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A GENERIC FRAMEWORK TO INCLUDE BELIEF FUNCTIONS IN
PREFERENCE HANDLING AND MULTI-CRITERIA DECISION

SÉBASTIEN DESTERCKE

ABSTRACT. Modelling the preferences of a decision maker about alternatives
having multiple criteria usually starts by collecting preference information (com-
parisons of alternatives, importance of criteria, . . . ), which are then used to fit a
preference model issued from some set of hypothesis (weighted average, CP-net,
lexicographic orderings, . . . ). In practice, this process may often lead to incon-
sistencies that may be due to inaccurate information provided by the decision
maker, who can be unsure about the provided information, or to a poor choice of
hypothesis set, which can be too restrictive or not well adapted to the decision
process. In this paper, we propose to use belief functions as a way to quantify and
resolve such inconsistencies, notably by allowing the decision maker to express
her/his certainty about the provided preferential information. Our framework is
generic, in the sense that it does not assume a given set of hypothesis a priori, and
is consistent with precise methods, in the sense that in the absence of uncertainty
and inconsistencies in the information, precise models are ultimately retrieved.

Keywords: preferences, inconsistency handling, uncertainty, multi-criteria,
evidence theory, AHP, lexicographic orders

1. INTRODUCTION

Preference modelling and multi-criteria decision analysis (MCDA for short) are
increasingly used in our everyday lives. Generally speaking, their goal is to help
decision makers to model their preferences about multi-variate alternatives, to then
formulate recommendations on unseen or unanalysed alternatives. Such recom-
mendations can take various shapes, but three common problems can be differen-
tiated [2]:

• the choice problem, in which a (set of) best alternative(s) has to be rec-
ommended to the decision maker (DM).;
• the ranking problem, in which the alternatives have to be ranked before

the ranking is presented to the DM;
• the sorting problem, in which each alternative has to be attributed to a

class among a set of ordinal classes, the attribution being then presented to
the decision maker.

In this paper, we will be interested in the first two problems, who are usually re-
lated, since the choice problem roughly consists in presenting only those elements
that would be ranked highest in the ranking problem. The sorting problem can
be considered to some extent as different, as it requires to first define the discrete
classes, and only then can it be seen as the task of summarizing the (complete)
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ordering of alternatives into these discrete classes. This latter problem is typically
considered by outranking models [32, 21], and is close to the learning problem
known as ordinal regression or classification [12].

One common task, in preference modelling as well as in MCDA, is to collect or
elicit preferences of decision makers (DM). This elicitation process can take vari-
ous forms: from asking directly the values of the parameters to comparing known
alternatives; from being static, where all preference information are collected at
once, to being dynamic, where collected preference information depends on the
process history; from aiming at identifying a preference model with enough preci-
sion, to aiming at making a robust recommendation of known alternatives (possibly
with an imprecisely identified model). In all these cases, each piece of collected
information then helps to better identify the preference model of the DM. Also,
the elicitation processes may differ greatly between the different MCDA models,
be it Choquet Integrals [28], GAI-networks [27], CP-net [6], lexicographic order-
ings [26, 22] and their conditional extensions [4], . . .

While we will not discuss in details how to perform the elicitation step in this
paper, a common problem in this task is to ensure that the information provided by
the DM is consistent with the chosen model, as the DM may be uncertain about
the given preference information, or as the chosen model may not have a sufficient
expressive power to describe accurately these preferences. It is therefore desirable
to encode the uncertainty associated to the various pieces of information, as well as
to combine them. Common ways to handle such a task is to identify the parameters
of the preference models minimising some error term, for instance the quadratic
error [28], to adopt a probabilistic version of preference models and to develop a
corresponding probabilistic (e.g., Bayesian) learning method [48], or to relax the
model constraints by following some minimal change principle [38]. While such
methods try to solve inconsistency between the assessments and the chosen model
in principled way, most do not consider the initial information to be uncertain.

Another problem when modelling preferences is to choose an adequate family
of models, expressive enough to capture the DM preferences, but also sufficiently
simple so that it can be identified with a reasonable amount of information. While
there are some works around comparing the expressiveness of different model fam-
ilies [37, 35], few of them have actually investigated how to choose a family among
a set of possible ones.

In this paper, we propose to model uncertainty in preference information through
belief functions, arguing that they can bring interesting answers to both issues (i.e.,
inconsistency handling and model choice). Indeed, belief functions are adequate
models to model subjective uncertainty about non-statistical quantities (in our case
the preferences of an individual decision maker), and many works have been de-
voted to the question of how to combine such information and assess the resulting
inconsistency [18].

It is not the first work that tries to combine belief functions with MCDA and
preference modelling, however the past works that dealt with such issues can be
split into two main lines of works:
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• those that start from a specific MCDA model and propose some adaptation
to embed belief functions within it. This has mainly been done for the AHP
model [3, 24], but also for the TOPSIS model [20].
• those that start from belief functions defined on the various criteria, and

then propose to perform inferences about preferences using such belief
functions as well as tools issued from evidence theory, possibly but not
necessarily inspired from existing MCDA techniques. This is for instance
the case of the evidential reasoning approach [49] or the case of the out-
ranking approach developed by Boujelben et. al. [5].

The approach investigated and proposed in this paper differs from those works in
at least two ways:

• we do not make any a priori assumption about the kind of model used, that
is we do not start from an existing method and propose a corresponding
extension. This means that the proposal can be directly applied to various
methods (including those already well-studied);
• when selecting a particular model, we can retrieve the precise, certain ver-

sion of the method as a particular instance of our approach, meaning that
we are fully consistent with the standard models.

Section 2 describes the framework we propose, with an illustrative running ex-
ample using weighted averages. Needed notions issued from evidence theory are
introduced gradually when they are needed. To show that our approach can be
adapted to various models, Section 3 provides three other illustrations to show the
generality of our approach. the first one uses a simple dominance rules, the second
a lexicographic qualitative approach to describe the provided information, and the
last one is a simplified application of the popular AHP method. Section 4 then dis-
cusses how the framework of belief functions can be instrumental to deal with the
problems we mentioned in this introduction: handling inconsistent assessments of
the DM, and choosing a rich enough family of models. This paper is an extended
version of [17], that beyond additional explanations, includes examples dealing
with other models and an extended discussion of the solutions proposed for the
ranking and choice problems.

