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A SCALABLE ADAPTIVE PARAREAL ALGORITHM WITH
ONLINE STOPPING CRITERION∗

Y. MADAY∗†‡ , O. MULA§

Abstract. In this paper, we consider the problem of accelerating the numerical simulation of
time dependent problems by time domain decomposition. The available algorithms enabling such
decompositions present severe efficiency limitations and are an obstacle for the solution of large scale
and high dimensional problems. Our main contribution is the significant improvement of the parallel
efficiency of the parareal in time method, an iterative predictor-corrector algorithm. This is achieved
by first reformulating the algorithm in a rigorous infinite dimensional functional space setting. We
then formulate implementable versions where time dependent subproblems are solved at increasing
accuracy across the parareal iterations (in opposition to the classical version where the subproblems
are solved at a fixed high accuracy). Aside from the important improvement in parallel efficiency
and as a natural by product, the new approach provides a rigourous online stopping criterion with
a posteriori error estimators and the numerical cost to achieve a certain final accuracy is designed
to be near-minimal. We illustrate the gain in efficiency of the new approach on simple numerical
experiments. In addition to this, we discuss the potential benefits of reusing information from
previous parareal iterations to enhance efficiency even more.

Key words. domain decomposition; parareal in time algorithm; parallel efficiency; convergence
rates; inexact fine solver; a posteriori estimators

AMS subject classifications. : 65M12, 65N55, 65Y05, 65Y20.

1. Introduction. Solving complex models with high accuracy and within a rea-
sonable computing time has motivated the search for numerical schemes that exploit
efficiently parallel computing architectures. For a given Partial Differential Equation
(PDE), one of the main ideas to parallelize a simulation is to break the problem into
subproblems defined over subdomains of a partition of the original domain. The do-
main can potentially have high dimensionality and be composed of different variables
like space, time, velocity or even more specific variables for some problems. While
there exist algorithms with very good scalability properties for the decomposition
of the spatial variable in elliptic and saddle-point problems (see [25] or [26] for an
overview), the same cannot be said for the decomposition of time of even simple sys-
tems of ODEs. This is despite the fact that research on time domain decomposition
is currently very active and has by now a history of at least 50 years (back to at least
[24]) during which several algorithms have been explored (see [12] for an overview).
As a consequence, time domain decomposition is to date only a secondary option
when it comes to deciding what algorithm/method distributes the tasks in a parallel
cluster.

The main goal of this work is to address this efficiency limitation in the framework
of one particular scheme: the parareal in time algorithm. The method was first
introduced in [15] and has been well accepted by the community because it is easily
applicable to a relatively large spectrum of problems. (Some specific difficulties are
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nevertheless encountered on certain types of PDEs as reported in, e.g., [7, 10] for
hyperbolic systems or [4, 6] for hamiltonian problems). Another ingredient for its
success is that, even though its scalability properties are limited, they are in general
competitive in comparison with other methods. Without entering into very specific
details of the algorithm at this stage, we can summarize the procedure by saying that
we build iteratively a sequence to approximate the exact solution of the problem by
a predictor corrector algorithm. In its classical formulation, subproblems over small
time subdomains with the same accurate resolution as the one used to produce, with
a sequential solver, the targeted accuracy, are solved at each iteration.

In this paper, we identify these high resolution computations as the main obstruc-
tion to achieve full parallel efficiency and propose an algorithm where the accuracy
of these computations is increased across the iterations. For this, we start in sec-
tion 2 by formulating an idealized version of the parareal algorithm in an infinite
dimensional function space. This version will not be implementable but its rate of
convergence will serve as a benchmark for a subsequent implementable version which
is built in such a way that its convergence is kept close to the one of benchmark at
a near-minimal numerical cost. This allows to identify the minimal accuracies re-
quired at every step in the solution of the subproblems over small time subdomains.
Compared to the classical version of the algorithm, the new approach presents several
important advantages. First, we prove both theoretically (in section 3) and in simple
numerical examples (section 5) that its parallel efficiency is significantly superior to
the traditional version and, in some cases, it can even be close to the ideal value of
one. Second, our convergence analysis provides an online stopping criterion when
the target accuracies are estimated with a posteriori error estimators (this point will
be explored more extensively in a forthcoming work). Third, the numerical cost to
achieve a certain final accuracy is designed to be near-minimal.

In setion 4.1, we explain how to satisfy in practice the required tolerances with
adaptive techniques. In addition to adaptivity, one can expect to gain in efficiency
even further by reusing information from previous steps. This idea is actually the
main point of contact between this work and previous contributions from the literature
which have incorporated it with encouraging results in a variety of contexts. Among
the most relevant ones stand the coupling of the parareal algorithm with spatial
domain decomposition (see [18, 14, 1]), the combination of the parareal algorithm
with iterative high order methods in time like spectral deferred corrections (see [22,
19, 21]) and, in a similar spirit, applications of the parareal algorithm to solve optimal
control problems (see [18, 17]). In section 4.2, we briefly explain in what sense the
two first applications can be seen as particular instances of the current approach
and how our viewpoint could help to give them more solid theoretical foundations.
Finally, we identify another relevant scenario where efficiency could be enhanced by
reusing information from previous iterations: the solution of time-dependent problems
involving internal iterative schemes at every time step. This idea was first proposed
in [23] and a more complete analysis will be proposed in a forthcoming work.

2. A scalable adaptive parareal algorithm.

2.1. Setting and preliminary notations. Let U be a Banach space of func-
tions defined over a domain Ω ⊂ Rd (d ≥ 1), e.g. U = L2(Ω). Let

E : [0, T ]× [0, T ]× U→ U
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be a propagator, that is, an operator such that, for any given time t ∈ [0, T ], s ∈
[0, T − t] and any function w ∈ U, E(t, s, w) takes w as an initial value at time t and
propagates it at time t+ s. We assume that E satisfies the semi group property

E(r, t− r, w) = E(s, t− s, E(r, s− r, w)), ∀w ∈ U,∀(r, s, t) ∈ [0, T ]3, r < s < t.

We further assume that E is implicitly defined through the solution u ∈ C1([0, T ],U)
of the time-dependent problem

u′(t) +A (t, u(t)) = 0, t ∈ [0, T ],(1)

where A is an operator in [0, T ] × U. Then, given any w ∈ U, E(t, s, w) denotes
the solution to (1) at time t + s with initial condition w at time t ≥ 0. In our
problem of interest, we study the evolution given by (1) when the initial condition
is u(0) ∈ U. Note that E could also be associated to a discretized version of the
evolution equation or be defined through an operator that is not necessary related to
an evolution equation (see [11]).

