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Abstract

Statistical analysis of large data sets offers new opportunities to better understand
many processes. Yet, data accumulation often implies relaxing acquisition procedures
or compounding diverse sources. As a consequence, such data sets often contain mixed
data, i.e. both quantitative and qualitative and many missing values. Furthermore,
aggregated data present a natural multilevel structure, where individuals or samples
are nested within different sites, such as countries or hospitals. Imputation of mul-
tilevel data has therefore drawn some attention recently, but current solutions are
not designed to handle mixed data, and suffer from important drawbacks such as
their computational cost. In this article, we propose a single imputation method for
multilevel data, which can be used to complete either quantitative, categorical or
mixed data. The method is based on multilevel singular value decomposition (SVD),
which consists in decomposing the variability of the data into two components, the
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between and within groups variability, and performing SVD on both parts. We show
on a simulation study that in comparison to competitors, the method has the great
advantages of handling data sets of various size, and being computationally faster.
Furthermore, it is the first so far to handle mixed data. We apply the method to
impute a medical data set resulting from the aggregation of several data sets coming
from different hospitals. This application falls in the framework of a larger project
on Trauma patients. To overcome obstacles associated to the aggregation of medi-
cal data, we turn to distributed computation. The method is implemented in an R
package.

Keywords: hierarchical data, low-rank matrix estimation, matrix completion, systemati-
cally and sporadically missing values, distributed computation.
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1 Introduction

Consider a dataset Y ∈ Rn×p which is naturally the row concatenation ofK smaller datasets

Yk ∈ Rnk×p, k ∈ {1, ..., K}. Y collects the measurements of p variables across a population

of n individuals categorized in K groups, such that the k-th group contains nk individuals

and
∑K

k=1 nk = n:

Y =


Y1

Y2

...

YK


l n1

l n2

...

l nK

.

For a group k ∈ {1, ..., K}, an individual of the k-th group ik ∈ {1, ..., nk} and a variable

j ∈ {1, ..., p}, we denote by yk,ik,j the value of variable j taken by individual ik in group

k. Such structure is often called multilevel structure, and occurs in many fields of applica-

tions. Famous examples include pupils nested within schools or patients within hospitals.

Throughout this article, we focus on this latter example with a running application in

public health. If some entries of Y are missing, we denote by M the indicator matrix of

observations, with Mk,ik,j = 1 if yk,ik,j is observed and Mk,ik,j = 0 otherwise. To handle

missing values, corresponding to Mk,ik,j = 0, a popular approach (Little and Rubin, 2002)

consists in imputing them, i.e. replacing the missing entries with plausible values to get a

completed data set.

To do so, several approaches have been developed, and a complete overview of state

of the art multilevel imputation methods is available in Audigier et al. (2018). Latest

proposals have focused on handling both sporadically missing values, which correspond

to some entries missing for some variables, and systematically missing values where some

variables are completely unobserved in one or more groups. To take into account the hi-

erarchical structure of the data, most imputation methods are based on random effects

regression models, such as suggested by Resche-Rigon and White (2016) and Quartagno

and Carpenter (2016). However, current solutions suffer from important gaps that deserve

further development. In particular, they are not designed to handle mixed data (quantita-

tive and categorical), struggle with large dimensions and are extremely costly in terms of

computations.
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In the same time, imputation by iterative singular value decomposition (SVD) algo-

rithms have proven excellent imputation capacities for quantitative (Hastie et al., 2015),

qualitative (Audigier et al., 2017) and mixed data (Audigier et al., 2016). This can be

explained in part because they assume an underlying low-rank structure for the data which

is plausible for many large data sets, as discussed in Udell and Townsend (2017). These

methods behave particularly well compared to competitors in terms of prediction of the

missing values, in particular when the number of observations is small with respect to the

number of variables, and when the qualitative variables have many categories and some of

them are rare. In addition, they are often competitive in terms of execution time. However,

these methods are not dedicated to the multilevel data we address in this paper. The work

we present here can be casted as an extension of single imputation methods based on SVD

to the multilevel framework.

The paper is organized as follows. In Section 2, we start by presenting multilevel com-

ponent methods to analyze quantitative, categorical and mixed data in the complete case

where all entries are observed. We begin in Section 2.1 by reviewing the multilevel simulta-

neous component analysis (MLSCA) of Timmerman (2006), dedicated to quantitative data,

which operates by estimating principal directions of variability for both levels of variability,

i.e. for the between groups variability and for the within groups variability. Then, our first

main contribution is to derive in Section 2.2 and Section 2.3 two multilevel component

methods to analyze qualitative and mixed data respectively. To the best of our knowledge,

we are the first to propose such methods. Our second main contribution is to propose in

Section 3 multilevel single imputation methods to impute categorical and mixed variables

with a multilevel structure. In Section 4 we show on synthetic data that our methods have

smaller prediction errors than competitors when the data are generated with a multilevel

model. Finally, in Section 5, we illustrate the methods with the imputation of a large reg-

ister from Paris hospitals and discuss how to distribute the computation. The methods are

implemented in the R (R Core Team, 2017) package missMDA (Josse and Husson, 2016).
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2 Multilevel component methods

2.1 Multilevel Principal Component Analysis (MLPCA)

For sake of clarity, we start by recalling the multilevel extension of principal component

analysis (PCA, Pearson (1901)) described in Timmerman (2006). Assume the data set Y

contains quantitative variables only. The measured values can be decomposed, for a group

k ∈ {1, ..., K}, an individual ik ∈ {1, ..., nk} in the k-th group and a variable j ∈ {1, ..., p},

as

yk,ik,j = y.,.,j︸︷︷︸
offset

+ yk,.,j − y.,.,j︸ ︷︷ ︸
between

+ yk,ik,j − y.,k,j︸ ︷︷ ︸
within

.

