
HAL Id: hal-01781338
https://hal.science/hal-01781338v1

Submitted on 30 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Schéma général auto-stabilisant et silencieux de
constructions de type arbres couvrants
Stéphane Devismes, David Ilcinkas, Colette Johnen

To cite this version:
Stéphane Devismes, David Ilcinkas, Colette Johnen. Schéma général auto-stabilisant et silencieux de
constructions de type arbres couvrants. ALGOTEL 2018 - 20èmes Rencontres Francophones sur les
Aspects Algorithmiques des Télécommunications, May 2018, Roscoff, France. �hal-01781338�

https://hal.science/hal-01781338v1
https://hal.archives-ouvertes.fr


Schéma général auto-stabilisant et silencieux
de constructions de type arbres couvrants †

Stéphane Devismes1, David Ilcinkas2 et Colette Johnen2

1Université Grenoble Alpes, VERIMAG UMR 514, Grenoble, France
2CNRS & Univ. Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France

Nous proposons un schéma général, appelé Scheme, qui calcule des structures de données de type arbres couvrants
dans des réseaux quelconques. Scheme est auto-stabilisant, silencieux et malgré sa généralité, est aussi efficace. Il
est écrit dans le modèle à mémoires localement partagées avec atomicité composite, et suppose un démon distribué
inéquitable, l’hypothèse la plus faible concernant l’ordonnancement dans ce modèle. Son temps de stabilisation est d’au
plus 4nmaxCC rondes, où nmaxCC est le nombre maximum de processus dans une composante connexe. Nous montrons
également des bornes supérieures polynomiales sur le temps de stabilisation en nombre de pas et de mouvements pour
de grandes classes d’instances de l’algorithme Scheme. Nous illustrons la souplesse de notre approche en décrivant de
telles instances résolvant des problèmes classiques tels que l’élection de leader et la construction d’arbres couvrants.

Mots-clefs : Algorithmes distribués, auto-stabilisation, arbre couvrant, élection de leader, plus courts chemins.

1. Introduction

A self-stabilizing algorithm is able to recover a correct behavior (defined by a set of legitimate configu-
rations) in finite time, regardless of the arbitrary initial configuration of the system, and therefore also after
a finite number of transient faults. Among the vast self-stabilizing literature, many works (see [Gär03] for
a survey) focus on spanning-tree-like constructions, i.e. constructions of specific distributed spanning tree-
or forest- shaped data structures. Most of these constructions achieve an additional property called silence:
a silent self-stabilizing algorithm converges within finite time to a configuration from which the values of
the communication registers used by the algorithm remain fixed. Such a configuration is called terminal.
Silence is a desirable property, as it facilitates composition of different algorithms and may utilize less com-
munication operations and communication bandwidth. We consider the locally shared memory model with
composite atomicity, which is the most commonly used model in self-stabilization. In this model, n pro-
cesses communicate according to a given communication network using a finite number of locally shared
registers, called variables. Each process can read its own variables and those of its neighbors, but can write
only to its own variables. In this model, executions proceed in atomic steps and the asynchrony of the
system is captured by the notion of daemon. The weakest (i.e., the most general) daemon is the distributed
unfair daemon, meaning that while the configuration is not terminal, the daemon should select at least one
enabled process, maybe more. Hence, solutions stabilizing under such an assumption are highly desirable,
because they work under any other daemon assumption. Moreover, under an unfair daemon, the stabiliza-
tion time can also be bounded in terms of steps (and moves, i.e., local state updates), which capture the
execution time according to the fastest process, and not only in terms of rounds, which capture the execu-
tion time according to the slowest process. Note that if the number of moves (and thus steps) is unbounded,
this means that there are processes whose moves do not make the system progress, hence wasting resources.
There are many self-stabilizing algorithms proven under the distributed unfair daemon. However, analyses
of the stabilization time in steps (or moves) is rather unusual and this may be an important issue. Indeed,
recently, several self-stabilizing algorithms which work under a distributed unfair daemon have been shown
to have an exponential stabilization time in steps in the worst case [DJ16, ACD+17].

†This study was partially supported by the ANR project DESCARTES: ANR-16-CE40-0023 and ANR project ESTATE: ANR-16-
CE25-0009-03. A complete version of this work can be found in the technical report https://hal.archives-ouvertes.fr/hal-01667863.



