
HAL Id: hal-01781231
https://hal.science/hal-01781231v2

Preprint submitted on 28 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cue-Pin-Select, a Secure Mental Password Manager
Enka Blanchard, Leila Gabasova, Ted Selker, Eli Sennesh

To cite this version:
Enka Blanchard, Leila Gabasova, Ted Selker, Eli Sennesh. Cue-Pin-Select, a Secure Mental Password
Manager. 2020. �hal-01781231v2�

https://hal.science/hal-01781231v2
https://hal.archives-ouvertes.fr

Cue-Pin-Select, a Secure Mental Password Manager
Enka Blanchard

Digitrust, Loria, Université de Lorraine
Nancy, France

enka.blanchard@gmail.com

Levi Gabasova
Institut d’Astrophysique et de Planétologie de Grenoble

Grenoble, France

Ted Selker
Selker Design Research

Palo Alto, California, USA
ted.selker@gmail.com

Eli Sennesh
Northeastern University

Boston, Massachusetts, USA

Abstract—People struggle to invent safe passwords for many
of their typical online activities, leading to a variety of security
problems when they use overly simple passwords or reuse
them multiple times with minor modifications. Having different
passwords for each service generally requires password managers
or memorable (but weak) passwords, introducing other vulner-
abilities [1], [2]. Recent research [3], [4] has offered multiple
alternatives but those require either rote memorisation [5] or
computation on a physical device [6], [7]. This paper describes
a secure and usable solution to this problem that requires no
assistance from any physical device.

We present the Cue-Pin-Select password family scheme that
requires little memorisation and allows users to create and
retrieve passwords easily. It uses our natural cognitive abilities to
be durable, adaptable to different password requirements, and
resistant to attacks, including ones involving plain-text knowledge
of some passwords from the family. We include a theoretical
analysis of its security according to multiple attack models.
Finally, we show the promising results of a small-scale user study
that put participants in real-life conditions for multiple days.

Index Terms—Usable-security; Password schemes; Authentica-
tion;

I. INTRODUCTION

As has been observed repeatedly [8]–[10], the number of
passwords is ever-increasing, and having different passwords
for each service generally requires password managers or
memorable (but weak) passwords, introducing other vulnera-
bilities [1], [2], [11]. This is often the result of an unconscious
trade-off between security and usability, sometimes leading
to cognitive dissonance [10]: although users know they are
vulnerable, they do not take actions to remedy this [12], [13].
A wide variety of factors affect this choice, among which
mainly stand effort, lack of information about alternatives and
lack of perceived usefulness [14]. Inadequate mental models
of security also play a role [12], [15]–[17].

This isn’t only the users’ fault: well-meaning but counter-
productive constraints (such as mixed-case, numbers and sym-
bols) have been mostly detrimental [16], [18], [19]. They not
only pushed users to have weak passwords — focusing their
efforts on satisfying or bypassing the constraints instead of
making good passwords — but also forced them to create
passwords in an ad-hoc way, preventing them from following
habits which improve memorisation. Those new passwords

become not only weak but forgettable, and lead to frequent
resets of the rarely used passwords. The traditional solutions
for users have been to write down their passwords [20], use
the same few passwords for everything [9], or use password
managers, constituting a single point of failure from which
an adversary can completely steal an identity [21]. Alterna-
tives are being developed but biometric authentication is still
suffering from serious flaws [22]–[24], and so do password
managers as they increase reliance on either specific — and
potentially unreliable — web services [21], or on one’s own
devices which can stop working or get stolen.

A different potential solution is to create a set of non-
independent passwords, related by a common pattern. As
humans are natural pattern seekers, many intuitive ways have
been devised to avoid password re-use without incurring too
high a mental cost [25]. Those schemes which create new
passwords automatically can be arbitrarily simple or complex,
going from very small variations at the end of a word to
word association schemes [5], [26]. They alas tend to have
security barely above password re-use, as users may produce
families of related passwords which an adversary can easily
infer if they learn some examples (such as Mypassword1!
Mypassword2...). Finding a good method to remember large
sets of passwords at little cost to the user would then be a
boon.