2. THE BASIC SCHEME

We assume that we want to describe preferences over alternatives X issued from
a multivariate space X = ×C

i=1X
i constituted of C different criteria X i. For in-

stance, X may be the space of hotels, cars, applicants, meals . . . and a given criteria
X i may be the price, age, skill in a given language, main courses, . . .

Unless stated otherwise and to facilitate the reading, we will also assume that
X i is either real-valued within the unit interval [0,1], or finite in which case the
elements xi

1,x
i
2, . . . will be assumed to be completely ordered according to a relation

�i, and indexed such that xi
k �i xi

` whenever k > `. These are common assumptions
in many preference or MCDA models, yet not in all of them (for instance, CP-nets
do not make such an assumption). In theory, the proposed framework can also be
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a1 a2

a3 a4

(A) Directed acyclic graph


a1 a2 a3 a4

a1 0 0 1 0
a2 0 0 1 1
a3 0 0 0 0
a4 0 0 0 0


(B) Incidence matrix

FIGURE 1. Directed acyclic graph and incidence matrix of Example

applied to such models, yet such an application will require dealing with specific
computational issues, that we will not discuss here.

We will denote by PX the set of partial orders defined over X . Recall that a
strict partial order P is a binary relation over X 2 that satisfies

• Irreflexivity: not P(x,x) for any x ∈X
• Transitivity: P(x,y) and P(y,z) implies P(x,z) for any (x,y,z) ∈X 3

• Asymmetry: either P(x,y) or P(y,x), but not both
and where P(x,y) can be read “x is preferred to y” that we will also denote x �P
y. When P concerns only a finite set of A = {a1, . . . ,an} ⊆X of alternatives,
convenient ways to represent it are by its associated directed acyclic graph GP =
(V,E) with V =A and (ai,a j) ∈ E iff P(ai,a j), and by its incidence matrix whose
elements denoted Pi j will be such that Pi j = 1 iff P(ai,a j). Given a partial order P
and a subset A , we will denote by MaxP the set of its maximal elements, i.e.,

(1) MaxP = {a ∈A :6 ∃a′ ∈A s.t. a′ �P a}

Example 1. Consider four alternatives {a1, . . . ,a4} and the partial order

P = {(a1,a3),(a2,a3),(a2,a4)}.
Its associated directed graphs and incidence matrix are shown in Figure 1, while
its set of maximal elements is MaxP = {a1,a2}

2.1. Elementary information item. Our approach is based on the use of elemen-
tary information items, about which we assume the following:

• the decision-maker (DM) provides items of preferential information Ii
together with some certainty degree αi ∈ [0,1] (αi = 1 meaning the DM
is certain about her/his preference). We remain quite agnostic about the
nature of Ii: it can be a comparison between alternatives of X (“I prefer
menu A to menu B”) or between criteria (“the price is the most important
criteria”, “I prefer being close to the city than having a big room”), direct
information about the model, etc.
• given a selected space H of possible models or hypothesis (weighted

mean, Choquet integral, . . . ), each item Ii can be translated into con-
straints inducing a subset Hi of possible models consistent with this in-
formation.
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• Each model h ∈H maps subsets of X to a partial order relation Ph ∈
PX . A subset H ⊆H maps subsets of X to the partial order relation
PH = ∩h∈HPh.

We then model this information as a simple support mass function mi defined as
follows over H :

(2) mi(Hi) = αi, mi(H ) = 1−αi.

Mass functions are the basic building block of evidence theory [43]. A mass func-
tion over some space H is defined as a non-negative mapping from subsets of H
(possibly including the empty-set) to the unit interval, so that it sums up to one.
That is, m :℘(H )→ [0,1] with ∑m(E) = 1 and ℘(H ) the power set of H . The
mass m( /0) can (and will be in our case) be interpreted as the amount of conflict in
the information we have [18]. A subset H ⊆H such that m(H)> 0 is often called
a focal set, and we will denote by F = {H ⊆H : m(H) > 0} the collection of
focal sets of m.

Example 2. Consider the problem with three criteria X1,X2,X3 that are the aver-
age notes over 10 of students in Physics, Math, French (for easiness, we will use
P,M,F). This means that X i ∈ [0,10], and that X is the set of possible students.
Assume furthermore that the chosen hypothesis space H is the space of weighted
averages, and a model h ∈H is then summarised by a positive vector (w1,w2,w3)
where ∑wi = 1. A student ai is evaluated by ai = w1P+w2M+w3F , and an alter-
native ai is better than a j if ai > a j.

This means that any subset of models can be summarized by a subset of the space
H = {(w1,w2) : w1 +w2 ≤ 1}, since the last weight can be inferred from the two
firsts. For instance, let us assume that the information item I is (0,8,5)� (8,4,5),
meaning that

0w1 +8w2 +5w3 > 8w1 +4w2 +5w3→ w2 > 2w1

The resulting subspace H of models is then pictured in Figure 2. The decision
maker can then provide some assessment of how certain she/he is about this in-
formation by providing a value α . For instance, if the DM is certain to choose a
student with grades (0,8,5) over one with grades (8,4,5), then α should be close
to 1. Yet if the DM is quite uncertain about this choice, then α should be closer to
0. For example, one could use a linguistic scale to assess α .

2.2. Combining elements of information. In practice, the DM will deliver mul-
tiple items of information, that should be combined in a single representation. If
m1 and m2 are two mass functions over the space H , then their conjunctive com-
bination in evidence theory [44, 47] is defined as the mass

(3) m1∩2(H) = ∑
Hi∈Fi

H1∩H2=H

m1(H1)m2(H2),

which is applicable if we consider that the provided information items are distinct,
i.e., if the DM answers one query without considering strongly the others, which
is a reasonable assumption in a preference learning settings where the DM seldom
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1

w2

1

H

FIGURE 2. Information item subset

answers a question by thinking about the ones already answered. Such a combi-
nation rule is also consistent with Bayesian approaches [48], where evidence are
accumulated and revised according to a product rule, only using a more specific
model of uncertainty. Note that this assumption of information items indepen-
dence can be dropped by adopting so-called cautious or idempotent combination
rules [13, 19, 33].

If we have n masses m1, . . . ,mn to combine, for instance corresponding to n
information items I1, . . . ,In, we can iteratively apply Equation (3), as it is com-
mutative and associative. From Equation (3), we get that if each mi has two focal
elements (say, Hi and H ), then the number of focal elements of the combined
mass double after each application of 3. This of course limits the number n we can
consider before proceeding to approximations, yet in frameworks where individual
decision makers are asked about their preferences, this number is often small.