Stéphane Devismes, David Ilcinkas et Colette Johnen

Contribution. We propose a general scheme, called Algorithm Scheme, to compute spanning-tree-like
data structures on bidirectional weighted networks of arbitrary (not necessarily connected) topology. Scheme
is self-stabilizing and silent. It is written in the locally shared memory model with composite atomicity,
assuming the distributed unfair daemon. Despite its versatility, Scheme is efficient. Indeed, its stabiliza-
tion time is at most 4nmaxCC rounds, where nmaxCC is the maximum number of processes in a connected
component. Moreover, its stabilization time in moves is polynomial in usual cases. Precisely, we exhibit
polynomial upper bounds on its stabilization time in moves that depend on the particular problems we con-
sider. To illustrate the versatility of our approach, we propose instantiations of Scheme solving classical
spanning-tree-like problems. Assuming an input set of roots but no identifiers, we propose two instantia-
tions to compute a spanning forest of unconstrained, resp. shortest-path, trees, with non-rooted components
detection. ‡ The first instantiation stabilizes in O(nmaxCCn) moves, which matches the best known step
complexity for spanning tree construction [Cou09] with explicit parent pointers. The second instantiation
stabilizes in O(WmaxnmaxCC3n) moves (Wmax is the maximum weight of an edge). This move complexity also
matches the best known move complexity for this problem [DIJ16]. Then, assuming the network is identi-
fied (i.e., processes have distinct IDs), we propose two instantiations of Scheme for electing a leader in each
connected component and building a spanning tree rooted at each leader. The first instantiation stabilizes in
O(nmaxCC2n) moves, matching the best known step complexity for leader election [ACD+17]. The second
instantation stabilizes in O(nmaxCC3n) moves but the built spanning tree is a Breadth first search tree. From
these various examples, one can easily derive other silent self-stabilizing spanning-tree-like constructions.

2. Algorithm Scheme

Algorithm 1: Algorithm Scheme, code for any process u

Inputs
• canBeRootu: a boolean value; it is true if u can be a root
• pnameu: name of u, that belongs to IDs =N∪{⊥}

Variables
• stu ∈ {I,C,EB,EF}: the status of u
• parentu ∈ {⊥}∪Lbl: a pointer to a neighbor or ⊥
• du: the distance value associated to u

Predicates
• P root(u)≡ canBeRootu ∧ stu =C∧ parentu =⊥∧du = distRoot(u)
• P abnormalRoot(u)≡ ¬P root(u)∧ stu 6= I∧

[parentu /∈ Γ(u)∨ stparentu = I∨du ≺ dparentu ⊕ωu(parentu)∨ (stu 6= stparentu ∧ stparentu 6= EB)]
• P reset(u)≡ stu = EF ∧P abnormalRoot(u)
• P updateNode(u)≡ (∃v ∈ Γ(u) | stv =C∧dv⊕ωu(v)≺ du)

• P updateRoot(u)≡ canBeRootu ∧distRoot(u)≺ du

• P nodeImp(u) is problem dependent. If P nodeImp(u), then P updateNode(u)∨P updateRoot(u); if P updateRoot(u) then
P nodeImp(u). P nodeImp(u) only depends on the values of stu, du, P updateRoot(u), and min(v∈Γ(u) ∧ stv=C)(dv ⊕ ωu(v)).

Functions
• beRoot(u): stu :=C; parentu :=⊥; du := distRoot(u);

• computePath(u):
stu :=C; parentu := argmin(v∈Γ(u) ∧ stv=C)(dv ⊕ ωu(v)); du := dparentu ⊕ ωu(parentu);
if P updateRoot(u) then beRoot(u);

•Children(u) : {v ∈ Γ(u) | stu 6= I∧ stv 6= I∧ parentv = u∧dv � du⊕ωv(u)∧ (stu = stv ∨ stu = EB)}.

Rules
RU(u): stu =C∧P nodeImp(u) → computePath(u);
REB(u): stu =C∧¬P nodeImp(u)∧ (P abnormalRoot(u)∨ stparentu = EB) → stu := EB;
REF(u): stu = EB∧ (∀v ∈Children(u) | stv = EF) → stu := EF ;
RI(u): P reset(u)∧¬canBeRootu ∧ (∀v ∈ Γ(u) | stv 6=C) → stu := I;
RR(u): (P reset(u)∨ stu = I)∧ [canBeRootu ∨ (∃v ∈ Γ(u) | stv =C)] → computePath(u);

‡. By non-rooted components detection, we mean that every process in a connected component that does not contain the root
should eventually take a special state notifying that it detects the absence of a root.