II. PREVIOUS WORK AND CONTRIBUTIONS

There have been a few recent attempts at password man-
agers that are not device-reliant, but they generally require
a large amount of rote memorisation [3], [5] or computation
on a physical device [6], [7]. Efforts have mostly been led
by Manuel Blum and his co-authors N. Hopper, J. Blocki, A.
Datta and S. Vempala, with six papers on the subject, including
five in the past five years [4], [5], [7], [27], [28]. In them, they
have framed, formalised and brought forward many important
issues in mental passwords managers and password schemes,
on both the security and usability fronts. They mention five
criteria that schemes should satisfy:

• Analysable, meaning that the schema should be a well-
defined and deterministic algorithm.

• Publishable, corresponding to Kerckhoffs’s law.

• Secure, typically resisting both online and offline attacks
from an adversary with superior computing power.

• Self-rehearsing, such that the process of using the scheme
regularly enough is sufficient to remember it.

• Humanly usable, such that an average human can learn
and use the system at no great cost.

They have also proposed a series of algorithms, generally
based on challenge systems, where the authenticating system
sends some information to the user, to which they must
respond accordingly. The challenges are combined with com-
putational primitives that the users are supposed to execute.
For example, their DS1 protocol requires a user to memorise
a random letter-to-digit map as the seed to their password
creation, while WS1 asks users to memorise both letters and
words about a topic [5]. They also describe LP1 that requires
users to memorise a random letter permutation. These different
kinds of memory tasks are all valid, but memorising random
mappings is difficult, and may take time and a large amount
of effort.

One of the most interesting systems they created, for which
they prove strong security bounds, requires the user to remem-
ber a mapping between digits and a set of 14 images [7]. Once
they have the mapping, the challenge system shows the images
on the screen in a random order, and the user has to compute

x13 + x12 + x(x10+x11 mod 10) mod 10

where xi is the number corresponding to the i-th image in
the list shown to the user. Although this is complex enough,
authenticating using this kind of system requires at least 3-
5 different challenges. The original paper mentions that the
main author managed — with some training and solid natural
mathematical abilities — to reliably compute the function for a
single challenge in 7.5 seconds, getting to an adequate security
level in at least 30s. This performance is however not a priori
representative of the average user.

In spite of their excellent work and prescient points about
what would be usable password creation and retrieval, people
today still don’t know which method to use. The algorithms
they propose are already quite expensive time-wise, but more
importantly, they are not directly applicable by end-users as
they generally rely on service providers changing their security
systems. Moreover, it seems that the criteria they created might
not be enough. Users are still left with no good algorithm to
easily create secure families of passwords.

Contributions: This paper introduces three new crite-
ria and proposes and characterises a specific usable scheme
(though certainly not the only one possible) that allows the
easy creation, memory, usage, and retrieval of a password,
while remaining secure against a large variety of attacks. The
criteria are as follows:

• Agent-independence, meaning that the user should not
require any outside help, be it from their own computing
devices, an untrusted calculator or phone, or even pen
and paper.

• Scalability, an extension of their publishability criterion,
with two constraints: the security of the scheme should

not strongly diminish with either increased popularity
or increased use by a single user with many different
passwords.

• Adaptability, the final and most important criterion, per-
mitting the user to always be able to use the system no
matter the idiosyncratic constraints they face.

This last criterion is crucial as otherwise the user is faced
with two possibilities: creating a new password in an ad-hoc
way, which might be insecure and which they will probably
forget, or change the algorithm used at some point. Moreover,
remembering many algorithms, their associated secret infor-
mation and where they were used seems even harder than
remembering many passwords.