Here,

y.,.,j =
1

n

K∑
k=1

nk∑
ik=1

yk,ik,j

is the overall mean of variable j and

yk,.,j =
1

nk

nk∑
ik=1

yk,ik,j

is the mean of variable j among individuals of group k. Then, (yk,.,j−y.,.,j) is the deviation

of group k to the overall mean of variable j, and (yk,ik,j−yk,.,j) is the deviation of individual

ik to the mean of variable j in group k. Written in matrix form, this gives

Y = 1nm
> + Yb + Yw,

where 1n is the n× 1 vector of ones and m is the p× 1 vector containing the overall means

of the p variables, Yb contains the variable means per group minus the overall means, and

Yw contains the residuals. Similarly to what is done in analysis of variance, we can split

the sum of squares for each variable j as

K∑
k=1

nk∑
ik=1

y2
k,ik,j

=
K∑
k=1

nky
2
.,.,j +

K∑
k=1

nk(yk,.,j − y.,.,j)2 +
K∑
k=1

nk∑
ik=1

(yk,ik,j − yk,.,j)2.

In the classical framework where there is no multilevel structure, PCA yields the best

fixed rank estimator of Y in terms of the least squares criterion. The multilevel extension

naturally leads, for (k, ik, j) ∈ {1, . . . , K}×{1, . . . , nk}×{1, . . . , p}, to modelling the offsets,

the between and within terms separately by explaining as well as possible both the between

5



and within sum of squares. Therefore, multilevel PCA (MLPCA) consists in assuming two

low-rank models, for the between matrix Yb = (yk,.,j − y.,.,j)k,j - that we approximate by a

matrix of rank Qb, and for the within matrix Yw = (yk,ik,j−yk,.,j)k,ik,j - that we approximate

by a matrix of rank Qw. This yields the following decomposition:

Y = 1nm
> + FbV

>
b + FwV

>
w + E. (1)

Fb is the matrix of size n×Qb containing the between component scores

Fb =


Fb,1

Fb,2
...

Fb,K

 , (2)

where for all k ∈ {1, . . . , K}, Fb,k is row-wise constant, with fb,k repeated on every row. Let

Ik ∈ {0, 1}n be the indicator vector of group k such that the i-th entry Ik,i = 1 if individual

i belongs to group k and 0 otherwise. Representation (2) is equivalent to

Fb =
K∑
k=1

Ikf
>
b,k.

Vb is the p×Qb between loadings matrix, Fw (n×Qw) denotes the within component scores,

and finally Vw (p × Qw) denotes the within loadings matrix, and E (n × p) denotes the

matrix of residuals. Note that in this model, the within loadings matrix Vw is constrained to

be constant across groups. Model (1) is called multilevel simultaneous component analysis

(MLSCA) in Timmerman (2006). We keep the name MLPCA for simplicity.

In terms of interpretation, the low rank structure on the between part implies that there

are dimensions of variability to describe the hospitals: for instance the first dimension could

oppose hospitals that resort to a large extent to pelvic and chest X-ray to hospitals where

those examinations are not usually performed. The low rank structure on the within part

implies that there are dimensions of variability to describe the patients: for instance the

first dimension opposes patients with a head trauma (taking specific values for variables

related to head trauma) to other patients. The constraint that the within loading matrix

is the same across hospitals means that this dimension is the same from one hospital to the

other but the strength of the dimension, i.e. the variability of patients on the dimension,
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can differ from one group to the other. This constraint also leads to less parameters to

estimate.

The model is fitted by solving the least squares problem with respect to the parameter

Θ = (m,Fb, Vb, Fw, Vw):

Θ̂ ∈ argminΘ

∥∥Y − (1nm> + FbV
>
b + FwV

>
w

)∥∥2
,

such that Fb =
K∑
k=1

Ikf
>
b,k,

K∑
k=1

nkfb,k = 0Qb
, 1>nFw = 0Qw ,

(3)

where the last two constraints serve for identifiability. The problem is separable, and

the solution is obtained in Timmerman (2006) by computing the variables means to esti-

mate m, the matrix of means per group centered by the overall mean Yb and the within

matrix Yw of the data centered per group. Then, truncated SVD of Yb = UbΛ
1/2
b V >b at

rank Qb and of Yw = UwΛ
1/2
w V >w at rank Qw are performed to estimate the parameters

(Fb = UbΛ
1/2
b , Vb, Fw = UwΛ

1/2
w , Vw). Such a solution is in agreement with the rationale of

performing an SVD on the matrix of means per group to study the differences between

groups and a SVD of the matrix centered by groups to study the differences between

patients after discarding the hospital effects.