Since, in general, the problem does not have an explicit solution, we seek to
approximate it at a given target accuracy. For any initial value w ∈ U, any t ∈
[0, T [, s ∈ [0, T − t] and any ζ > 0 we denote by [E(t, s, w); ζ] an element of U that
approximates E(t, s, w) such that we have

(2) ‖E(t, s, w)− [E(t, s, w); ζ]‖≤ ζ s (1 + ‖w‖),

where, here and in the following, ‖·‖ denotes the norm in U. Any realization of
[E(t, s, w); ζ] involves three main ingredients:

i) a numerical scheme to discretize the time dependent problem (1) (e.g. an
Euler scheme in time),

ii) a certain expected error size associated with the choice of the discretization
(e.g. error associated with the time step size of the Euler scheme),

iii) a numerical implementation to solve the resulting discrete systems (e.g. con-
jugate gradient, Newton method, SSOR, . . . ).

In the following, we will use the term solver to denote a particular choice for i), ii)
and iii). Given a solver S, we will use the same notation as for the exact propagator
E to express that S(t, s, w) is an approximation of E(t, s, w) with a certain accuracy
ζ. In other words, we can write S(t, s, w) = [E(t, s, w); ζ] and we shall assume that
the numerical complexity to realize [E(t, s, w); ζ] is1

(3) costS(ζ, s) = sζ−1/α,

i.e. proportional to the size of the time evolution window. The cost increases when
ζ get smaller like ζ−1/α, where α > 0 accounts for the order of the numerical scheme
which is used to discretize the time variable and in particular the three ingredients
above.

2.2. An idealized version of the parareal algorithm. Let be given a decom-
position of the time interval [0, T ] into N subintervals [TN , TN+1], N = 0, . . . , N − 1.
Without loss of generality, we will take them of uniform size ∆T = T/N which means
that TN = N∆T for N = 0, . . . , N . For a given target accuracy η > 0, the primary

1In fact, costS(ζ, s) scales proportional to sζ−1/α but for simplicity we assume that the propor-
tionality constant is one which can be seen as normalization of the unit cost.
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goal of the parareal in time algorithm is to build an approximation ũ(TN ) of u(TN )
such that

(4) max
0≤N≤N

‖u(TN )− ũ(TN )‖≤ η.

The classical way to achieve this is to set

ũ(TN ) = Sseq(0, TN , u(0)) = [E(0, TN , u(0)); ζ], 0 ≤ N ≤ N,

where Sseq is some sequential solver in [0, T ] with ζ = η/(T (1 + ‖u(0)‖)) in (2).
However, this comes at the cost of solving over the whole time interval [0, T ] and we
have

costseq(η, [0, T ]) = T

(
η

T (1 + ‖u(0)‖)

)−1/α
.

The main goal of the parareal in time algorithm is to speed up the computing time,
while maintaining the same target accuracy η. This is made possible by first decom-
posing the computations over the time domain. Instead of solving over [0, T ], we
perform N parallel solves over intervals of size ∆T . We next introduce an idealized
version of it which will not be feasible in practice but will be the starting point of
subsequent implementable versions. The algorithm relies on the use of a solver G
(known as the coarse solver) with the following properties involving the operator

δG := E − G.

Hypotheses (H): There exists εG , Cc, Cd > 0 such that for any function x, y ∈ U
and for any t ∈ [0, T [ and s ∈ [0, T − t],

G(t, s, x) = [E(t, s, x), εG ] ⇔ ‖δG(t, s, x)‖≤ s(1 + ‖x‖)εG(5a)
‖G(t, s, x)− G(t, s, y)‖≤ (1 + Ccs)‖x− y‖,(5b)
‖δG(t, s, x)− δG(t, s, y)‖≤ CdsεG‖x− y‖(5c)

The idealized version of the algorithm then consists in building iteratively a series
(yNk )k of approximations of u(TN ) for 0 ≤ N ≤ N following the recursive formula

(6)


yN+1

0 = G(TN ,∆T, yN0 ), 0 ≤ N ≤ N − 1
yN+1
k+1 = G(TN ,∆T, yNk+1) + E(TN ,∆T, yNk )

− G(TN ,∆T, yNk ), 0 ≤ N ≤ N − 1, k ≥ 0,
y0

0 = u(0).

At this point, several comments are in order. The first one is that the computation of
yNk only requires propagations with E over intervals of size ∆T . As follows from (6), for
a given iteration k, N propagations of this size are required, each of them over distinct
intervals [TN , TN+1] of size ∆T , each of them with independent initial conditions.
Since they are independent from each other, they can be computed over N parallel
processors and the original computation over [0, T ] is decomposed into N subintervals
of size ∆T . The second observation is that the algorithm may not be implementable in
practice because it involves the exact propagator E . Feasible instantiations consist in
replacing E(TN ,∆T, yNk ) by some approximation [E(TN ,∆T, yNk ), ζNk ] with a certain
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accuracy ζNk which has to be carefully chosen. We will come to this point in the next
section. The third observation is to note that, in the current version of the algorithm,
for allN = 0, . . . , N , the exact solution u(TN ) is obtained after exactly k = N parareal
iterations. This number can be reduced when we only look for an approximate solution
with accuracy η. In this case, we can estimate the final number of iterations K(η)
using the following convergence rate result. To this end, we introduce the shorthand
notation for the error norm

ENk := ‖u(TN )− yNk ‖, k ≥ 0, 0 ≤ N ≤ N,

and the quantities

µ = eCcT

Cd
max

0≤N≤N
(1 + ‖u(TN )‖), and τ := CdTe

−Cc∆T εG .

Theorem 1. If G and δG satisfy Hypothesis (5), then,

(7) max
0≤N≤N

‖u(TN )− yNk ‖≤ µ
τk+1

(k + 1)! , ∀k ≥ 0.

Proof. The proof is in the spirit of existing results from the literature (see [15, 5,
16, 13]) but it is instructive to give it for subsequent developments in the paper. We
introduce the following quantities

(8)


α := CdεG∆T
β := 1 + Cc∆T
γ := ∆TεG max0≤N≤N (1 + ‖u(TN )‖)

as shorthand notations for the proof.
If k = 0, using definition (6) for yN0 , we have for 0 ≤ N ≤ N − 1,

EN+1
0 = ‖yN+1

0 − u(TN+1)‖
= ‖G(TN ,∆T, yN0 )− E(TN ,∆T, u(TN ))‖
≤ ‖G(TN ,∆T, yN0 )− G(TN ,∆T, u(TN ))‖+‖G(TN ,∆T, u(TN ))− E(TN ,∆T, u(TN ))‖
≤ (1 + Cc∆T )EN0 + ∆TεG(1 + ‖u(TN )‖)
≤ βEN0 + γ,

where we have used (5a) and (5b) to derive the second to last inequality.
For k ≥ 1, starting from (6), we have

yN+1
k − u(TN+1) = G(TN ,∆T, yNk ) + E(TN ,∆T, yNk−1)− G(TN ,∆T, yNk−1)− E(TN ,∆T, u(TN ))

= G(TN ,∆T, yNk )− G(TN ,∆T, u(TN )) + δG(TN ,∆T, yNk−1)− δG(TN ,∆T, u(TN )).