Of course, it may happen that the provided preferential information items are
conflicting, in which case a non-null mass m( /0)> 0 may be given to the empty set,
corresponding to the fact that no models in H satisfies all preferential information
items at once. In evidence theory, two main ways to deal with this situation exist:

W1 Ignore the fact that some conflicting information exists, redistributing m( /0)
to other focal elements of F to normalize m into m′. This is the principle
we will follow for now, and explore some alternatives in Section 4. Multi-
ple different proposals exist in the literature [46], but the most commonly
used consists in considering m′ such that for any H ∈F \ /0 we have

(4) m′(H) =
m(H)

1−m( /0)
.

This rule, originally proposed by Dempster, is similar to other basic nor-
malization rules restoring consistency in possibilistic and probabilistic con-
texts.
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FIGURE 3. Information item subsets

W2 Use the value of m( /0) as a trigger to resolve the conflicting situation rather
than just relocating m( /0). A typical solution is then to use alternative com-
bination rules [40], such as the disjunctive rule that replaces the conjunc-
tion ∩ in Equation (3) by the disjunction ∪. Such rules can be considered
in our case, but often involve taking some disjunctions and typically do not
satisfy the associativity property, thus potentially generating many addi-
tional computational problems.

W3 Pick a subset of information sources (or items in our case) such that the re-
sulting conflict is limited. A similar strategy will be proposed in Section 4.

In Section 4, we describe how the amount of inconsistency can be made instru-
mental in our context, either to select the relevant information and/or to select an
appropriate hypothesis spaces.

Example 3. Consider again the setting of Example 2, The first information deliv-
ered, H1 = {(w1,w2) ∈H : w2 ≥ 2w1} is that (0,8,5)� (8,4,5) with a mild cer-
tainty, say α1 = 0.6. The second item of information provided by the DM is that
’́sciences are more important than language”, which we interpret as the inequality

w1 +w2 ≥ w3→ w1 +w2 ≥ 0.5

obtained from the fact that ∑wi = 1. The DM is pretty sure about it, meaning
α2 = 0.9 and that H2 = {(w1,w2) ∈H : w2+w1 ≥ 0.5}. Again, Figure 3 provides
an illustration of the obtained focal elements. The non-conflicting mass resulting
from the application of (3) to m1,m2 is then

m(H1) = 0.06, m(H2) = 0.36, m(H1∩H2) = 0.54, m(H ) = 0.04.

2.3. Inferences: choice and ranking. Let us now consider that we are provided
with a finite set A = {a1, . . . ,an} of alternatives, and that the mass resulting from
previous combinations has m focal elements H1, . . . ,Hm that can be the combina-
tion of simple ones, and can include the empty set. Two common tasks in MCDM
or in preference handling are: to provide a recommendation to the DM, either in
the form of one alternative a∗ or of a set A∗ of them, and to provide a ranking of the
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alternatives in A , possibly partial. We suggest some means to achieve both tasks
in the next sections.

2.3.1. Choice. When a partial order P is defined over the set A , a natural recom-
mendation is to provide the set A∗ = MaxP of maximal items derived from P using
Equation (1). Providing a choice in an evidential framework, based on the mass
m, then requires to extend this notion. Assuming that the best representation of the
DM preferences we could have is a partial order P∗, a simple way to do so is to
measure the so-called belief and plausibility measures that a given subset A ⊆ A
is a subset of the set of maximal elements A∗, considering that the subset MaxPi

derived from the focal element Hi represents a superset of A∗. These two values
are easy to compute, as under these assumptions we have that the plausibility is
equal to

Pl(A⊆ A∗) = ∑
A⊆MaxPi

m(Hi) = ∑
A∈2MaxPi

m(Hi),(5)

since if there is an element ai ∈ A such that ai 6∈MaxPi , then A cannot be a subset of
the maximal elements of P∗, as it cannot be a subset of the imprecise knowledge Pi
we have about it. On the other hand, if A is a subset of MaxPi , then it is consistent
with the assumption that A is a subset of the maximal elements of P∗. On the other
hand, the corresponding belief degree can be computed as

Bel(A⊆ A∗) = ∑
A=2MaxPi \ /0

m(Hi) =

{
0 if |A|> 1,
∑MaxPi={a}m(Hi) if A = {a}.

(6)

This particular form of Bel is due to the fact that information Hi implies that A is
a subset of maximal elements of the sought partial orders only when all possible
sets of maximal elements induced by Hi are supersets of A. Now, to exclude single
alternatives from the possible sets, we need Hi to be the union of partial orders
that all have more than one element being maximal, hence to have positive, ex-
plicit information about items being incomparable. This would require at least two
things: consider incomparability not as a lack of knowledge about preferences, but
as a knowledge of lack of preferences, and to build up elicitation protocol allowing
for incomparability. Although quite interesting, we will not consider this aspects
here, given that it would be a research topic in itself (some elements can be found
in [15, 8]). Some noteworthy properties of Equations (5)- (6) are the following:

• for an alternative a ∈ A , Pl({a}) = 1 if and only if {a} is a maximal
element of all possible partial orders (in particular, m( /0) = 0). In fact
Pl({a}) can be considered as the number of focal elements “voting” for a
in a setting of approval voting [7] where voters (the sets Hi) can separate
desirable candidates (the sets MaxPi) from the undesirable ones;
• for an alternative a ∈ A , the interval [Bel({a}),Pl({a})] represents our

belief about a being the only best alternative. In particular, Bel({a}) will
be close to one only if most possible partial orders Pi have a as unique
maximal element, and [Bel({a}),Pl({a})] = [0,1] if a is always a possible
maximal element, but never the only one;
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P M F
a1 4 3 9
a2 5 9 6
a3 8 7 3
a4 7 1 7

TABLE 1. A set of alternatives

• given two subsets A ⊆ B ⊆ A , we can have Pl(A ⊆ A∗) ≥ Pl(B ⊆ A∗),
meaning in particular that it makes sense to look for the most plausible
set of maximal elements, as it may not be A . The most left-hand term
of Equation (5) gives an idea of why this happens, as we are somehow
considering a plausibility function not over 2A , but over the power set of
it. Indeed, for example if {a1,a3} is the set of maximal elements (hence
a subset of A ), then the associated set of possible true values for A∗ is
{{a1},{a3},{a1,a3}}, i.e., a subset of subsets.Within such a view, A and
B are not subsets but singletons, hence the possible non-monotonicity.