2.2 Multilevel Multiple Correspondence Analysis (MLMCA)

We now propose a new counterpart of MLPCA to analyse categorical variables. Our method

is based on multiple correspondence analysis (MCA, Greenacre and Blasius (2006); Husson

et al. (2017)), that we extend to handle multilevel structures. MCA is considered to be

the counterpart of PCA for categorical data analysis, and has been successfully applied in

many fields of applications, such as survey data analysis, to visualize associations between

categories. More precisely, categorical data are coded as a complete disjunctive table Z

where all categories of all variables are represented as indicator vectors. In other words

zic = 1 if individual i takes the category c and 0 otherwise. For example, if there are p = 2
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variables with 2 and 3 levels respectively, we have the following equivalent codings:

Y =



1 1

2 3

1 2

2 3

2 2

2 2


⇐⇒ Z =



1 0 1 0 0

0 1 0 0 1

1 0 0 1 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 0


.

For 1 ≤ j ≤ p we denote by Cj the number of categories of variable j, and C =
∑p

j=1Cj

the total number of categories. For 1 ≤ c ≤ C, Z,c is the c-th column of Z corresponding

to the indicator of category c. We define πc = n−11>nZ,c the proportion of observations in

category c, π = (π1, . . . , πC)> and Dπ the C × C diagonal matrix with π on its diagonal.

Multiple correspondence analysis (MCA) is defined as the SVD of the matrix

A =
1

np

(
Z − 1nπ

>)Dπ
−1/2. (4)

This specific transformation endows MCA with many properties: the distances between

the rows and columns in the transformed matrix A coincide with the chi-squared distances,

the first principal component (the scores) is the quantitative variable most related to the

categorical variables in the sense of the η2 coefficient of analysis of variance (Husson et al.,

2017, Section 3). This latter property justifies why MCA is considered as the equivalent of

PCA for categorical data.

We introduce the following strategy for multilevel MCA (MLMCA). From the indicator

matrix of dummy variables Z, we start by defining a between part and a within part. MCA,

in the sense of the SVD of a transformed matrix (4), will then be applied on each part.

For k ∈ {1, ..., K}, define Zk the sub-matrix of Z containing all categories and the rows

corresponding to individuals of group k. The between part is defined block-wise as the

mean of the indicator matrix per group k with the following nk×p matrices, stacked below

one another:

Zb,k = n−1
k 1nk

1>nk
Zk.

The entries of Zb,k contain the proportion of observations taking each category in group k

(nck/nk) (for instance the proportion of individuals carrying some disease in a particular
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hospital). Finally

Zb =


Zb,1

Zb,2
...

Zb,K

 .

MCA (4) is afterwards applied to the fuzzy indicator matrix Zb, i.e. SVD is applied to

(Zb − 1nπ
>)D−1/2

π .

This results in obtaining between component scores Fb ∈ Rn×Qb and between loadings

Vb ∈ Rn×Qb . The estimated between matrix is then Ẑb = FbV
>
b D

1/2
π + 1nπ

>. As for the

within part, MCA is applied to the data where the between part has been swept out, i.e.

SVD is applied to the following matrix:

(Z − Zb)D−1/2
π . (5)

Weighting by the inverse square root of the margins of the categories implies that more

weight is given to categories which are rare over all groups (for instance a rare disease).

We obtain within component scores Fw ∈ Rn×Qw , within loadings Vw ∈ Rn×Qw , and the

estimated within matrix Ẑw = FwV
>
w D

1/2
π .

Finally, we estimate Z by Ẑ = Ẑb+Ẑw. As with MCA (Josse et al., 2012), the reconstructed

fuzzy indicator matrix Ẑ = Ẑb + Ẑw has the property that the sum of values for one

individual and one variable is equal to one. Consequently, the estimated values can be

considered as degrees of membership to the categories. This property will prove useful for

the imputation.

Remark Another approach to define MLMCA would have been to directly apply MLPCA

on the matrix A (4). It turns out that the two strategies are equivalent which strengthens

this definition of Multilevel MCA.
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2.3 Multilevel Factorial Analysis of Mixed Data (MLFAMD)

Consider now a mixed data set Y = (Yq, Yc), where Yq is a submatrix containing pq quan-

titative variables, and Yc a submatrix containing pc categories:

Y =


0.3 −3.4 0.1

1.4 0.4 −2.8

9.2 1.8 7.1︸ ︷︷ ︸
Yq

0 1 0 1 0

1 0 0 0 1

0 1 1 0 1︸ ︷︷ ︸
Yc

.

In the same flavour, we define a multilevel method for mixed data by extending a counter-

part of PCA for mixed data, namely factorial analysis for mixed data (FAMD), presented

in Pagès (2014). FAMD consists in transforming the categorical variables as in MCA (4)

and concatenating them with the quantitative variables. Then, each quantitative variable

is standardized (centered and divided by its standard deviation). Finally, SVD is applied

to this weighted matrix. This specific weighting ensures that all quantitative and categor-

ical variables play the same role in the analysis. More precisely, the principal components,

denoted Fq for q = 1, ..., Q maximize the link between the quantitative and categorical

variables in the following sense:

Fq = arg max
Fq∈Rn

pq∑
j=1

r2(Fq, Yj) +

pc∑
jc=1

η2(Fq, Yjc),

with the constraint that Fq is orthogonal to Fq′ for all q′ < q and with Yj being the variable

j, r2 the square of the correlation coefficient and η2 the square of the correlation ratio.