Taking norms and using (5b), (5c), we derive

EN+1
k ≤ βENk + αENk−1,

Following [13], we consider the sequence (eNk )N,k≥0 defined recursively as follows. For
k = 0,

(9) eN0 =
{

0, if N = 0
βeN−1

0 + γ, if N ≥ 1
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and for k ≥ 1,

(10) eNk =
{

0, if N = 0
αeN−1

k−1 + βeN−1
k , if N ≥ 1.

Since ENk ≤ eNk for k ≥ 0 and N = 0, . . . , N , we analyze the behavior of (eNk ) to
derive a bound for ENk . For this, we consider the generating function

ρk(ξ) =
∑
N≥0

eNk ξ
N .

From (9) and (10) we get{
ρk(ξ) = αξρk−1(ξ) + βξρk(ξ), k ≥ 1
ρ0(ξ) = γ ξ

1−ξ + βξρ0(ξ),

from which we derive

ρk(ξ) = γαk
ξk+1

(1− ξ)
1

(1− βξ)k+1 , k ≥ 0.

Since, β ≥ 1, we can bound the term (1 − ξ) in the denominator by (1 − βξ). Next,
using the binomial expansion

(11) 1
(1− βξ)k+2 =

∑
j≥0

(
k + 1 + j

j

)
βjξj

and identifying the term in ξN in the expansion, we derive the bound

eNk ≤ γαkβN−k−1
(

N

k + 1

)
.

Hence, using definition (8) for α, β and γ,

ENk ≤ eNk ≤
(1 + Cc∆T )N−k−1 max0≤N≤N (1 + ||u(TN )‖)

Cd(k + 1)! [CdεGe−Cc∆TTN
]k+1

,

which ends the proof of the lemma.
Note that the only step which is not sharp in the above proof is the step where 1− ξ
is replaced by 1 − βξ. Therefore, bound (7) yields a good estimate of the number
K(η) of iterations to reach a final accuracy η, namely

K(η) = min
{
k ≥ 0 : µ

τk+1

(k + 1)! ≤ η
}
.

As a result, we achieve (4) with ũ(TN ) = yNK(η).
Finally, we also note that τ is the quantity driving convergence and its speed. It

follows that a sufficient condition to converge is to use a coarse solver such that

τ < 1 ⇔ εG <
eCc∆T

CdT
.

This gives a certain limitation on the definition of the coarse solver since it imposes
some minimal accuracy. In the following, we will work under this assumption.
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2.3. Feasible realizations of the parareal algorithm. Feasible versions of
algorithm (6) involve approximations of E(TN ,∆T, yNk ) with a certain accuracy ζNk .
This leads to consider algorithms of the form

(12)


yN+1

0 = G(TN ,∆T, yN0 ), 0 ≤ N ≤ N − 1
yN+1
k+1 = G(TN ,∆T, yNk+1) + [E(TN ,∆T, yNk ); ζNk ]

− G(TN ,∆T, yNk ), 0 ≤ N ≤ N − 1, k ≥ 0,
y0

0 = u(0).

Since no feasible version will converge at a better rate than (7), we analyze here what
is the minimal accuracy ζNk that preserves it. A result in this direction is given in the
following theorem. It requires to introduce the quantity

νp :=
max0≤N≤N (1 + ‖yNp ‖)

max0≤N≤N (1 + ‖u(TN )‖) , ∀p ≥ 0.

Theorem 2. Let G and δG satisfy Hypothesis (5). Let k ≥ 0 be any given positive
integer. If for all 0 ≤ p < k and all 0 ≤ N < N , the approximation [E(TN ,∆T, ζNp )]
has accuracy

(13) ζNp ≤ ζp :=
εp+2
G

(p+ 1)! νp
,

then the (yNk )N of the feasible parareal scheme (12) satisfy

(14) max
0≤N≤N

‖u(TN )− yNk ‖≤ µ
τ̃k+1

(k + 1)! ,

with

τ̃ :=
(
1 + CdTe

−Cc∆T
)
εG .

Let us make a couple of remarks before giving the proof of the theorem. First,
comparing (7) and (14), we see that the feasible parareal algorithm converges at a
rate close to the ideal one in the sense that it only deviates by a factor

τ̃

τ
= τ + εG

τ
= 1 + eCc∆T

CdT
.

For a given problem with fixed Cc, Cd and T , this deviation depends on the size of
∆T , which is itself driven by the number of processors N . The minimal accuracy to
update the realization of E(TN ,∆T, yNk ) is given by (13). As a final remark, we note
that we can also interpret both convergence bounds (7) and (14) in terms of εG . With
this viewpoint, the error at iteration k is bounded by C(k)εk+1

G /(k + 1)! where C(k)
is a factor which grows exponentially with k.

Proof. The proof follows the same lines as the one for theorem 1 and ENk , α, β, γ
are defined exactly as before. In addition, it will be useful to introduce the sequence{

gk = ζk∆T max0≤N≤N (1 + ‖yNk ‖), ∀k ≥ 0
g−1 = γ
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We concentrate on the case k ≥ 1 since the case k = 0 is identical as in theorem 1.
For k ≥ 1, using (12), we have

yN+1
k − u(TN+1) = G(TN ,∆T, yNk )− G(TN ,∆T, u(TN ))− G(TN ,∆T, yNk−1)

+ G(TN ,∆T, u(TN )) + [E(TN ,∆T, yNk−1); ζNk−1]− E(TN ,∆T, u(TN ))
= G(TN ,∆T, yNk )− G(TN ,∆T, u(TN )) + δG(TN ,∆T, yNk−1)
− δG(TN ,∆T, u(TN )) + [E(TN ,∆T, yNk−1); ζNk−1]− E(TN ,∆T, yNk−1).

Taking norms, using (5b), (5c) and the definition (2) applied to [E(TN ,∆T, yNk−1); ζNk−1],
we derive

EN+1
k ≤ [1 + Cc∆T ]ENk + Cd∆TεGENk−1 + ζNk−1∆T max

0≤N≤N
(1 + ‖yNk−1‖)

≤ βENk + αENk−1 + gk−1.