Still, there could be many subsets whose plausibility is equal, in which case the
least commitment principle dictates that we should consider the largest possible
set, in absence of additional information. If Pl denotes this maximal plausible
value, this leads to take the set

(7) Â = argmax
|A|
{A ∈ 2A : Pl(A⊆ A∗) = Pl}

Example 4. Consider the example where A = {a1,a2,a3,a4} consists in the four
alternatives presented in Table 1. We then consider the mass of four focal elements
given in Example 3 with the following renaming:

H1 = H1, H2 = H2, H3 = H1∩H2, H4 = H

From these, we can for instance deduce that P1 = {(a1,a4),(a2,a3)} using simple
linear programming. For example, that (a1,a4) ∈ P1 comes from the fact that the
difference between a1 and a4 evaluation is always positive in H1, that is

min
(w1,w2,w3)∈H1

(4w1 +3w2 +9w3)− (7w1 +w2 +7w3)> 0.

Similarly, we can obtain P3 = {(a1,a4),(a2,a1),(a2,a3),(a3,a1), (a3,a4),(a2,a4)}
and P2 = P4 = {}, from which we have MaxP1 = {a1,a2}, MaxP3 = {a2}, MaxP2 =
MaxP4 = A . Interestingly, this shows us that while information I2 leading to H2
does not provide sufficient information to recommend any student in A , when
combined with I1, it does improve our recommendation, as |MaxP3 |= 1.

Table 2 shows the plausibilities and belief resulting from Equations (5)- (6),
when applied to subsets of maximal elements counting one or two elements. Clearly,
{a2} is the most plausible answer, as well as the most credible, and hence should
be chosen as the predicted set of maximal elements.
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{a1} {a2} {a3} {a4} {a1,a2} {a1,a3} {a1,a4} {a2,a3} {a2,a4} {a3,a4}
Pl 0.46 1 0.4 0.4 0.46 0.4 0.4 0.4 0.4 0.4
Bel 0 0.54 0 0 0 0 0 0 0 0

TABLE 2. Plausibilities and belief on sets of one and two alternatives

2.3.2. Ranking. A second common task is to provide a (possibly partial) ranking
of the alternatives. Since each (non-empty) focal element can be associated to a
partial order over A , this problem is close to the one of aggregating partial orders.
It is known that solutions to such problems typically do not meet all desirable
properties [41]. However, we can take inspirations from proposals existing in the
field of preference modelling and aggregation to derive possible solutions. For
instance, we can use previous results about belief functions [36, 15], or classical
aggregation rules of pairwise scores to predict rankings [16]. Following Denoeux
and Masson [15], we can try to find the hypothesis Ĥ maximizing the commonality
function, where the commonality function of H is

Q(H) = ∑
H⊆Hi

m(Hi)

Hence the commonality of H will increase if it is a refinement of many (ideally, all)
hypothesis Hi, or said otherwise if it does not conflict with Hi. More precisely, if P
denotes the partial order corresponding to H, then H ⊆ Hi if and only if Pi(k, l)⇒
P(k, l) for all pairs k, l of alternatives. Again, if we denote by Q = maxH⊆H Q(H),
there may be multiple H whose commonality reaches Q. Again, the principle of
least commitment suggest to choose the coarsest partial order we can deduce form
our information, that is to pick

(8) P̂ = argmin
|P|
{H ∈H : Q(H) = Q}

with P the partial order corresponding to H, and |P| the number of relations within
the partial order. However, computing (8) can be quite difficult, as H is usually a
quite complex space.

An easier way to build a ranking is to decompose preferences in pairwise infor-
mation, and then to combine it into a final ranking1. Focusing on pairwise informa-
tion, we can compute, for two alternatives ai,a j, the plausibilities and belief that
one is preferred to the other, that can be computed as follows:

Pl(ai � a j) = ∑
Pk,Pk, ji 6=0

m(Hk),(9)

Bel(ai � a j) = ∑
Pk,Pk,i j=1

m(Hk),(10)

1Note that here we go from a mass function defined on the complete relation to pairwise informa-
tion, which is different from common procedures [36, 14] that go from pairwise information to the
complete relation
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where Pk,i j is the (i, j) value of the incidence matrix of Pk. In practice, Pl comes
down to sum all partial orders that have a linear extension with ai � a j, and Bel the
partial orders whose all linear extensions have ai � a j. The result of this procedure
can be seen as an interval-valued matrix R with Ri, j = [Bel(ai � a j),Pl(ai � a j)].
It can also be noted that, if m( /0) = 0, we do have Pl(ai � a j) = 1−Bel(a j � ai).
Each pairwise information must then be combined to obtain a full ranking. Two
classical ways to obtain such a ranking are the following:

• Threshold the matrix, and declare that ai � a j if Bel(ai � a j) > 0, i.e., as
soon as some evidence implies ai � a j. Such a method is quite easy to ap-
ply, yet may lead to cycles in the produced ranking [9], in which case the
threshold can be increased to eliminate such cycles, at the expense of pro-
ducing more incomparabilities. We will call it the thresholding approach.
The reason why we use a 0 threshold rather than the minimal 0.5 value
used in probabilistic approaches [10] will become clear in Section 2.3.4.
• Compute for each alternative ai, the interval-valued score

[si,si] = ∑
a j 6=ai

[Bel(ai � a j),Pl(ai � a j)]

and then consider the resulting partial order. In addition to being straight-
forward to apply, has the advantage of always producing a partial order (in
fact, an interval order). One drawback, though, is that imprecision of in-
tervals will add up, potentially producing a very partial order. We will call
it the scoring approach. Note that in label ranking settings, such a com-
bination leads to minimize the loss function associated to the Spearman
footrule [30], and it would be interesting to study whether a similar result
can be obtained in our case.

Example 5. Assume we have three focal elements H1,H2,H3, each with m(Hi) =
1/3, that over a set A = {a1,a2,a3} induce the orders

P1 = a3 � a1 � a2; P2 = a1 � a2 � a3; P3 = a2 � a3 � a1.

From this, we have that Bel(a1 � a2) = Bel(a2 � a3) = Bel(a3 � a1) = 2/3, from
which we get that the thresholding approach would lead to a cycle, even with a
value above 0.5.