This formulation highlights that FAMD can be seen as the counterpart of PCA for mixed

data. More details about the method are given in Pagès (2014).

The extension to a multilevel structure, named MLFAMD, is now straightforward fol-

lowing what is done for MCA and categorical data in the previous section. Denote C the

number of categories, π ∈ (0, 1)C the vector of categories proportions and Dπ the C × C

diagonal matrix containing π on its diagonal. Denote m ∈ Rpq the vector of means of

the quantitative variables, and Σ ∈ Rpq×pq the diagonal matrix containing the standard

deviations of Yq. MLFAMD consists in doing the following transformations.

W ∈ Rn×(pq+pc) ←

(
(Yq − 1nm

>)Σ−1,
1

np

(
Yc − 1nπ

>)Dπ
−1/2

)
. (6)
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Then, multilevel SVD is performed on the matrix W . This boils down to computing the

between and within part, and performing SVD on both separately:

Wb =
K∑
k=1

1nk
1>nk

W, Ww = W −Wb. (7)

3 Multilevel imputation

3.1 Imputation with MLPCA

We now focus on the case where some values in Y are missing. Recall that M is the

n× p indicator matrix of observations with Mk,ik,j = 1 if yk,ik,j is observed and Mk,ik,j = 0

otherwise. We denote by Mk the restriction of matrix M to the rows belonging to group

k ∈ {1, ..., K}. Consider a Missing (Completely) At Random (M(C)AR) setting (Little and

Rubin, 2002) where the process that generated the missing values can be ignored. To impute

the missing values using the multilevel model (1), we need to estimate its parameters from

the incomplete data. This can be done through low rank matrix estimation for incomplete

data sets (Hastie et al., 2015) by weighting the least squares criterion (3) with {0, 1} weights

indicating the observed entries. Let Θ = (m,Fb, Vb, Fw, Vw), the optimization problem is

the following with � denoting the Hadamard product:

Θ ∈ argminΘ

∥∥M � (Y − (1nm
> + FbV

>
b + FwV

>
w )
)∥∥2

2

such that Fb =
K∑
k=1

Ikf
>
b,k,

K∑
k=1

nkfb,k = 0Qb
, 1>nFw = 0Qw .

(8)

In Josse et al. (2013), the authors solved such a program using an iterative imputation

algorithm. Note that the aim in Josse et al. (2013) was to perform MLPCA with missing

values, i.e. to estimate the parameters despite the missing values, and not to impute mul-

tilevel data. The distinction may appear tenuous as the algorithm involves an underlying

imputation of the missing entries, but the quality of this imputation was never evaluated

in itself. Let m̂0 be the mean vector of the non-missing entries. The algorithm works

iteratively as described in Algorithm 1.

Such an algorithm starts by replacing the missing values by initial values (for example

the mean of the non-missing entries), then the estimator (here MLPCA) is computed on
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Algorithm 1: Iterative MLPCA

0. Initialize missing values:

Ŷ = Y �M + 1nm̂
0> � (1n1>p −M).

1. Estimate Fb, Vb, Fw, Vw with multilevel PCA (3);

2. Impute

Y = Y �M + (1nm
> + FbV

>
b + FwV

>
w )� (1n1>p −M);

3. Update means m = n−11>nY .

Repeat steps 1, 2, 3 until empirical stabilization of the

prediction.

the completed matrix and the predicted values of the missing entries are updated using

the values given by the new estimation. The two steps of imputation an estimation are

repeated until empirical stabilization of the prediction.

The detailed algorithm for iterative MLPCA with missing values is given in Algorithm

2. In the end, it outputs both the between and within scores and loadings obtained from

the incomplete dataset, and a dataset imputed using the MLPCA model (1). Thus, it

is a single imputation method (Schafer, 1997; Little and Rubin, 2002) which takes into

account the multilevel structure of the data. Note also that the algorithm corresponds to an

expectation-maximization (EM) algorithm of the multilevel model (1) assuming gaussian

noise. To prevent overfitting, the SVD step is replaced by regularized SVD, i.e. where

the singular values are shrunk, as described in Section 3.2. This type of regularization is

classical in SVD based methods (Verbanck et al., 2013; Josse et al., 2017)

3.2 Imputation with MLMCA and MLFAMD

Based on Algorithm 2 for imputation of multilevel quantitative data, we define two itera-

tive imputation algorithms for multilevel MCA and multilevel FAMD. They are sketched

together in Algorithm 3. Note that we implemented an accelerated version of the algorithm

where the between and the within parts are not updated simultaneously but one at a time.
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Algorithm 2: Iterative MLPCA (detailed)

Data: Y = (Yobs, Ymis) ∈ Rn×p, Qb, Qw

Initialization: m̂0 be the mean vector of the

non-missing entries

for (i, j) ∈ {1, n} × {1, p} do

if Mij = 0 then

Yij ← m̂0
j

end

end

1 repeat

2 Estimation of the between structure

3 Yb =
∑K

k=1 n
−1
k Ik

(
1>nk

Yk − m̂0>)
4 Yb = FV > (SVD)