Similarly to theorem 1, we introduce the sequence (ẽNk )N,k≥0 defined for k = 0 as
ẽN0 = eN0 for all N ≥ 0 and for k ≥ 1,

ẽNk =
{

0, if N = 0
αẽN−1

k−1 + βẽN−1
k + gk−1, if N ≥ 1

The associated generating function ρ̃k satisfies{
ρ̃k(ξ) = αξρ̃k−1(ξ) + βξρ̃k(ξ) + gk−1

ξ
1−ξ , ∀k ≥ 1,

ρ̃0(ξ) = ρ0(ξ) = γξ
(1−ξ)(1−βξ) .

Hence

ρ̃k(ξ) =
(

αξ

1− βξ

)
ρ̃k−1(ξ) + ξ

(1− ξ)(1− βξ)gk−1

=
(

αξ

1− βξ

)k
ρ̃0(ξ) + ξ

(1− ξ)(1− βξ)

k−1∑
`=0

(
αξ

1− βξ

)`
gk−1−`

By replacing again at the denominator the factor (1 − ξ) by (1 − βξ) and using the
binomial expansion (11), we derive the bound

ρ̃k(ξ) ≤ γαkξk+1
∑
j≥0

(
k + 1 + j

j

)
βjξj +

k−1∑
`=0

α`ξ`+1gk−1−`
∑
j≥0

(
`+ 1 + j

j

)
βjξj ,

=
∑
j≥0

k∑
`=0

α`gk−1−`β
j

(
`+ 1 + j

j

)
ξ`+1+j

where we have used that g−1 = γ. The coefficient associated to the term ξN above
gives the inequality

ẽNk ≤
k∑
`=0

α`gk−1−`β
N−`−1

(
N

`+ 1

)
, ∀k ≥ 1,
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From the definition of ζ`, we have that

g` ≤
∆Tε`+2

G
(`+ 1)! max

0≤N≤N
(1 + ‖u(TN )‖).

Therefore, recalling the definition (8) of α, β and γ, we derive

ẽNk ≤
εk+1
G max0≤N≤N (1 + ‖u(TN )‖)

Cd

k∑
`=0

(Cd∆T )`+1 (1 + Cc∆T )N−`−1

(k − `)!

(
N

`+ 1

)

≤
εk+1
G max0≤N≤N (1 + ‖u(TN )‖)

Cd

k∑
`=0

(
CdTe

−CC∆T )`+1 eCCT

(`+ 1)! (k − 1− `)!

≤
max0≤N≤N (1 + ‖u(TN )‖)eCcT

Cd(k + 1)!
(
(1 + CdTe

−Cc∆T )εG
)k+1

,

which ends the proof since ENk ≤ ẽNk for N = 0, . . . , N .

2.4. Connection to the classical formulation of the parareal algorithm
and advantages of the current view-point. In the original version of the al-
gorithm, E(TN ,∆T, yNk ) is approximated with an accuracy ζNk = ζF which is kept
constant in N and across the parareal iterations k. This has usually been done by
using a solver F defined in the same spirit as G, but satisfying Hypothesis (5) with a
better accuracy εF < εG . We have in this case

[E(TN ,∆T, yNk ); ζF ] = F(TN ,∆T, yNk )

and we recover the classical algorithm (see [2] and [3])
yN+1

0 = G(TN ,∆T, yN0 ), 0 ≤ N ≤ N − 1
yN+1
k+1 = G(TN ,∆T, yNk+1)

+ F(TN ,∆T, yNk )− G(TN ,∆T, yNk ), 0 ≤ N ≤ N − 1, k ≥ 0,
y0

0 = u(0).

Compared to this classical version of the parareal algorithm, the approach with dy-
namically updated tolerances (12) offers the following important advantages:

1. The algorithm converges to the exact solution u(TN ) and not to the solution
achieved by the fixed chosen fine solver F(0, TN , u(0)).

2. The accuracies εG and ζk can be estimated with some appropriate a posteriori
estimators so it is possible to have an online stopping criterion.

3. If one wants to approximate with a final accuracy η, the new approach bal-
ances numerical costs in a near-optimal way because the accuracy ζNk is rather
low for small k and it is increased by a factor of roughly εG at every new step.
As will be explained latter, this brings a clear gain in parallel efficiency with
respect to the classical algorithm which uses the fine solver at every parareal
iteration. An estimation of the actual gain is given in the next section.

3. Parallel efficiency. In this section, we estimate the parallel speed up and
efficiency of the method. The speed up is defined as the ratio

speed-upSA/seq(η, [0, T ]) := costseq(η, [0, T ])
costSA(η, [0, T ])
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between the cost to run a sequential fine solver achieving a target accuracy η with
the cost to run a scalable adaptive parareal algorithm providing at the end the same
target accuracy η.

The efficiency of the method is then defined as the ratio of the above speed up
with the number of processor which gives a target of 1 to any parallel solver:

effSA/seq(η, [0, T ]) :=
speed-upSA/seq(η, [0, T ])

N
,

For our application, let us assume that the cost to realize [E(TN ,∆T, yNk ), ζk]
follows the model given in (3), i.e., costS(ζk,∆T ) ' ∆Tζ−1/α

k and α > 0 is linked
to the order of the numerical scheme which is used to discretize the time variable.
Note that α could actually depend on k, as we could change the nature of the scheme
[E(TN ,∆T, yNk ); ζNk ] when k increases, but we stick to this simple model for clarity of
exposition.

Lemma 3. If the cost of the coarse solver is negligible with respect to the cost of
realizing [E(TN ,∆T, yNk ), ζk] for any k ≥ 0, then

effSA/seq(η, [0, T ]) = 1− τ1/α

1− τK(η)/α ∼
1

(1 + ε
1/α
G )

.

Therefore

speed-upSA/seq(η, [0, T ]) ∼ N 1
(1 + ε

1/α
G )

.

Before giving the proof of the lemma, several remarks/observations are in order. The
fist is about the hypothesis that the cost of the coarse solver is negligible. We claim
that this assumption is not as strong as it may appear. Indeed, this cost is negligible
in front of, e.g., the last realization of the fine solver (remember that G(t, s, x) is some
[E(t, s, x), εG ]). This is due to the fact that the cost of the coarse solver after K(η)
iterations is

(15) cost(G) = TK(η)(εG)−1/α

while the cost of the fine solver in the last parareal iteration is

(16) ∆Tζ−1/α
K(η) '

T

N

(
(εG)K(η)+1

K(η)!

)−1/α

' cost(G)
(

1
NK(η)

[
K(η)!

