )) + O(h 2 ), with σ + (z 0 ) the classical density defined in (3.54), and

	where the kernel			
			K j (u, w) = e σ j + (z 0 )u	w,	(8.10)
	φ j s (u; h) =	1 2	log A j s (z 0 ; h) + 2(∂ 2 zz Φ j +,0 )(z 0 )u 2 ,	(8.11)

  below. Using this to estimate the term of order h 6 and applying Lemma 4.4 to the first term in(8.15), one getsh 1/2 K j,k h (u, w) = (e k,hol -(z w )) 2 (e j,hol -(z u )) 2 + O(h 2 ) (e k,hol -(z w )) 2 (e j,hol -(z u )) 2 .

				(8.16)
	Applying Proposition 4.3 and (4.20) to this equation, we obtain
	h 1/2 K j,k h (u, w) =δ j,k exp	2 h	Ψ j s (z w , z u ; h)
	+ O(h 2 ) exp	1 h	Φ k s (z

w ; h) + Φ j s (z u ; h) .

(8.17) 

  e j,hol -(z w l )) 2 |e n 2 ≤ O(h 2+ε 0 ) .

					(8.28)
	Next, we compute the variance of S(λ). By (7.7), (7.8)
	E	|v h n G n | 2 = (1 + O(h 2+ε 0 ))	λ j l λ s t	h -1 ζ j n (z w l )ζ s n (z wt ),
	n<N (h)		j,l,s,t	n<N (h)
	which, by (8.14) and Lemma 4.4 is equal to	
	(1 + O(h 2+ε 0 ))	λ j l λ s t h -1/2 (e j,hol	
		j,l,s,t		

-(z wt )) 2 |(e s,hol -(z w l )) 2 + O(h ∞ ). (

8

.29) 

  1/4 ) for the overlaps (see Lemma 4.5), one obtains thatn<N (h) E |v h n G n | 4+ε 0 = O(h (2+ε 0 )/4 )

	(h -1/4 (e j,hol -(z w l )) 2 2 e	4 h Φ j +,0 (zw l )
	j,l	

We will refer to the values p(x, ξ) as "energies", even though they are complex.

The notation = O(h ∞ ) means that for any N , there exists C N > 0 such that for all h ∈]0, 1], the left hand side is bounded above by C N h N .

This microlocalization means that the function x → e j + (x; z, h) is concentrated near x j + (z) when h → 0, while its semiclassical Fourier transform (F h e j + (z, h))(ξ) is concentrated near ξ j + (z).

Although this norm depends on the choice of the symbol p -z out , it is equivalent to the norm defined from any elliptic operator in q ∈ S(m), so that the space H(m) only depends on the order function m.
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(iv) For any ε > 0, N (n) j=1 E[|ξ nj | 2 1 {|ξ nj |>ε} ] -→ 0, as n → +∞.

Then, N (n) j=1 ξ nj d -→ ξ as n → +∞.

Remark 6.13. The condition (iv) is known as the Lindeberg condition for a CLT. A simpler version of the above Theorem was presented in [START_REF] Shirai | Limit theorems for random analytic functions and their zeros[END_REF]Proposition 4.2], assuming that all random variables ξ nj have expectation 0 and are such that the real random variables Re ξ nj and Im ξ nj are independent and have the same variance. Notice that these extra assumptions imply conditions (i) and (ii).

Proof of Theorem 6.12. The proof is standard. It can be obtained by a direct modification of the proof of the well-known central limit theorem under the Lindeberg condition, see [START_REF] Kallenberg | Foundations of modern probability, Probability and its Applications[END_REF]Theorem 4.12], for a linear combination of the real and imaginary part of ξ ni .

7 Local Statistics of the eigenvalues of P h perturbed by a random matrix M ω

In this section we prove Theorem 2.9 and Corollay 2.10, which concern the local spectral statistics for the randomly perturbed operator

where M ω is the random matrix defined in (RM). To do this we will begin by rescaling the determinant of the holomorphic effective Hamiltonian (5.24), which describes the eigenvalues of P δ , to the scale of the average spacing between nearby eigenvalues, obtaining the rescaled random analytic function F δ h (w) in (7.12). Next, we will use the results of Section 4 to study the covariances of the matrix elements of the effective Hamiltonian. This will then be used to show that the random function F δ h (w) is tight, see Section 7.4. Next, we show in Section 7.5 that (after a change of gauge) the function F δ h (w) converges in finite dimensional distributions to the limiting function G z 0 (w) defined in Theorem 2.9. Together with the tightness and Prohorov's theorem 6.7, this proves the convergence in distribution of Theorem 2.9. In Section 7.6, we finally prove Corollary 2.10.

On the restricted random variables

We recall that we restrict ourselves to the restricted probability space M h defined by (5.5). This restricting leads to defining restricted random variables q h = (q h j,k ) j,k≤N (h) , equipped by the conditional probability

A Taylor expansion shows that κ(t) = t(1+O(t 2 )), as t → 0 + , and κ(t) = 1+O(t 2 e -2t ), as t → +∞. This expression has been obtained before by [START_REF] Hannay | Chaotic analytic zero points: exact statistics for those of a random spin state[END_REF][START_REF] Bleher | Universality and scaling of correlations between zeros on complex manifolds[END_REF]. We then obtain the following formula for the 2-point correlation function of Z Gz 0 , as stated in (2.30):

For |w 1 -w 2 | 1, we have the asymptotics

In particular, this 2-point correlation does not vanish when |w 1 -w 2 | → 0.

Invariance by isometries

In this last subsection, we prove Proposition 2.12, which expresses the invariance of our limiting processes with respect to the direct isometries of C, for both types of random perturbations.

We first show this invariance in the case of the potential perturbation, namely the case of Theorem 2.5. A direct isometry takes the form τ (w) = αw + β, with α, β ∈ C, |α| = 1 By the continuous mapping theorem [START_REF] Kallenberg | Foundations of modern probability, Probability and its Applications[END_REF]Theorem 3.27] and the discussion after (6.2), it is sufficient to show that there exists a deterministic holomorphic function Φ(w) such that

Recall that our random analytic function G z 0 (w) = J j=1 g j (w), where (g j ) 1≤j≤J are J independent GAFs on C, with covariance kernels

Then, the translated functions (g j •τ ) 1≤j≤J are J independent Gaussian analytic functions on C, with covariance kernels

Hence, the GAFs g j • τ and g j e φ j + are equal in distribution, since they have the same covariance kernel. By the continuous mapping theorem, the random analytic functions G z 0 • τ and G z 0 e Φ are equal in distribution, if we take Φ(w) = J j=1 φ j + (w). The case of the process Z Gz 0 of Theorem 2.9 is treated similarly. Each entry g i,j = g i,j z 0 of the matrix defining Gz 0 is a GAF of kernel

). Therefore, upon composing with τ , we obtain a shifted kernel

where we used the notation of (8.41) for φ i + , and a corresponding one for φ j -. Therefore, the GAF g i,j • τ has the same distribution as the GAF g i,j e φ ij = g i,j e 1 2 φ i + + 1 2 φ j -. Thanks to this product structure, the determinant Gz 0 • τ can be factorized into det (g ij e 1 2 φ i + (v)+ 1 2 φ j -) i,j = det(Λ τ + ) det (g ij ) i,j det(Λ τ -), Λ τ ± = diag e 1 2 φ i ± Since the matrices Λ τ ± are nonsingular, the zero process of the left hand side is identical as that of of det (g ij ) i,j = Gz 0 .