5 Fb ← F [, 1 : Qb]; Vb ← V [, 1 : Qb]

6 Ŷb = FbV
′
b

7 Estimation of the within structure

8 Yw = Y − 1nm̂
> − Yb

9 Yw = FV > (SVD)

10 Fw ← F [, 1 : Qw]; Vw ← V [, 1 : Qw]

11 Ŷw = FwV
′
w

12 Imputation of the missing values

13 Ŷ = 1nm̂
>Ŷb + Ŷw

14 Y ←M � Y + (1n1>p −M)� Ŷ

15 m̂ = n−11>nY

16 until convergence;
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Algorithm 3: Iterative MLMCA and iterative MLFAMD

(0) Initialization

(a) Initialize missing values: mean imputation for

quantitative data, proportion imputation for

dummy variables.

(b) Compute weights, standard deviations and column

margins.

(1) Repeat until convergence:

(a) Estimate parameters (with MLFAMD or MLMCA)

(b) Impute the missing entries with fitted values

(c) Update means, standard deviations, column

margins.a

aAfter each imputations, the means and standard deviations are modi-

fied. Hence we need to recenter and rescale the data.
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This corresponds to a generalized EM step, where the least-squares criterion is decreased

at every iteration of the algorithm, but not entirely minimized.

Note also that these methods require to select two parameters: the number of between and

within components Qb and Qw. Furthermore, they must be selected from an incomplete

data set. This is far from trivial, especially in the case of categorical variables. In fact,

even in the complete case and without multilevel structure, not many options are available.

Consequently, we advocate the use of cross-validation to select these components.

Furthermore, to prevent overfitting we actually perform a regularized SVD where singular

values are shrunk. Let λl, 1 ≤ l ≤ Qb, and νq, 1 ≤ q ≤ Qw, be the ordered singular

values of Wb and Ww, defined in (7), respectively. Let σ̂2
b = 1/(K − Qb)

∑K
s=Qb+1 λs and

σ̂2
w = 1/(p−Qw)

∑p
s=Qw+1 νs. We shrink the singular values as follows:

(λ1, . . . , λQb
)←

(
λ1 − σ̂2

b√
λ1

, . . . ,
λQb
− σ̂2

b√
λQb

)
,

(ν1, . . . , νQw)←
(
ν1 − σ̂2

w√
ν1

, . . . ,
νQw − σ̂2

w√
νQw

)
.

Finally, the algorithms we present in this paper can be implemented in parallel across

groups, providing that groups share their mean values, standard deviations, sample sizes,

and right singular vectors. The procedure to distribute the computation is described in

Section 8.2. Such a procedure is interesting in the framework of the medical application

described in Section 5 as it allows each hospital to keep their data on site while benefiting

from other hospitals data for the imputation.

4 Simulation study

4.1 Imputation of multilevel quantitative data

We conducted a comparative simulation study to contrast the performances of the multilevel

imputation with PCA (MLPCA) to other single imputation methods, namely

1. mean imputation which consists in imputing by the mean of each variable, used as a

benchmark method;
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2. a separate PCA imputation where each group is imputed independently, using the R

package missMDA (Josse and Husson, 2016);

3. a global imputation by PCA (which ignores the multilevel structure and the group

variable) using the R package missMDA (Josse and Husson, 2016);

4. imputation with iterative conditional random effects regression models as imple-

mented in the R package mice (van Buuren, 2012);

5. imputation by a joint model based on random effects models as implemented in the

R package jomo (Quartagno and Carpenter, 2017);

6. imputation with iterative random forest (RF) as implemented in the R package miss-

Forest, (Stekhoven and Bühlmann, 2012). The group variable is included for the

imputation.

Note that methods 4 and 5 are considered as the references to impute multilevel quantitative

data (Audigier et al., 2018). However, these methods are defined as multiple imputation

methods and used the imputed data as an intermediary to do statistical inference with

missing values. Here, we compute the mean over 100 multiple imputed data to get one

single imputed dataset.

The imputation based on random forests can handle mixed variables and is known to be

a very powerful tool for imputation. It is not specifically designed to handle a multilevel

structure, but is expected to perform well in such a hierarchical setting. Indeed, random

forests can account for interactions between variables, and therefore in particular for in-

teractions between the categorical variable indicating the group and the other variables.

This is another way of handling the multilevel structure. In the same way, even though

we focus here on quantitative variables, we also added imputation method for mixed data

with FAMD (Audigier et al., 2016), where the group membership is used as a categorical

variable. This allows to take into account the hierarchical structure of the data.