Schéma général auto-stabilisant et silencieux de constructions de type arbres couvrants

According to the specific problem we consider, we may want to minimize the weight of the trees using
some kind of distance. So, we assume that each edge {u,v} has two weights: ωu(v) denotes the weight of
the arc (u,v) and ωv(u) denotes the weight of the arc (v,u). Both values belong to the domain DistSet. Let
(DistSet,⊕,≺) be an ordered magma, i.e., ⊕ is a closed binary operation on DistSet and ≺ is a total order
on this set. The definition of (DistSet,⊕,≺) is problem dependent. We assume that, for every edge {u,v}
of E and for every value d of DistSet, we have d ≺ d⊕ωu(v) and d ≺ d⊕ωv(u).

The silent self-stabilizing algorithm Scheme (see Algorithm 1 for its code), converges to a terminal
configuration where a specified spanning forest (maybe a single spanning tree) is distributedly defined. Each
process u uses as input a name pnameu (pnameu =⊥, for every process u if the network is anonymous), a
constant boolean value canBeRootu, which is true if u is allowed to be root of a tree, and in this latter case a
problem dependent distance distRoot(u), used when u is a root. Our scheme also uses a problem dependent
predicate P nodeImp(u), with specific properties, that indicates to u whether its current estimated distance
to the root (variable du) can be improved (decreased). Then, a legitimate configuration is defined as follows.

Definition 1 (Legitimate configuration) A legitimate configuration of Scheme is a configuration where
every process u is in a legitimate state, i.e., u satisfies ¬P nodeImp(u) and one of the following conditions:

1. P root(u);
2. there is a process satisfying canBeRoot in the connected component Vu containing u, stu = C (for

Correct), and u ∈Children(parentu);
3. there is no process satisfying canBeRoot in Vu and stu = I (for Isolated).

In any given configuration, every process u satisfies exactly one of the following cases: (1) u is isolated,
i.e. it has status I; (2) u is a normal root, i.e., P root(u) holds; (3) u points to some neighbor and the state
of u is coherent w.r.t. the state of its parent, i.e., u ∈ Children(parentu); (4) u is an abnormal root, i.e.,
P abnormalRoot(u) holds. In that latter case, we want to correct the state of u while avoiding the following
situation: u leaves its abnormal tree T ; this removal creates some new abnormal trees, each of those being
rooted at a previous child of u; and later u joins one of those (created) abnormal trees. (This issue is
sometimes referred to as the count-to-infinity problem.) Hence, the idea is to freeze T , before removing
any node from it. This is done as in a “Propagation of Information with Feedback”: From an abnormal
root, the status EB, for Error Broadcast, is broadcast down in the tree using rule REB. Then, once the
EB-wave reaches a leaf, the leaf initiates a convergecast EF-wave (Error Feedback) using rule REF. Once
the abnormal root gets status EF , the tree is frozen and can be safely deleted from its abnormal root toward
its leaves. At this point, an abnormal root u can either become the root of a new normal tree or join another
tree, via rule RR(u), depending on which option gives it the smaller distance, or u becomes isolated via rule
RI(u) if ¬canBeRootu and u has no neighbor with status C. In parallel, rules RU are executed to reduce the
weight of the trees, if necessary, i.e., if P nodeImp(u) holds. A detailed analysis of our algorithm allows us
to prove the following result.

Theorem 1 Any terminal configuration of Algorithm Scheme is legitimate, and vice versa. Moreover,
Algorithm Scheme is silent self-stabilizing under the distributed unfair daemon, has a bounded move (and
step) complexity, and stabilizes in at most 4nmaxCC rounds from any configuration.

Roughly speaking, we define a GC-segment, for any connected component GC, as a part of execution
between two removals of a non-frozen abnormal tree. A key property of our algorithm is that non-frozen
abnormal trees are never created. Combined with other properties, this allows us to prove that there are at
most nmaxCC+1 GC-segments. The sequence of rules executed by a process u of GC during a GC-segment
belongs to the following language: (RI + ε)(RR + ε)(RU)

∗(REB + ε)(REF + ε). This further leads to the
two following key results.

Theorem 2 If the number of RU executions during a GC-segment by any process of GC is bounded by nb U,
then the total number of moves (and steps) in any execution is bounded by (nb U+4)(nmaxCC+1)n.

Theorem 3 When all weights are strictly positive integers bounded by Wmax, and⊕ is the addition operator,
the stabilization time of Scheme in moves (and steps) is at most (Wmax(nmaxCC−1)2 +5)(nmaxCC+1)n.