The system we propose, called Cue-Pin-Select, is a pass-
word generation scheme for 12+ characters that is provably
strong and adaptable to the requirements of today’s systems.
Designed to profit from our natural linguistic abilities, it
performs well on constraints of usable memory and learning,
while fulfilling strong security constraints. The system relies
on selecting a cue from or for a service onto which the user
might log (such as part of its name), and applying a PIN to
create an index into a common six word phrase. The intent
behind its creation was to show a system that cannot be
reasonably hacked even if the adversary knows some of the
plain-texts, while also making it human computable without
command-line tools or too much work. We can learn six
words and a PIN much more easily than the random mappings
proposed and they are directly usable without any specific
knowledge or ability. A preliminary user study showed how
all alpha-testers with only a few minutes of training were able
to produce a new secure retrievable password in well under a
minute and improved their times consistently in 19 trials over 4
days. Even with this limited training, the fastest users quickly
achieved performance similar or better than that shown in [7].
Although both systems have performance that are relatively
similar, CPS has the added advantage that the algorithm can
be used as is, without requiring a complete redesign of server-
side authentication systems.

In general considerations on password schemes, we will
suppose that each scheme is composed of three kinds of
information:

• Some user-only information which can include the initial
seed for random data, or any piece of information that
should absolutely not be spread. If an adversary obtains
it, this information can potentially allow them to recreate
all the user’s passwords.

• The passwords themselves, from which it should be
difficult to find the user-only information.

• An environmental cue, a piece of information (in our
case four characters), or the scheme used, from which
a user can (re)create a password if they have the user-
only information. Those can be guessable and should
offer little direct information on the rest by themselves.

The rest of the paper follows the following structure. We
start by explaining the proposed scheme and analyse its

resistance to the main types of attacks. We then look at it
from a usability standpoint and show the promising results
of a small-scale user study that put participants in real-life
conditions for multiple days. Finally, we introduce multiple
variants and explain the design choices leading to Cue-Pin-
Select

III. THE CUE-PIN-SELECT SCHEME

Cue-Pin-Select uses four different pieces of information. A
user starts with one long high-entropy passphrase that is highly
memorable despite its length, and a 4-digit PIN. The process
uses an algorithm that is easy to remember and implement,
and finally, for each service where a user needs a password,
they need to choose a small four-letter string called the cue.

A. Passphrase

The main secret data has two components. The first is a
passphrase of at least 6 English words1, and the second is a 4-
digit PIN of the kind that people are accustomed to associating
with bank cards. Both the passphrase and the PIN are common
to all passwords in the scheme. To generate the passphrase,
the user is supplied with a random sequence of 6 words, to
which they can add connecting words.

In the usability test, participants were encouraged to use an
online random word generator, but more sophisticated methods
could also be used to create a long and memorable passphrase.
We use the methods shown in in [29] for our security analyses,
considering words taken quasi-randomly from a dictionary of
the 87 691 most frequent correct English words, using Peter
Norvig’s list of most frequent ngrams [30], as it has been
shown that this method can provide memorable passphrases
with 97% of the entropy of uniform sampling among the same
dictionary. The 4-digit number is also randomly generated (for
example by rolling dices).

B. Password generation algorithm

Each time the user needs a password for a new service, they
need only apply the Cue-Pin-Select algorithm.

The algorithm makes a 12-character password in 12 steps.
Let’s suppose a user has created the passphrase parallel major
domain disastrous divergent waterways and that their PIN is
6908. Say they are making the password for their Amazon
account. They start by coming up with a ’cue’: a 4-character
string corresponding to this service, say amzn. This cue will
then be used to extract password parts from the passphrase.

Figure 1 shows this process, where each operation has a
colour, creating the password majrouterusd, using Algo-
rithm 1. Once they have chosen (or remembered) their cue,
they proceed as follows:

1) They look for the first letter of their cue, a, in the
passphrase. In our example, this would be the first a
found in the word parallel. They then step though
the letters indicated by the first number of their PIN,

1The choice of English was for the entropy analyses and the user study,
but the scheme is adaptable to any language that is written in an alphabetic
system.