We first simulate data according to the multilevel model (1) with Gaussian noise and set

the number of between and within components to 2. For MLPCA, global PCA and FAMD,
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we select the number of components resulting in the smallest errors. This corresponded

to Qb = 2 and Qw = 2 for MLPCA, and to 4 dimensions for the global PCA and global

FAMD. We use default parameters for the other methods. We start with nk = 20 observa-

tions per group k and we vary the number of groups K (3, 5), the number of variables J

(5, 10, 30), the intensity of the noise (σ = 1, 2) and the percentage of missing values (10%,

20%, 30%, 40%), which are missing completely at random (MCAR). The detail is available

in the associated code provided as supplementary material. We then compute the mean

squared error (MSE) of prediction, and repeat the process 100 times. Figure 1 is represen-
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Figure 1: MSE of prediction for a data with J = 10 variables, K = 5 groups, nk = 20

observations per group and 30% of missing values completely at random. MLPCA is

performed with Qb = 2 and Qw = 2.

tative of many results where multilevel imputation MLPCA improves both on global PCA

imputation and separate PCA imputation but also on competitors. We have not included

the results from the package mice as, using the default parameters, we encountered too

many errors. It may be explained by the size of the data set, as the method does not

behave well when there are not too many variables. More tuning is surely required to use

the mice package seamlessly.

We summarize here our main findings with respect to all the simulations carried out.

Imputations with random forests and FAMD often perform similarly with a slight advantage

for FAMD especially when the percentage of missing values is large. Imputation with jomo
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encounters many difficulties when the number of variables increases as well as when the

noise increases. Finally imputation based on separate PCA collapses when the percentage

of missing values increases and/or the number of observations per group decreases, which

is not surprising as it operates on the smaller group data sets. The multilevel imputation is

always the most accurate. This is expected (but still reassuring) as the data are simulated

according to a multilevel model. We also simulated data without a multilevel structure,

i.e. with one single group containing all individuals, and the performances of multilevel

PCA are only slightly lower than those of global PCA.

All the methods have of course their strengths and weaknesses, and the properties of an

imputation method depend on its inherent characteristics: an imputation method based

on low rank assumption and linear relationships provides good prediction for data with

strong linear relationships contrary to imputation using random forests which are designed

for non-linear relationships.

However, we observe that imputation with random forests breaks down for small sample

sizes in missing at random (MAR) cases, because extrapolation and prediction outside the

range of the data seems difficult with random forests. Since the structure of the data is not

known in advance, one could use cross-validation and select the method which best predicts

the removed entries. Figure 2 represents the differences, for each group, between imputing

with a separate PCA and with MLPCA. The improvement of a multilevel imputation over

a separate imputation differs from one study to the other but still groups have interest in

using a multilevel imputation. Indeed, the results presented in Figure 2 reveal that in terms

of predicting the missing entries, multilevel PCA yields better results that separate PCA

for every group, thus showing that as far as imputation is concerned, all groups benefit

from participating in the study. This justifies the use of distributed multilevel methods

in contexts where there are confidentiality issues at stake, by quantifying how much the

different centers gain in terms of imputation accuracy, as further discussed in Section 5.

4.2 Imputation of multilevel mixed data

To simulate mixed data, we use the same design as for quantitative variables but cut some

of the variables into categories. We vary the same parameters as for the quantitative
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Figure 2: Difference between MSE obtained with separate PCA and with MLPCA for each

group.

variables but also the ratio of the number of quantitative over the number of categorical

variables. Note that the methods implemented in the packages mice and jomo can handle

mixed data when categorical variables are binary, but not when variables have more than

two categories. This is why they are not included in the simulations. The global FAMD

imputation is performed with 2, 4 and 6 dimensions whereas we also vary Qb and Qw for

the multilevel method between 2 and 4. We display only the number of components which

resulted in the lowest prediction error for each of the methods concerned. Figure 3 shows

again that imputing with the multilevel method gives better results than imputing with

global FAMD or with random forests. This is especially true for the quantitative variables.

Note that imputation with multilevel FAMD is quite stable with respect to the number

of between and within components. As far as the computational time is concerned, we

compare in Table 1 the performances of the different approaches. Regarding this point,

SVD based imputation methods have a clear advantage over jomo and random forests.
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Figure 3: Data set with J = 10 variables, 5 quantitative and 5 categorical variables, 20%

of missing values, K = 5 groups and nk = 30 observations per group: on the left MSE for

the quantitative variables; on the right percentage of misclassified for categorical variables.

Multilevel FAMD is represented for different values of Qb and Qw whereas Global FAMD

with 4 dimensions. RF is the imputation with random forest, Mean-Prop means that the

imputation is done by the mean for quantitative variables and the proportion for categorical

ones, and sep FAMD gives the results when separate FAMD are performed on each group.

J = 10 J = 30 J = 15 J = 35

Global PCA 0.09 0.3

jomo 11 282

Multilevel FAMD 1.5 1.2 2 7

Global FAMD 0.4 0.7 1 4

Random forest 59 200 27 246

Table 1: Time in seconds for a dataset with 20% of missing values, K = 5 groups and

nk = 200 observations per groups, with 10 and 30 quantitative variables for the two left

columns and with additional 5 categorical variables for the two right columns.
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5 Hospital data analysis

5.1 Traumabase

Our work is motivated by an application in public health on polytraumatized patients for

the Traumabase1 group at APHP (Public Assistance - Hospitals of Paris). Effective and

timely management of major trauma patients is critical to improve outcomes and survival,

given the high risks for the patient in case of delays or errors. With the perspective of

improving the decision-making process and the care of patients, 8 French Trauma centers

have decided to collaborate to collect detailed high quality clinical data from the scene of

the accident to the exit of the hospital. The resulting database, the Traumabase, has up

to now gathered more than 7495 trauma admissions data, and is permanently updated.