This example illustrates the fact that the thresholding approach can lead to in-
consistent results, and uses arguments similar to the one of the celebrated Con-
dorcet paradox. However, we shall see in Section 2.3.4 that his only happens when
some inconsistencies are observed within the obtained information, hence when
m( /0) > 0 at some point (in particular, the mass function of Example 5 could only
be obtained after a renormalisation in our context).
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Example 6. The matrix R and the scores [si,si] resulting from Example 4 are


a1 a2 a3 a4

a1 0 [0,0.46] [0,1] [0.6,1]
a2 [0.54,1] 0 [0.6,1] [0.54,1]
a3 [0,1] [0,0.4] 0 [0.54,1]
a4 [0,0.4] [0,0.46] [0,0.46] 0

 ∑

=


[si,si]

[0.6,2.46]
[1.68,3]
[0.54,2.4]
[0,1.32]


from which we get the final partial order P∗ = {(a2,a4)}. In contrast, using the
pairwise threshold approach gives P∗= {(a2,a4),(a2,a1),(a2,a3),(a1,a4),(a3,a4)},
identifying a4 as the least preferred element, and a2 as the most preferred one.

In general, we cannot expect these three methods to provide identical result,
especially if preferential information presented some conflict which was then can-
celled through a normalisation process. Yet, in the next section, we show that the
results they provide are consistent with each other when the provided preferential
information are not conflicting with respect to the chosen hypothesis space H .

2.3.3. Combining hypothesis vs combining choices or ranks. So far, we have pro-
posed (see Equation (3)) to combine the focal elements corresponding to sets Hi of
models induced by the DM information. Another possibility, if we consider a set
A of alternatives, would be to first map the different sets Hi to their corresponding
partial orders Pi or set of maximal elements MaxPi , and to combine these together.
That is, replacing H1∩H2 by P1∪P2 or by MaxP1 ∩MaxP2 in Equation (3).

The upside of such combinations is that, while sets H1,H2 may be disjoint sets of
possible models, they may still induce partial orders and sets of maximal elements
having a non-empty intersection. The downside is that we would have informa-
tion that is specific to A , hence could not be applied or re-used for new sets of
alternatives.

Example 7. Consider the simple example where H1 corresponds to the statement
“Physics is strictly more important than Math, whose in turn is at least as important
than French” and H2 to “Math is strictly more important than Physics, whose in turn
is at least as important than French”. H1 corresponds to {(w1,w2,w3) : w1 > w2 ≥
w3} and H2 to {(w1,w2,w3) : w2 > w1 ≥ w3}, meaning that H1∩H2 = /0.

Yet, if we consider the set A with two alternatives a1 = (4,4,6) and a2 =
(6,6,4), we would have P1 = P2 = {(a2,a1)}, MaxP1 = MaxP2 = {a2}

Similarly, two partial orders Pi,Pj may well be incompatible, but have sets of
maximal elements that have a non-empty intersection. Take for instance a set
of four alternatives A = {a1,a2,a3,a4} with P1 = {(a1,a3),(a2,a3),(a3,a4)} and
P2 = {(a1,a4),(a2,a4),(a4,a3)}. P1∪P2 is not a partial order (as it contains (a3,a4)
and (a4,a3)), but both have {a1,a2} as sets of maximal elements.

2.3.4. The case of consistent information. We will know discuss our previous pro-
posals in the specific case where preferential information items are consistent with
one another, that is when ∩m

i=1Hm 6= /0. In practice, this case does not necessitate
any uncertainty model on top of the information items, but a minimal requirement
is that our method behave as one would expect in such situations.
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In the choice problem, any A ⊆ ∩m
i=1MaxPi would have a plausibility of 1 in

Equation (5), while all other sets would have a value strictly lower than one.
Among these sets, the one having the maximum cardinality, hence the recom-
mended one would simply be Â = ∩m

i=1MaxPi , as should be expected.
Using similar arguments, in the ranking problem it is clear that all H ⊆ ∩m

i=1Hi,
and only those, would receive a commonality equal to 1. The resulting least com-
mitted hypothesis maximizing this commonality would then be Ĥ =∩m

i=1Hi, which
corresponds to the predicted partial order P̂ = ∪m

i=1Pi, again what would be ex-
pected.

Let us now show that the different proposed ranking methods, while they can
provide different answers in general (as shows for instance Example 6), will not
produce contradictory conclusions in the case of consistent information items.

Proposition 1. When ∩m
i=1Hm 6= /0, we have

Bel(ak � al)> 0⇔∃Pi s.t. Pi(ak,al)

Proof. Simply note that Bel(ak � al) > 0 if and only if Pi(ak,al) for at least one
focal element Hi. �

This means that in case of consistency, the partial order produced by common-
ality maximization will be exactly the one produced by pairwise thresholding (see
Example 6 to have an illustration). This also implies that in this case the thresh-
olding approach will not contain cycles, as may happen in case of inconsistency.
Proposition 1 also explains why, in the thresholding approach, we should start with
a threshold equal to 0.

The next propositions show that, in case of consistency, the thresholding and
scoring approaches provide coherent answers, in the sense that they cannot contra-
dict each other.

Proposition 2. When ∩m
i=1Hm 6= /0, we have

Bel(ak � al)> 0⇒ sk > sl

Proof. First, let us note that in case of consistency, having Bel(ak � al)> 0 implies
that there is no Pi with Pi(l,k), and therefore that Bel(al � ak) = 0 and Pl(ak �
al) = 1. We now need to prove that from Bel(ak � al)> 0 follows that

sk > sl

∑
j 6=k

Pl(ak � a j)> ∑
j 6=l

Bel(al � a j)

Pl(ak � al)+ ∑
j 6=k,l

Pl(ak � a j)> Bel(al � ak)+ ∑
j 6=l,k

Bel(al � a j),

where it follows from Bel(ak � al)> 0 that Pl(ak � al) = 1 and Bel(al � ak) = 0,
hence we can write

1+ ∑
j 6=k,l

Pl(ak � a j)> ∑
j 6=l,k

Bel(al � a j)
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Now, for a particular value of j in the summations we have

Pl(ak � a j)> Bel(al � a j)

∑
Hi,¬Pi( j,k)

m(Hi)> ∑
Hi,Pi(l, j)∧¬Pi( j,k)

m(Hi).