Stéphane Devismes, David Ilcinkas et Colette Johnen

Unconstrained and Shortest-Path Spanning Forest. Given an input set of processes rootSet, and as-
suming (strictly) positive integer weights for each edge, Algorithms Forest and SPF are the instantiations
of Scheme with the parameters given in Algorithm 2.

Algorithm 2: Parameters for any process u in Algorithms Forest and SPF

Inputs:
(1) canBeRootu is true if and only if u ∈ rootSet, (2) pnameu is ⊥, and (3) ωu(v) = ωv(u) ∈N∗, for every v ∈ Γ(u).

Ordered Magma: (1) DistSet =N, (2) i1⊕ i2 = i1+ i2, (3) i1≺ i2 ≡ i1 < i2, and (4) distRoot(u) = 0.

Predicate: Forest: P nodeImp(u)≡ P updateRoot(u)
SPF: P nodeImp(u)≡ P updateNode(u)∨P updateRoot(u)

Algorithm Forest (resp. SPF) computes (in a self-stabilizing manner) an unconstrained (resp. shortest-
path) spanning forest in each connected component of G containing at least one process of rootSet. The
forest consists of trees rooted at each process of rootSet. Moreover, in any component containing no process
of rootSet, the processes eventually detect the absence of roots by taking the status I (Isolated).

By Theorem 2 (resp. Theorem 3), Algorithms Forest and SPF self-stabilize to a terminal legitimate
configuration in at most O(nmaxCCn) (resp. O(WmaxnmaxCC3n)) moves, where Wmax is the largest edge weight.

Leader Election Algorithms. Assuming the network is identified (each node has a unique identifier),
Algorithm LEM and LEM BFS are the instantiations of Scheme with the parameters given in Algorithm 3.

Algorithm 3: Parameters for any process u in Algorithm LEM and LEM BFS

Inputs: (1) canBeRootu is true for any process, (2) pnameu is the identifier of u (n.b., pnameu ∈N)
(3) ωu(v) = (⊥,1) for every v ∈ Γ(u)

Ordered Magma: (1) DistSet = IDs×N; for every d = (a,b) ∈ DistSet, we let d.id = a and d.h = b;

(2) (id1, i1)⊕ (id2, i2) = (id1, i1 + i2); (3) (id1, i1)≺ (id2, i2) ≡ (id1 < id2)∨ [(id1 = id2)∧ (i1 < i2)];
(4) distRoot(u) = (pnameu,0)

Predicate:
LEM: P nodeImp(u)≡ ((∃v ∈ Γ(u) | stv =C ∧ dv.id < du.id)) ∨ P updateRoot(u)
LEM BFS: P nodeImp(u)≡ P updateNode(u)∨P updateRoot(u)

In each connected component, Algorithm LEM and LEM BFS elect the process u (i.e., P leader(u)
holds) of smallest identifier and builds a tree rooted at u that spans the whole connected component. Algo-
rithm LEM builds a tree of arbitrary topology; algorithm LEM BFS builds a breadth-first-search tree.

By Theorem 3, Algorithm LEM BFS, self-stabilizes to a terminal legitimate configuration in at most
O(nmaxCC3n) moves. By Theorem 2, Algorithm LEM, self-stabilizes to a terminal legitimate configuration
in at most (2nmaxCC + 4)(nmaxCC + 1)n moves (i.e. O(nmaxCC2n) moves) since during a GC-segment, a
process can only execute RU to improve its ID.

References
[ACD+17] K. Altisen, A. Cournier, S. Devismes, A. Durand, and F. Petit. Self-stabilizing leader election

in polynomial steps. Information and Computation, 254:330 – 366, 2017.
[Cou09] A. Cournier. A new polynomial silent stabilizing spanning-tree construction algorithm. In Int.

Col. on Struct. Inf. and Comm. Complexity, SIROCCO’09, LNCS 5869, pages 141–153, 2009.
[DIJ16] S. Devismes, D. Ilcinkas, and C. Johnen. Self-stabilizing disconnected components detection

and rooted shortest-path tree maintenance in polynomial steps. In 20th Int. Conf. on Principles
of Distributed Systems, OPODIS’16, volume 70 of LIPIcs, pages 10:1–10:16, 2016.

[DJ16] Stéphane Devismes and Colette Johnen. Silent self-stabilizing BFS tree algorithms revisited.
Journal of Parallel and Distributed Computing, 97:11 – 23, 2016.

[Gär03] F. C. Gärtner. A survey of self-stabilizing spanning-tree construction algorithms. Technical
report, Swiss Federal Institute of Technolog (EPFL), 2003.