The data are highly heterogeneous, multi-source, and contain many missing values. Fur-

thermore, experts expect hospitals to have an influence on some of the variables, due to

lack of practice standardization, and because the patients and their social status differ

from one hospital to the other. We analyse a portion of the initial data set containing 8

features identified by physicians as prone to hospital effects. The data set of interest there-

fore consists in 5 qualitative and 3 quantitative variables measured over 7495 patients, and

contains around 11% of missing values; furthermore, there is at least one missing entry

for 49% of patients. There are certainly different generation mechanisms at work: some

variables (such as the type of accident and the hospital center) are completely observed

whereas the patterns of missingness of other variables (such as pelvic and lung X-ray) are

believed to depend on the hospital center. In first approximation, a Missing At Random

(MAR) mechanism - where the probability of missingness is allowed to depend on the ob-

served variables - seems satisfying.

We focus on imputing of the Traumabase data with iterative MLFAMD with two aims.

First, the imputed data can be further analyzed with other statistical methods such as

predictive models, to predict some outcome of interest. However, care must be taken

when analysing an imputed data set, as discussed in Section 6. Secondly, the imputation of

1http://www.traumabase.eu/fr_FR
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missing data from a hospital is improved when the hospital is integrated into the aggregated

database. Therefore, this may encourage them to share their data and participate in the

medical data aggregation project. Such a project is important because having at disposal

aggregated data is an opportunity to have more patients and to develop more relevant

modelling. Imputation is thus an incentive for hospitals to share their data and potentially

lead to better care for all patients.

However, there are technical and social barriers to the aggregation of medical data. The size

of combined databases often makes computations and storage intractable, while institutions

are usually reluctant to share their data due to privacy concerns and proprietary attitudes.

Both obstacles can be overcome by turning to distributed computations, which consists

in leaving the data on sites and distributing the calculations, so that hospitals only share

some intermediate results instead of the raw data (Narasimhan et al., 2017). Among other

methods, SVD, which only involves inner products and sums, can be very straightforwardly

implemented in a distributed manner. Consequently, one main advantage of the methods

we present is that they can also be distributed across sites. The distributed framework is

presented in Section 8.2.

5.2 Simulated imputation of the Traumabase

To assess the quality of imputation and legitimate the use of iterative MLFAMD to impute

the Traumabase, we first perform simulations by inserting an additional of 10% of missing

values to the data set, predicting them with the different imputation methods described

in Section 4, and computing the mean squared error of prediction for quantitative vari-

ables and the percentage of misclassification for categorical variables. Figure 4 presents

the results over 100 replications of the experiment. In terms of prediction of quantitative

variables, multilevel FAMD and global FAMD perform similarly and improve on the ran-

dom forest imputation. We observe the same behavior for the categorical variables, with

multilevel FAMD improving only slightly on global FAMD. Note that the data are quite

difficult to impute and the relationship between variables weak.
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Figure 4: Traumabase: MSE of prediction and % of mis-classification.

6 Conclusion

We proposed a method dedicated to the imputation of multilevel mixed data based on an

iterative SVD algorithm. To the best of our knowledge this is the first multilevel method

available for mixed data. Directions of future research include the development of an au-

tomated method to estimate the number of components Qb and Qw. A first approach is

for now to select Qb and Qw with cross-validation. We are also eager to investigate a mul-

tiple imputation (Murray, 2018) procedure based on this multilevel component method,

in order to further analyse the Traumabase data set with predictive models, for instance

to study the occurence of diagnosis errors based on patients profiles. Multiple imputation

is important to reflect the uncertainty associated to the imputed values. We also believe

the multilevel methods we have developped for mixed data can be useful for exploratory

analysis and visualization.

Finally, as discussed, the methods presented in this paper can be implemented in parallel

across groups or sites. A following project we are currently involved in consists in exploiting

this property to implement a real-time distributed and privacy preserving platform, ded-
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icated to the imputation of health care data partitioned across several hospitals, without

having to aggregate the data. One issue with the distribution technique described in Sec-

tion 8.2 is that we use iterative procedures, therefore after N iterations each hospital has

shared N summary statistics, which can lead to information leakage. A possible solution

to this problem is to resort to homomorphic encryption (Gentry, 2009) which allows to

perform computations on encrypted data.
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8 Appendix

In this appendix, we show how to distribute multilevel iterative imputation algorithms in

order to leave the data of each group on each site while applying the method.
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8.1 Distributed rank-Q PCA

We start by reminding the power method (Golub and Van Loan, 1996), which computes

the first left and right singular vectors of a matrix Y ∈ Rn×p. Without loss of general-

ity, we assume n ≤ p. Suppose Y = UΛ1/2V >, U = (u1, . . . , un), V = (v1, . . . , vn) and

Λ = diag(λ2
1, . . . , λ

2
n) |λ1| ≥ |λ2| . . . ≥ |λn|. The power method is iterative and produces

sequences of vectors z(t) and q(t) converging to u1 and v1 respectively, with iterations de-

tailed in Algorithm 4. Let q(0) be a starting point satisfying ‖q(0)‖2 = 1. The sequences