Clearly the last inequality is true, as hypothesis Hi with Pi(l, j)∧¬Pi( j,k) are in-
cluded in those where only ¬Pi( j,k). That Bel(al � a j) is obtained by summing
only the hypothesis where Pi(l, j)∧¬Pi( j,k) comes from the fact that no hypothe-
sis can contain Pi(l, j)∧Pi( j,k), as those would also contains Pi(l,k) by transitivity
(contradicting the hypothesis Bel(ak � al)> 0). �

Proposition 3. When ∩m
i=1Hm 6= /0, we have

sk > sl ⇒ Bel(al � ak) = 0

Proof. We will proceed by contradiction. First, note that if Bel(al � ak) > 0 (in
the other case, the result immediately follows), we have

sk > sl

∑
j 6=k

Bel(ak � a j)> ∑
j 6=l

Pl(al � a j)

Bel(ak � al)+ ∑
j 6=k,l

Bel(ak � a j)> Pl(al � ak)+ ∑
j 6=l,k

Pl(al � a j)

∑
j 6=k,l

Bel(ak � a j)> 1+ ∑
j 6=l,k

Pl(al � a j)

∑
j 6=k,l

Bel(ak � a j)> n−1− ∑
j 6=l,k

Bel(a j � al)

with the last inequality following from Pl(al � a j) = 1−Bel(a j � al). We then
have

∑
j 6=l,k

(Bel(ak � a j)+Bel(a j � al))> n−1.

Now, we do have Bel(ak � a j) + Bel(a j � al) ≤ 1. Indeed, ∑Hi,Pi(k, j) m(Hi) +

∑Hi,Pi( j,l) ≤ 1, since the sets {Hi,Pi(k, j)} and {Hi,Pi( j, l)} are disjoint, else there
would be a focal set Hi with Pi(k, l) (by transitivity), contradicting our assumption.

�

These proposals clearly show that the three ranking approaches will not contra-
dict one another in case of consistency, which is a reasonable minimal requirement.

3. FURTHER ILLUSTRATIVE EXAMPLES

In this section, we provide other examples showing how our approach can be ap-
plied to different multi-criteria models, starting from an absence of knowledge. In
these two examples, we will keep the assumption that each criteria X i is completely
ordered, and for easiness will consider that when the spaces X i = {1, . . . , |X i|}
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are finite sets, they will be encoded as natural numbers, with ` ≺i k for any ` < k.
An alternative in a finite setting will then be a vector of C natural numbers.

To simplify our exposure, we will not deal with fully-fledged complex models
such as GAI networks, AHP with hierarchy or CP-nets. Note that starting from
a total absence of knowledge for such models means that the starting space H
would be quite complex, and probably far too combinatorial (for instance, in GAI
we would have to consider the set of all possible decompositions, in AHP all the
possible hierarchies, and in CP-net all the possible graph structures and conditional
orderings). In these cases, a more sensible scenario would be to start with a pre-
specified model (for instance, assuming that the CP-net graph is known, or that the
AHP hierarchy is specified).

3.1. Simple dominance rule. When each criteria is already ordered by prefer-
ences and can be so independently of each others, it is hard to argue against the
Pareto ordering, that simply states that ak �P al if ai

k ≥ ai
l for all i ∈ {1, . . . ,C}

and ai
k > ai

l for at least one criteria. If following this rule is the only modelling
assumption we make, then a typical way to gather more information is to propose
pairs of alternatives to the DM that are not already Pareto ordered, and then use
this information to deduce further preferences.

In this case, the most natural information item Ii would be to consider pairs
(al,ak) of preferred alternatives, with al � ak. Let us now denote, given an alterna-
tive a, the subsets a+ = {b ∈X : b�P a} and a− = {b ∈X : b≺P a} (Note that
checking whether an element is in one of those subsets is straightforward). The
corresponding subspace Hi would then be, in addition to the Pareto ordering, the
fact that

Hi = {a < b ∀a ∈ a−k ,b ∈ a+l }.
Combining these items of information would then just amounts to list all the pairs
of compared alternatives so far, and check whether a preference on new instances
can be deduced from the collected pairs. Note that other MCDA approaches adopts
such a minimalist view, such aggregation-free proposals [31] based on logical
rules, or Rough-set dominance models [29] that concentrate on the sorting prob-
lem. Studying such models is out of the scope of the current paper, but they are
promising candidates to apply our approach.

Such a minimalist model (in terms of assumptions) is close to other models such
as Rough-set dominance models [29] or aggregation-free proposals [31].

Example 8. Consider a 2-dimensional space with X 1 = X 2 = {0, . . . ,8}. The
DM delivers the following information items

H1 = {(5,2),(2,6)}, H2 = {(3,3),(6,1)}, H3 = {(1,5),(4,4)}
with the reliabilities α1 = 0.4, α2 =α3 = 0.8, as the DM may have some difficulties
in comparing quite different alternatives, while being more at ease with comparing
unbalanced alternatives with balanced ones. Figure 4 displays the corresponding
regions in the bi-dimensional space.

Later on, we are provided with the new set of alternatives A = {a1 = (5,1),a2 =
(3,4),a3 = (2,5)} (also noted on Figure 4), none of which is Pareto dominated by
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FIGURE 4. Dominance rule example.

another. Given A and our information, we cannot deduce anything from H1, from
H2 we can deduce a1 ≺ a2, as a1 ∈ H−2 , a2 ∈ H+

2 , and from H3 we can deduce
a2 ≺ a3. From the conjunction H2∩H3, we can deduce the ordering a1 ≺ a2 ≺ a3.
After combination of the information items, and focusing on the pair a1,a3, we
would have for example

Bel(a1 ≺ a3) = 0.64 = m(H1∩H2∩H3)+m(H2∩H3).

Again, the set of maximal elements would here be reduced to the single element
a3, yet if we added the element a4 = (0,7) to the list, both would be present in Â,
according to Equation (5).

3.2. Lexicographic ordering. Lexicographic orderings [26] assume that all cri-
teria X i are totally ordered by an ordering �lex, and that an alternative al is pre-
ferred to another ak if al has a higher value than ak on the first criteria on which
they differ, according to �lex. Provided the rankings of values for each criteria is
known, learning a lexicographic order then amounts to determine the preferences
between criteria. Such orderings are arguably among the simplest models, yet ex-
periments suggest that they are frequently use to choose among equally costly al-
ternatives [11]. Also note that lexicographic orderings (as simple dominance rule)
are purely qualitative models, in the sense that they do not rely on any numerical
scale, nor do use such scales when they are available.