(εG)K(η)

]1/α
)

and we note that the last factor between brackets is rapidly much larger than 1.
Another remark that follows from the lemma is that, regardless of the final number

of iterations, K(η), the parallel efficiency will always be larger than 1− o(εG), where
o(εG) rapidly goes to zero with εG . This is in contrast to the plain parareal algorithm
whose efficiency decreases with the final number of iterations K(η) as 1/K(η). In
addition, as soon as εG becomes negligible in front of 1, we will be in the range of full
scalability.

Proof. The cost of the scalable adaptive parareal scheme after K(η) iterations is

(17) costSA(η, [0, T ]) = ∆T
K(η)−1∑
k=0

ζ
−1/α
k
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Since we are in a range where the scheme converges, the quantity max0≤N≤N‖yNk ‖
is bounded and thus there exists 0 < c ≤ 1 ≤ c such that c ≤ νk ≤ c for all k ≥ 0.
We will account for this with the notation νk ∼ 1. Note that in fact c and c are close
to one. Let us start with the simple case α = 1 and denote K = K(η)− 1:

costSA(η, [0, T ]) = ∆T
K∑
k=0

ζ−1
k = ∆Tζ−1

K(η)−1

(
1 +

εG
K

+
ε2
G

K(K − 1) + · · ·+
ε
K−1
G
K!

)
we thus derive

costSA(η, [0, T ]) ≤ ∆Tζ−1
K(η)−1(1 + εG)

In the general case (α > 1), the same is true with

costSA(η, [0, T ]) ≤ ∆Tζ−1/α
K(η)−1(1 + ε

1/α
G )

Up to this last factor, the current conclusion is that the global cost of the parareal
procedure is equal to the last fine solver on each sub-interval with size ∆T (both the
coarse and the previous fine propagation are negligible).

Since the accuracy that is obtained at the end of the parareal procedure (see (14))
is of the same order as the accuracy provided with plain parareal solver (see (7)), it
follows that if we now take the last target accuracy ζ−1/α

K(η)−1 of the scalable adaptive
algorithm as the accuracy of the fine scheme in the plain parareal algorithm, the cost
would be

costPP(η, [0, T ]) = K(η)∆Tζ−1/α
K(η)−1,

Therefore, the complexity reduction with respect to the scalable adaptive parareal
method is

reductionSA/PP(η, [0, T ]) = costSA(η, [0, T ])
costPP(η, [0, T ]) ∼

1
K(η) (1 + ε

1/α
G )

In addition, since

reductionPP/seq(η, [0, T ]) = costPP(η, [0, T ])
costseq(η, [0, T ]) = K(η)

N
,

the scalable adaptive algorithm reduces the complexity by a factor

reductionSA/seq(η, [0, T ]) = costSA(η, [0, T ])
costseq(η, [0, T ]) ∼

1
N

(1 + ε
1/α
G ) ∼ 1

N

with respect to a sequential solution, as soon as εG is small enough. Therefore

speed-upSA/seq(η, [0, T ]) =
(
reductionSA/seq(η, [0, T ])

)−1 ∼ N 1
(1 + ε

1/α
G )

and

effSA/seq(η, [0, T ]) := N−1speed-upSA/seq(η, [0, T ]) ∼ 1
(1 + ε

1/α
G )

.
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4. Realization of [E(TN ,∆T, yNk ), ζNk ]. In this section, we list different possi-
bilities to build the approximations [E(TN ,∆T, yNk ), ζNk ] in practice.

4.1. Adaptivity. Since the accuracy ζNk should improve with k, the first natural
ingredient to realize properly [E(TN ,∆T, yNk ), ζNk ] is to use adaptive refinement tech-
niques. The implementation of adaptive refinements ultimately rests on the use of a
posteriori error estimators and opens the door to an online local time step adaptation
procedure in the parareal algorithm. In section 5, we present an application of the
algorithm to two ODEs where we use a dyadic adaptive refinement strategy.

4.2. Enriching the input information with previous iterations. Usually,
solvers to realize [E(TN ,∆T, yNk ), ζNk ] are built using only INk = {TN ,∆T, yNk } as input
information. We account for this idea with the notation

S(TN ,∆T, yNk ) −−−−−−−−−→
(IN
k
,∆Tζ−1/α

k
)

[E(TN ,∆T, yNk ); ζNk ].

In this section, we want to further enhance the gain in efficiency that the scal-
able adaptivity offers, by proposing ways to increase the accuracy of the solver
[E(TN ,∆T, yNk ), ζNk ] across the iterations while maintaining the cost to realize it as
independent as possible from ζNk , N , and k. For this, one possibility is to enrich
INk with data produced during the previous parareal iterations (although it would of
course be at the cost of increasing the storage requirements).

Let PNk denote the intermediate information that has been produced at iteration
k between [TN , TN+1] and by Pk := ∪N−1

N=0PNk all the information produced at step k.
Using ĨNk = {INk ,P

N−1
k , . . . ,P0

k,Pk−1, . . . ,P0}, as input information, the idea is to see
whether it could be possible to find a solver S such that

(18) S(TN ,∆T, yNk ) −−−−−−→
(̃IN
k
,cost)

[E(TN ,∆T, yNk ); ζNk ]

with a constant and small complexity cost. Note that using the enriched set of infor-
mation ĨNk means that we want to learn from the previous approximations of u(TN+1)
given by [E(TN ,∆T, yNp ), ζNp ], 0 ≤ p ≤ k − 1, to start the current algorithm closer
to u(TN+1). After each parareal iteration, we thus improve the accuracy, without
increasing the work for solving because we start from a better input, accumulated
from the previous parareal iterations.

In the rest of this section, we describe three relevant scenarios where we can
approximate E(TN ,∆T, yNk ) by trying to build a scheme in the spirit of (18). The first
two examples have already been presented in the literature and concern the coupling
of parareal with spatial domain decomposition (section 4.2.1) and with iterative high-
order time integration schemes (section 4.2.2). In these two cases, there is to date
no complete convergence analysis since it remains to show that i) E(TN ,∆T, yNk ) is
approximated with accuracy ζk and ii) the cost of the solver is really constant through
the parareal steps. In addition to these two applications, we mention a third scenario
where the convergence analysis can be fully proven. It concerns the solution of time-
dependent problems involving internal iterative schemes at every time step. This idea
was first analyzed in [23] in a restricted setting. In section 4.2.3, we give the main
setting and defer the analysis for a forthcoming paper since its full development would
exceed the page limitations.