Algorithm 4: Power method

1 for t = 1, 2, . . . do

2 z(t) = Y >q(t−1)

3 z(t) = z(t)/
∥∥z(t)

∥∥
2

4 q(t) = Y z(t)

5 λ(k) =
∥∥q(t)

∥∥
2

6 q(t) = q(t)/
∥∥q(t)

∥∥
2

7 end

q(t) and z(t) converge to u1 and v1 respectively, when 〈q(0), u1〉 6= 0 and |λ1| > |λ2|; the

rate of convergence is dictated by the ratio |λ2|/|λ1|. This directly extends to the com-

putation of the rank-Q SVD. One can actually estimate u1, v1 and λ1, then the second

dimension by applying the same procedure to Y − u1λ1v
>
1 , and so on so forth. Moreover

it is straightforward to distribute this procedure when the data are grouped in K different

sites with

Y =


Y1

Y2

...

YK

 .

Indeed, all the computations in Algorithm 4 can be done in parallel with a master-slave

architecture (Narasimhan et al., 2017), where a central server collects summary statistics

computed locally on sites, as illustrated Figure 5. Here, the local right singular vectors vj,

j ∈ {1, . . . , n} are sent to the master. The corresponding algorithm is given in Algorithm 5,
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and leads exactly to applying the power method for rank-Q SVD to the entire data matrix

Y . The procedure is implemented in the distcomp R package (Narasimhan et al., 2017).

8.2 Distributed algorithm for iterative multilevel PCA

In Section 8.1, we see how the power method (Golub and Van Loan, 1996), which computes

the first left and right singular vectors of a matrix Y ∈ Rn×p, can be straightforwardly dis-

tributed over K different sites. This algorithm can then be used to perform a distributed

rank-Q SVD, as shown in Algorithm 5. We take advantage of this property to develop a dis-

tributed version of the iterative PCA algorithm, presented in Algorithm 6. This algorithm

imputes missing values with the iterative PCA algorithm in a distributed way. Indeed,

iterative PCA imputation involves iterative SVD. Plugged in Algorithm 1, Algorithm 6

leads to a distributed version of the iterative multilevel PCA algorithm. In the same way,

distributed iterative MLMCA and MLFAMD are implemented.

28



Algorithm 5: Distributed power method

Data: Workers private data Yk ∈ Rnk×p

Result: F ∈ Rn×Q, V ∈ Rp×Q, λ1 ≥ λ2 ≥ . . . ≥ λQ
1 F = 0, λ = 0

2 for k = 1, . . .K do

3 Fk = 0

4 transmit nk to master

5 end

6 for i = 1, . . . , Q do

7 for k = 1, . . .K do

8 qk = (1, 1, . . . , 1)

9 end

10 ‖q‖2 =
√∑K

k=1 nk

11 transmit ‖q‖2, V and λ to workers

12 repeat

13 for k = 1, . . . ,K do

14 qk = qk/ ‖q‖2
15 rk = (Yk − FkV

>)>qk

16 transmit rk to master

17 end

18 r =
∑K

k=1 rk

19 r = r/ ‖r‖2
20 transmit r to workers for k = 1, . . . ,K do

21 qk = Ykr

22 transmit ‖qk‖2 to master

23 end

24 ‖q‖2 =
∑K

k=1 ‖qk‖2
25 transmit ‖q‖2 to workers

26 λi = ‖q‖2
27 until convergence;

28 V = cbind(V, r)

29 for k = 1, . . . ,K do

30 Fk = combine by column (Fk, qk)

31 end

32 end
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Figure 5: Master-slave distribution structure. The hospitals send their local means, pro-

portions, sample size and right sigular vectors to the master. The master sends back the

overall means, proportions, and right singular vectors to the hospitals.

30



Algorithm 6: Distributed iterative PCA

Data: Yk ∈ Rnk×p, Qb, Qw

Result: m̂, Fb,Vb,Fw,Vw

1 Initialization: impute missing values with initial values;

(n× p) = diag(
√
nk).;

2 R = 0, λ = 0

3 for k = 1, . . .K do

4 Fk = 0

5 transmit nk to master

6 end

7 for i = 1, . . . , Q do

8 for k = 1, . . . ,K do

9 qk = (1, 1, . . . , 1)

10 end

11 ‖q‖2 =
√∑K

k=1 nk

12 transmit ‖q‖2, V and λ to workers

13 repeat

14 for k = 1, . . . ,K do

15 qk = qk/ ‖q‖2
16 rk = (Yk − FkV

>)>qk

17 transmit rk to master

18 end

19 r =
∑K

k=1 rk r = r/ ‖r‖2 transmit r to workers

20 for k = 1, . . . ,K do

21 qk = Ykr

22 transmit ‖qk‖2 to master

23 end

24 ‖q‖2 =
∑K

k=1 ‖qk‖2
25 transmit ‖q‖2 to workers

26 λi = ‖q‖2
27 until convergence;

28 V = combine by column (V,
√
λir)

29 for k = 1, . . . ,K do

30 Fk = combine by column (Fk, qk)

31 end

32 end
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