In the case of lexicographic ordering, our space H is simply the space of possi-
ble orderings between the criteria, and information items should therefore provide
information about those. In contrast with the dominance rule of Section 3.1, there
may be different ways to provide information about the underlying ordering, as one
could directly ask whether a criteria is more important than one another, confront
the DM with alternatives that differ only on pairs of criteria, or require the DM
to specify what could be his top criteria (without necessarily requiring it to be a
precise information).
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FIGURE 5. AHP example focal elements in barycentric coordinates.

Example 9. Let us assume that we have three criteria X 1 =X 2 =X 3 = {1,2,3}.
Then the DM may give us the two following information items:

I1 : X1 �lex X3 I2 : (1,2,2)� (1,3,1)

Assume we get α1 = 0.8 and α2 = 0.6 for the first and second information items,
as comparing alternatives can be more difficult than providing definite statements
about criteria. The first information item can directly be translated into the corre-
sponding subspace H1 = {X1�lex X3}, while the second H2 = {X2�lex X3} can be
deduced from the fact that only criteria 2 and 3 differ (in opposite ways) in the two
alternatives. We therefore have that H1∩H2 = {(X2 �lex X3),(X1 �lex X3)}, still
not a fully specified model, as for instance under H1∩H2 the alternatives (1,3,2)
and (3,1,2) would remain incomparable.

Note that many extensions of lexicographic orders have been proposed, among
which are conditional lexicographic order [4] and preference trees [34]. In par-
ticular, such extensions could be used in the strategy and algorithm described in
Section 4.1 further on to select adequate models.

3.3. An AHP minimal example. AHP is a popular MCDM method that, roughly
speaking, elicit utilities and weights of a weighted averages by performing ratio
comparisons of the weights and utilities, eventually doing so using a hierarchy
between the criteria. As the original AHP methods uses precise assessments and
precise models, it is not very well fitted to our current method. Yet, latter interval
versions of the method [25] can be easily adapted to our framework.

In this example and to simplify our exposure, we will assume that utilities of the
alternative criteria are directly given (as in the student example), and that we are
trying to elicit the weights of each criterion. In this simple instance, AHP consists
in asking ratio comparisons to the DM, in the form ai j ' wi/w j. When ai j is higher
than one, this can be read “criterion X i is ai j times more important than X j”, which
is indeed an intuitive way to express preferences for a DM. However, giving a set
precise, meaningful and consistent ai j values is almost impossible, and indeed one
of the main issue of AHP is to make them consistent.
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This changes when we allow for ai j to becomes interval-values, i.e., when we
allow the DM to state wi/w j ∈ [ai j,ai j], in which case assessments such as “X i is at
least twice as important as X j” translate into [ai j,ai j] = [2,∞]. The next example
illustrate the kinds of focal elements we would get in such a situation.

Example 10. As in Example 2, we will assume that we have three criteria X1,X2,X3,
and that we are searching to obtain the values w1,w2,w3 of a weighted average. The
DM could for example provide us with the following items of information:

• I1: “X1 is at least twice as important as X2, but less than four times as im-
portant”, which becomes a12 ∈ [2,4]. As this comparison is quite precise,
the DM may be quite uncertain about it, and give α1 = 0.4
• I2: “X1 is more important than X3, which translate as a13 ∈ [1,∞], and as

the DM is quite certain about this rather imprecise assessment, we could
have α2 = 0.9

as we have that ∑i wi = 1 and wi ≤ 0, we can represent the associated focal ele-
ments in barycentric coordinates (as this kind of representation is more adapted to
represent ratio comparisons), as shown in Figure 5. Computations are then similar
to those performed in the weighted average example.

Note that in this example, there should be a direct connection between the cer-
tainty expressed by the DM and the width of intervals [ai j,ai j]. This would put a
lot of strain on the DM, who would have to decide upon the interval length and
the associated uncertainty degree. In practice, one could well fix the width of the
intervals, and proceed with a fixed scale as the classical AHP does, or the other
way around (fix a level of uncertainty and ask about the interval length).

4. INCONSISTENCY AS A USEFUL INFORMATION

So far, we have largely ignored the problem of dealing with inconsistent in-
formation, avoiding the issue of having a strictly positive m( /0). As mentioned in
Section 2.2, this issue can be solved through the use of alternative combination
rules, yet in the setting of preference learning, other treatments that we discuss
in this section appear at least as interesting. These are, respectively, treatments
selecting models of adequate complexity and selecting the “best” subset of consis-
tent information. To illustrate our purpose, consider the following addition to the
previous examples.

Example 11. Consider that in addition to previously provided information in Exam-
ple 3, the DM now affirms us (with great certainty, α3 = 0.9) that the overall contri-
bution of mathematics (X1) should not be more than three tenth. In practice, if H
is the set of weighted means, this can be translated into H3 = {(w1,w2) : w1≤ 3/10}.
Figure 6 shows the situation, from which we get that H1,H2 and H3 do not intersect,
with m( /0) = 0.6 ·0.9 ·0.9 = 0.486, a number high enough to trigger some warning.

4.1. Model selection. A possibility for m( /0) to be high is that the hypothesis space
H is not rich or complex enough to properly model a user preference. By consid-
ering more complex space H ′, we may decrease the value m( /0), as if H ⊆H ′,
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FIGURE 6. Inconsistent information items

we will have that for any information Ii, the corresponding sets of models will be
such that Hi ⊆ H ′i (as all models from H satisfying the constraints of Ii will also
be in H ′), hence we may have Hi∩H j = /0 but H ′i ∩H ′j 6= /0.

Example 12. Consider again Example 11, where H ′ is the set of all 2-additive
Choquet integrals. A 2-additive Choquet integral can be defined by a set of weights
wi and wi j, i 6= j where wi and wi j are the weights of groups of criteria {X i} and
{X i,X j}. The evaluation of alternatives for a 2-additive Choquet integral then
simply reads

ai = ∑
j

w jx j + ∑
j<k

wk j min(x j,xk).

For the evaluation function to respect the Pareto ordering, these weights must sat-
isfy the following constraints

wi ≥ 0 for all i,

wi j +wi +w j ≥max(wi,w j) for alli, j,(11)

∑
i

wi +∑
i j

wi j = 1.

Also, the contribution φi of a criterion i can be computed through the Shapley value

φi = wi + 1/2 ∑
j 6=i

wi j.