4.2.1. Parareal coupled with spatial domain decomposition. Here, we
consider a solver S = DDM which involves spatial domain decomposition over [TN , TN+1]



A SCALABLE ADAPTIVE PARAREAL ALGORITHM WITH ONLINE STOPPING CRITERION13

[14, 1]. We assume that DDM involves a time discretization with small time step
δt < ∆T . Let n be the number of time steps on each interval [TN , TN+1] so that we
have the relations ∆T = nδt and T = N∆T = N nδt and the total number of time
steps in [0, T ] is n := N n. The domain decomposition iterations act on a partition
Ω = ∪Ll=1Ωl of the domain. For 0 ≤ n ≤ n, we denote by uN,n,jk the solution produced
by DDM at time t = TN + nδt after j ≥ 0 domain decomposition iterations. The no-
tation J∗ will denote the last iteration (fixed according to some stopping criterion).
At j = 0, these iterations need to be initialized at the interfaces ∂Ωl, 1 ≤ l ≤ L. The
idea explored in, e.g., [14, 1], is to take the values uN,n,J

∗

k−1 |∂Ωl at these interfaces as a
starting guess for 0 ≤ n ≤ n so that

ĨNk = {INk , {u
N,n,J∗

k−1 |∂Ωl , 0 ≤ n ≤ n}}.

From [14, 1], there is numerical evidence that the computations of DDM(TN ,∆T, yNk )
using ĨNk yield [E(TN ,∆T, yNk ); ζNk ] after a reduced number of iterations J∗ which is
independent of k. Thus cost would be kept constant and

u
N,n,J∗

k = DDM(TN ,∆T, yNk ) −−−−−−→
(̃IN
k
,cost)

[E(TN ,∆T, yNk ); ζNk ].

4.2.2. Parareal coupled with iterative high-order time integration schemes.
Spectral Deferred Correction (SDC, [8]) is an iterative time integration scheme. Start-
ing from an initial guess of u(t) at discrete points, the method adds successive cor-
rections to this guess. The corrections are found by solving an associated evolution
equation. Under certain conditions, the correction at every step increases by one the
accuracy order of the time discretization.

We carry here a simplified discussion on how to build [E(TN ,∆T, yNk ); ζNk ] when
S = SDC and connect it to the so-called Parallel Full Approximation Scheme in Space-
Time (PFASST, [20, 9]). For a given time interval [TN , TN+1], we consider its n + 1
associated Gauss-Lobatto points {tN,n}

n
n=0 and quadrature weights {ωn}

n
n=0. The

Gauss-Lobatto points are such that tN,0 = TN and tN,n = TN+1. We denote uN,n,jk

the approximation of u(tN,n) at parareal iteration k after j ≥ 0 SDC iterations. As-
suming that one uses an implicit time-stepping scheme to solve the corrector equations
involved in this method, uN,n+1,j

k is given by

uN,n+1,j
k = uN,n,jk + (tN,n+1 − tN,n)

(
A(tN,n+1, u

N,n+1,j
k )−A(tN,n+1, u

N,n+1,j−1
k )

)
+

n∑
m=0

ωmA(tN,m, uN,m,j−1
k ), 1 ≤ j, 0 ≤ n ≤ n− 1,

uN,0,jk = yNk

uN,n,0k given for 0 ≤ n ≤ n.

To speed-up computations, one of the key elements is the choice of the starting guesses
uN,n,0k , 0 ≤ n ≤ n. Without entering into very specific details, the PFASST algo-
rithm is a particular instantiation of the above scheme when J∗ = 1 and uN,n,0k uses
information produced at the previous parareal iteration k − 1. Therefore, PFASST
falls into the present framework in the sense that it produces

u
N,n,1
k = SDC(TN ,∆T, yNk )
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with

ĨNk = {TN ,∆T, yNk ,Pk−1}

and it is expected that uN,n,1k = [E(TN ,∆T, yNk ); ζNk ].
An additional component of PFASST is that the algorithm also tries to improve

the accuracy of the coarse solver G using SDC iterations built with ĨkN . This has not
been taken into account in our scalable adaptive parareal algorithm (12).

4.2.3. Coupling with internal iterative schemes. Any implicit discretiza-
tion of problem (1) leads to discrete linear or nonlinear systems of equations which
are often solved with iterative schemes. When they are involved as internal iterations
within the parareal algorithm, one could try to speed them up by building good initial
guesses based on information from previous parareal iterations. We illustrate this idea
in the simple case where:

• A(t, ·) is a linear differential operator in U complemented with suitable bound-
ary conditions,

• we use an implicit Euler scheme for the time discretization.
A sequential solution of problem (1) with the implicit Euler scheme goes as follows.
At each time tN,n = TN + nδt, the solution u(tN,n) is approximated by the function
uN,n ∈ U which is itself the solution to

B(uN,n) = gN,n,

where gN,n = uN,n−1 + δtf(tN,n) and

B(v) := v + δtA(tN,n, v), ∀v ∈ U.

Note that B depends on time but our notation does not account for it in order not to
overload the notations.

After discretization of U, the problem classically reduces to solving a linear system
of the form

BūN,n = ḡN,n,

for the unknown ūN,n in some discrete subspace S of U. Usually, the above system is
solved either by means of a conjugate gradient method or by a Richardson iteration
of the form {

ūN,n,j = (Id + ωPB)ūN,n,j−1 + ωPb̄, j ≥ 1
ūN,n,0 ∈ S given.

Here, ω is a suitably chosen relaxation parameter and P can be seen as a pre-
conditioner. The internal iterations j are stopped whenever a certain criterion is
met (it could be an a posteriori estimator) and we denote by JN,n their final number.
Obviously, JN,n depends on the starting guess for which a usual choice is to take the
solution at the previous time, that is

ūN,n,0 = ūN,n−1,JN,n−1 .

In order to achieve our goal, i.e. maintaning a low cost while increasing the accuracy
at each parareal step, we can now reuse information from previous parareal iterations
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for the starting guess. In [23], two options are explored. The first is{
ūN,n,0k = ū

N,n−1,JN,n−1,k
k , if k = 0

ūN,n,0k = ū
N,n,JN,n,k−1
k−1 , if k ≥ 1,

and the second, less natural choice,{
ūN,n,0k = ū

N,n−1,JN,n−1,k
k , if k = 0

ūN,n,0k = ū
N,n,JN,n,k−1
k−1 + ū

N,n−1,JN,n,k
k − ūN,n−1,JN,n−1,k−1

k−1 , if k ≥ 1.

In the first case, we take over the internal iterations at the point where they were
stopped in the previous parareal iteration k − 1. In addition to this, in the second
case, the term u

N,n−1,JN,n,k
k −uN,n−1,JN,n−1,k−1

k−1 tries to better take the dynamics of the
process into account. Note that the use of solutions that have been produced in the
previous parareal iterations is at the expense of additional memory requirements. It
might also be at the cost of a certain increase in the complexity locally at certain times.
However, [23] shows in a restricted setting that these starting guesses (in particular the
second) have interesting potential to enhance the speed-up of the parareal algorithm.
A general theory on this aspect will be presented in a forthcoming work.

5. A first numerical example. Some of the quantities involved in the con-
vergence and parallel efficiency analysis are difficult to estimate in actual practice.
We study the performance in two extreme cases. The first is a favorable scenario
where the adaptive algorithm gives very high parallel efficiency. The second is a more
involved example were the performance is degraded by two sources: a computation-
ally expensive coarse solver and a task imbalance in the parallel computation of the
approximations [E(TN ,∆T, yNk ); ζNk ].

An example with good efficiency: the circular trajectory: We consider the
system {

x′(t) = −y(t),
y′(t) = x(t),

for t ∈ [0, 3] and with initial condition x(0) = 0 and y(0) = 1. The trajectory is a
circle of radius 1 centered at the origin (see figure 1). This example is admittedly
very simple but it has been chosen because there is no subinterval where the dynamics
become more involved. For the discussion, we set the target accuracy

η = 10−3

and implement the adaptive parareal algorithm (12) with a number N = 8 of pro-
cessors. This choice sets the value ∆T = T/N = 3/8 = 3.75.10−1. We work with a
coarse solver G that uses an explicit Euler scheme with uniform time step ∆T . Its ac-
curacy εG has been measured to be εG = 7.12.10−1. This estimation was done with a
reference solver using an explicit Euler scheme with uniform time step δtref = 5.10−4.
It is taken as the reference sequential solution and is used in the following to compute
approximation errors. Finer grids have been tried and do not change the results that
are presented here.

To build [E(TN ,∆T, yNk ); ζNk ], we use an explicit Euler scheme whose time step
δt is refined until the the accuracy ζNk is reached. We have worked with a simple
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dyadic refinement strategy: we start from δt = ∆T and then divide δt by two until
the accuracy ζNk is reached. More elaborated strategies could of course be considered.
The accuracy of the approximation is evaluated by computing the error between the
explicit Euler solver and the reference sequential solution at time TN+1. However,
note that this error estimation should ideally involve a posteriori error techniques
in order to have a real online stopping criterion. This point, together with more
elaborated refinement strategies, will be addressed in a forthcoming paper.

To satisfy η = 10−3, we need 6 parareal iterations. This means that the index k
ranges from 0 to 5 and K(η) = 5. It also means that we have built approximations
[E(TN ,∆T, yNk ); ζNk ] up to index K − 1 = 4. We plot in figure 1 the trajectories and
convergence errors. Due to the fact that the dynamics are very homogeneous in the
whole interval [0, T ], for a given iteration k, the refinement strategy acts identically
on all the time slices [TN , TN+1] to compute [E(TN ,∆T, yNk ); ζNk ]. Table 1 displays
the time steps δt required at every iteration k and also the numerical cost of each
computation. We have taken one step of the Euler explicit method as unit cost.

k δt to compute [E(TN ,∆T, yNk ); ζNk ] cost([E(TN ,∆T, yNk ); ζNk ])
0 ∆T/2 ≈ 1.9.10−1 2
1 ∆T/22 ≈ 9.4.10−2 22

2 ∆T/24 ≈ 2.3.10−2 24

3 ∆T/27 ≈ 2.9.10−3 27

4 ∆T/29 ≈ 7.3.10−4 29

Table 1: Time steps δt and cost to compute [E(TN ,∆T, yNk ); ζNk ] at each iteration k.

Taking the time to compute one step of the Euler method as our time unit, it
follows from the results of the table that the computing time to run the algorithm is

TSA(η) =
5∑
k=0

N−1∑
N=0

cost([TN , TN+1];G) +
4∑
k=0

cost([E(TN ,∆T, yNk ); ζNk ])

=
( 5∑
k=0

7∑
N=0

1
)

+ (2 + 22 + 24 + 27 + 29)

= 710.

To evaluate the speed-up and parallel efficiency of the method, we compare this com-
puting time with the one of a sequential explicit Euler scheme giving accuracy η at
the minimal numerical cost. This requires to find the largest time step δtseq that gives
η accuracy at times T0, T1, . . . , TN . Searching with a dyadic refinement strategy, we
find that δtseq = ∆T/28 yields and accuracy 1.44η and the next level δtseq = ∆T/29

gives 0.35η so we take this value to carry the discussion. In this setting,

speed-upSA = Tseq(η)
TSA(η) = 5, effSA = speed-upSA

N
= 0.65,

and the time step of the last parareal iteration corresponds exactly to the time step
of the sequential solver, namely δtseq = δtSA = ∆T/29 (see table 1). This clearly
illustrates the advantage of the proposed methodology: only the last parareal iteration
has the fine resolution and expensive numerical cost of the sequential solver, the
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previous iterations being at a cost which is almost negligible with respect to the last
step. This is in contrast to the classical approach where all steps are done with fine
resolution.
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Figure 1: Trajectories and convergence history of the adaptive parareal algorithm

To compare the performance of the adaptive approach with the classical one, we
work with a fine solver using an explicit Euler scheme with time step δt = ∆T/29 at
all parareal iterations. The algorithm reaches accuracy η after 5 iterations so we have

TPP(η) =
4∑
k=0

N−1∑
N=0

cost([TN , TN+1];G) +
3∑
k=0

cost(F(TN ,∆T, yNk ))

=
( 4∑
k=0

7∑
N=0

1
)

+ 4.29 = 2088.

As a result,

speed-upPP = Tseq(η)
TAP (η) ≈ 1.96, effPP = speed-upPP

N
≈ 0.25,

which means that, in this simple example, the adaptive version is about 2.5 more
efficient than the classical implementation.

An example with obstructions: the brusselator system: As a second example,
we consider the brusselator system{

x′ = A+ x2y − (B + 1)x
y′ = Bx− x2y,

which models a chain of chemical reactions. This ODE was already studied in a
previous work on the parareal algorithm (see [13]). The system has a fixed point
at x = A and y = B/A which becomes unstable when B > 1 + A2 and leads to
oscillations. We place ourselves in this oscillatory regime which is more challenging
for computations because there are large velocity variations in some time subintervals.
These dynamical heterogeneities were not present in the previous example, where the
velocity module was constant in time. They are however to be expected in most
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problems and entail different refinement levels from one subinterval to another. Our
example will reveal that, in this case, there is need for a rebalancing strategy to
preserve the high parallel efficiency of the algorithm.