In the case of Example 11, this means that H corresponds to the set of vectors
(wi,wi j) that satisfy the constraints given by Equation (11). In this case, the in-
formation items H1,H2 provided in Example 2 and H3 in Example 11 induce the
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following constraints:

H1 = {w ∈H ′ : 4w2 +w23 ≥ 8w1 +4w12 +5w13}
H2 = {w ∈H ′ : φ1 +φ2 ≥ φ3}

= {w ∈H ′ : w1 +w2 +w12 ≥ w3}
H3 = {w ∈H ′ : φ1 ≤ 3/10}

= {w ∈H ′ :≤ w1 + 1/2w12 + 1/2w13 ≤ 3/10}
These constraints are not inconsistent, as for example the solution where w1 =
0.15,w2 = 0.3,w3 = 0.45,w23 = 0.1 are the only non-null values is within H1,H2
and H3. Among other things, this means that combining m1,m2,m3 within the
hypothesis space H ′ leads to m( /0) = 0

When considering a discrete nested sequence H 1 ⊆ . . . ⊆H K of hypothesis
spaces, then a simple procedure to select a model is to iteratively increase its com-
plexity as summarised in Algorithm 1, where H i

j is the set of possible hypothesis
induced by information I j in space H j. It should be noted that the mass given to
the empty set is guaranteed to decrease as the hypothesis spaces are nested. One
could apply the same procedures to non-nested hypothesis spaces H 1, . . . ,H K

(e.g., considering lexicographic orderings and weighted averages), yet in this case
there would be no guaranteed relations between the conflicting mass induced by
each hypothesis spaces.

Algorithm 1: Algorithm to select preference model

Input: Spaces H 1 ⊆ . . .⊆H K , Information I1, . . . ,IF , threshold τ

Output: Selected hypothesis space H ∗

i = 1 ;
repeat

foreach j ∈ {0, . . . ,m} do Evaluate H i
j;

Combine mi
1, . . . ,m

i
F into mi ;

i← i+1
until mi( /0)≤ τ or i = K +1;

4.2. Information selection. If we assume that the set H is sufficiently rich to
describe accurately the DM preferences, then it means that the mass m( /0) results
from the fact that the DM has provided, at some point, erroneous information.
In this case, it makes sense to discard those information items that are the most
uncertain and introduce inconsistency in the results. In a short word, given a subset
S ⊆ {1, . . . ,n}, if we denote by mS the mass obtained by combining the masses
{mi : i ∈ S}, then we can try to find the subset S such that

(12) mS( /0) = 0

and whose amount of uncertainty Cer(S) = ∑i6∈S αi is minimal among the subsets
inducing no conflict.
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Remark 1. If the uncertainty degree is the same for all preferential information
items (i.e., αi =α for all i), then minimising Cer(S) while having mS( /0) = 0 comes
down to pick the subset S counting the highest number of items. In other words, to
pick the maximal subset of consistent sources, a typical way to resolve conflict in
logic [42] that is also used in MCDA [38].

An easy, but potentially sub-optimal way to implement this strategy is to con-
sider first the set S0 = {1, . . . ,n}, and then to iteratively consider subsets of imme-
diate smaller size. In Example 11, this would have amounted to consider first
S1 = {2,3} (with Cer(S1) = 0.6), then either S2 = {1,3} or S2 = {1,2} (with
Cer(S1) = 0.9). From Figure 6, we can however see that for S = {2,3}, we already
have mS( /0) = 0, and we do not need to go any further. When n is small enough
(which is often the case if MCDA), then such an iterative, naive search may remain
affordable. Improving upon it then depends on the nature of the space H . It seems
also fair to assume that the DM makes his/her best to be consistent, and therefore
the number of information items to remove from S0 = {1, . . . ,n} should be small
in general.

A less complex alternative would be to suppress information items in a greedy
way, i.e., removing iteratively the information item that would decrease the amount
of conflict by the greatest value. This could be done by not only storing the result
of focal element conjunctions, but also the sets whose intersection is taken. An
efficient way, when using the conjunctive rule of belief functions, would then be
to adapt the decombination operator proposed by Smets [45] using the canonical
decomposition, that up to now requires a full enumeration of the subsets of space
H (which is impossible in our case, where H is either continuous or of a combi-
natorial nature).

One can combine the two previously described approach, i.e., to first increase the
model complexity if the conflict is too important at first, and then to eliminate those
pieces of information that are the most unreliable and bring inconsistency in the
result. There is clearly a balance between the two: increasing complexity allows
us to keep all the gathered information but may lead us to over-fit the model or to
computational problems, while letting go of some information allows us to reduce
the computational burden, but will also deliver more conservative conclusions.

5. CONCLUSION

In this paper, we have described a generic way to handle uncertain preference
information within the belief function framework. In contrast with previous works,
our proposal is not tailored to a specific method but can handle a great variety of
preference models. It is also consistent with the considered preference model, in
the sense that if enough fully reliable information is provided, we retrieve a precise
preference model.

Our proposal is quite general, and maybe more or less difficult to apply depend-
ing on the choice of H . In the future, it would be interesting to study specific
preference models and to propose efficient algorithmic procedures to perform the
different calculi proposed in this paper. For instance, how do the computations
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look like when we consider numerical models? Indeed, all procedures described
in this paper can be applied to numerical as well as to non-numerical models, but
numerical models may offer specific computational advantages (e.g., use of linear
programming techniques).

On the other hand, one aspect of our proposal that may be criticized is the use of
the conjunctive rule of combination, which assumes information items to be inde-
pendent, meaning that two information items leading to the same subspace H ⊆H
will reinforce our belief in H being the right hypothesis, and that the number of fo-
cal elements will grow exponentially with the number of information items. One
possible alternative, especially since we are working with simple support func-
tions, would be to work in a possibilistic setting with a max/min-based aggrega-
tion, and to interpret degrees αi as necessity degrees (see, for example, Dubois
and Prade [23] for an introduction). This would also have the advantage that the
provided degrees could be ordinal. The price to pay would then be to accept po-
tentially much more conservative conclusions, as the fusion process would then be
much more cautious. We would also be less consistent with Bayesian approaches,
that also use product-based combination rules.

Finally, it seems quite interesting to explore how the current framework can
be articulated with the recent trend in preference learning consisting of providing
optimal queries for numerical models with a minimax regret strategy [2, 1, 39].
Indeed, our proposal could help to solve a current problem of such approaches,
namely the fact that the DM can never contradict itself in such strategies. It is
our belief that by adding uncertainty degrees, the DM could be led to revisit some
previously refined spaces. However, articulating the two approaches would also
require to solve more complex optimisation problems.
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