We set A = 1 and B = 3 and the time interval is [0, T ] with T = 18. The initial
condition is x(0) = 0 and y(0) = 1. The system oscillates around the fixed point with
coordinates (1, 3) performs two loops in [0, 18]. We show in figure 2 the first loop
corresponding to t ∈ [0, 12] (the second loop is not shown for the sake of clarity). In
the figure, the separation between successive points is proportional to the velocity of
the system and illustrates its strong variations.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
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Figure 2: Left: Trajectory of the brusselator system with A = 1, B = 3 and over [0, 12].
Right: Convergence history of the adaptive parareal algorithm in the whole interval [0, 18].

Our discussion follows the same lines as in the previous example. Here we take

η = 7.10−5

and N = 60 which sets the value ∆T = T/N = 0.3. We work with a coarse solver G
that uses an explicit Runge-Kutta scheme of order 4 (RK4) with uniform time step
∆T . Its accuracy εG has been measured to be εG = 5.0.10−1. This estimation was
done with a reference solver using an RK4 scheme with uniform time step δtref = 10−5.
It is taken as the reference sequential solution and is used in the following to compute
the approximation errors. As in the previous example, finer time steps δtref have been
tried and produce the same numerical results that are presented here.

To build [E(TN ,∆T, yNk ); ζNk ], we use an explicit RK4 scheme whose time step δt
is dyadically refined (starting from δt = ∆T ) until the the accuracy ζNk is reached.

To satisfy η = 7.10−5, we need 7 parareal iterations so the index k goes from 0
to 6 and K(η) = 6. We plot in figure 2 the convergence errors. Since the dynamics
are more complex at certain times, the refinements of the time steps δt to compute
[E(TN ,∆T, yNk ); ζNk ] will vary depending on the time slices [TN , TN+1]. Table 2 dis-
plays for every k the number of time steps δt of different sizes in the N = 60 intervals
[TN , TN+1].

The difference in the time steps on every time slice leads to an imbalance of
the tasks in the algorithm. Indeed, for a given step k, each [E(TN ,∆T, yNk ); ζNk ]
is computed in parallel for N = 0, . . . , N . Therefore some processors will finish the
computation of [E(TN ,∆T, yNk ); ζNk ] later than others due to the heterogeneities in the
numerical complexity. As a result, without any rebalancing of the tasks, the parallel
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Number of subintervals [TN , TN+1] with time step δt
k δt = ∆T δt = ∆T/2 δt = ∆T/22 δt = ∆T/23 δt = ∆T/24

0 0 54 6 0 0
1 0 54 4 2 0
2 0 52 4 4 0
3 0 46 8 2 4
4 0 30 19 5 6
5 0 30 18 6 6

Table 2: Number ot time steps of different sizes δt at each iteration k.

efficiency is degraded. In the current example, taking the time to compute one step of
the RK4 method as our time unit, the computing time to run the algorithm without
any rebalancing is

TSA(η) =
6∑
k=0

N−1∑
N=0

cost([TN , TN+1];G) +
5∑
k=0

max
0≤N≤N−1

cost([E(TN ,∆T, yNk ); ζNk ])

=
6∑
k=0

59∑
N=0

cost([TN , TN+1];G) +
5∑
k=0

max
0≤N≤59

cost([E(TN ,∆T, yNk ); ζNk ])

= 7 ∗ 60 + 22 + 2.23 + 3.24 = 488.

In the above formula, the maximum over N comes as a consequence of the task
imbalance. We compare this computing time with the one of the best sequential
RK4 solver that gives η at the minimal numerical cost. Searching with the dyadic
refinement strategy, we find that δtseq = ∆T/23 yields an accuracy 2.2η and the next
level δtseq = ∆T/24 gives 0.14η so we select this value to carry the discussion. With
this choice,

Tseq(η) = 960,

and

speed-upSA = Tseq(η)
TSA(η) ≈ 1.96, effSA = speed-upSA

N
≈ 3.28.10−2

The classical implementation of the algorithm corresponds to use a fine solver with
an RK4 scheme with δt = ∆T/24 at all iterations k and all time slices. The algorithm
converges in 8 iterations (so K = 7), which is one more step than the adaptive
algorithm. This behavior is due to the impact that slight variations in the initial
conditions on each subinterval [TN , TN+1] might have. With the classical approach

speed-upPP = Tseq(η)
TPP(η) = 960

592 ≈ 1.62, effPP = speed-upPP
N

≈ 2.7.10−2.

so the adaptive implementation is slightly more efficient but both algorithms perform
rather poorly. The first reason for this is due to the fact that the numerical cost of the
coarse solver is not negligible with respect to the cost of the fine propagations (this
is in contrast to the circular trajectory). The second reason, as already anticipated,
concerns the heterogeneities in the refinements from one subinterval to another in the
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adaptive algorithm, which lead to an imbalance in the task of computing the approx-
imations [E(TN ,∆T, yNk ); ζNk ]. This obstruction can be overcome with a rebalancing
strategy that both equalizes and minimizes the numerical complexity per processor:

1. If we work with a constant number N of processors, we can merge subintervals
that do not require high refinements and split others where δt becomes small.

2. If we can add more than the original N processors during the process, we
can split the subintervals requiring more refinements and treat them with an
increasing number of processors.

Note that, in our current example, most of the subintervals only require two levels
of refinement. So, for the sake of the argument, let us assume that, in our example,
we add a few more processors so that the maximum level of refinement is two (δt ≥
∆T/22) and that the coarse solver involves an explicit Euler method (each step being
four times cheaper than an RK4 step). Then

T̃SA(η) = 7 ∗ 60/4 + 6 ∗ 22 = 129,

and

˜speed-upSA ≈ 7.44; ẽffSA ≈ 1.24.10−1

so about five times more efficient than the previous results.

Conclusion of the examples and perspectives: The two examples show that
the adaptive approach has a lot of potential to improve the parallel efficiency of the
algorithm. However, in order to fully benefit from its advantages, it is necessary to
couple it with a rebalancing strategy and with a posteriori error estimators. Both
points will be the subject of a forthcoming paper. The results of the brusselator
system also highlight that the obstruction in the algorithm is in principle no longer
related to the fine propagations but to the repeated use of a coarse solver whose cost
might not be negligible. How to overcome this issue remains for the moment an open
question on which research is being done.

6. Conclusions and perspectives. The new formulation of the parareal algo-
rithm opens the door to improve significantly its parallel efficiency based on rigorous
mathematical arguments. The increasing target tolerances which have to be met at
each parareal step in the approximation of the problems on small time subdomains
open also the door to the use of online stopping criteria involving a posteriori estima-
tors. This point has not been exploited in the current work and will be the subject of
a forthcoming paper. Other extensions based on these findings are currently ongoing.
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