Algorithm 1: Cue-Pin-Select
Data: Passphrase PHRASE of at least 6 random words

PIN of 4 random digits
service name NAME

Result: String S of 12 characters
1 begin
2 From NAME, create string CUE of four characters

/* User-chosen, which should be easy to
remember */

3 LEN ←− Length(PHRASE)
4 INDEX ←− 0
5 S ←− []
6 for i = 0 ; i < 4 ; i++ do
7 LETTER←− CUE[i]
8 while LETTER /∈ PHRASE do
9 LETTER←− letter following LETTER in the

alphabet
10 INDEX ←− index of next occurrence of

LETTER in PHRASE after INDEX
/* Or wrap around to the first

occurrence if the end of PHRASE
is reached */

11 INDEX ←− (INDEX + PIN [i] + 3) mod LEN
12 S ←− Concatenate (S, PHRASE[INDEX −

2, INDEX − 1, INDEX])
/* All the indices are modulo LEN */

13 Print S

Fig. 1. Running the four phases of Cue-Pin-Select using AMZN as a cue and
parallel major domain disastrous divergent waterways as a passphrase.

in this case 6. This would be the last l of parallel.
They add the next three letters in their passphrase to
their password, maj.

2) They look for the next letter, m from where they left
off. This leads them to the m of domain. They skip 9
letters, getting to the t of disastrous, and add the
next three letters, rou to their password.

3) They look for the next letter, z, but can’t find it. As the
letter in the cue isn’t in the passphrase, they look for the
next letter in the alphabet: z is then replaced by a, and
they continue where they left off. The next a is the first

one in waterways, and as the third number in their
PIN is 0, they take the next three letters, ter.

4) For the last step, they have to look for an n, but reach
the end of the sentence, they then continue from the
start, get the n of domain, skip 8 letters and end up
with usd.

5) They are then left with their password:
majrouterusd.

C. Finding forgotten passwords

As the procedure is deterministic — for a given passphrase
— the only variability comes from the cue. In case they forget
their original cue, the user should be able to find it within a
few tries, from which they can derive the whole password.
However, there is another simpler option: the cue and the PIN
could hypothetically both be written down by the user, as the
security analyses don’t assume that they are secret. This way,
only the passphrase stays secret, and it is the most frequently
rehearsed bit.

The analyses in the coming section pertain to the model
shown here. Variants to the algorithm can be introduced for
making new passwords or responding to various password
requirements. Some representative variants will be studied
after the analysis below.

IV. SECURITY ANALYSIS

As a combinatorial analysis of all combinations of words
from the dictionary with the algorithm would be intractable
and highly dependent on specific properties of our dataset,
analyses here rely on Monte-Carlo models. The entropies are
computed exactly from the k-grams index, the list of k letter
sequences present in sentences made from the dictionary.

A. Preliminary considerations

One of the main assumptions used in the following analyses
is that the distribution of three-letter trigrams composing each
password is very close to the distribution of a random trigram
taken in a random passphrase. The PIN is an essential part of
the randomisation mechanism. It is important because simply
reading a sequence of characters in words when reading the
cue letter q without the PIN step would give trigrams like
qu where q is followed by u in 1248 out of 1266 cases,
with only 2.7 bits of entropy. An o, however, would give 10.4
bits as it reveals little information on the following characters.
Moreover, it also addresses the case when the cue has repeated
letters.

Distribution uniformity is nearly achieved as the number of
characters stepped over each time through the passphrase is
random enough that the probabilities of landing on any letter
of a given word are quasi-uniform. The simulation shown in
Figure 2 presents four curves2 representing the probability
distribution for the number of letters stepped over (one for

2The shape of those curves might seem to follow Zipf’s law [31], with
the number of letters covered being inversely proportional to the letter’s rank
frequency — to which an offset has been added because of the random PIN.
However, in such a case the maximum would be reached with fewer than 10
letters stepped over.

each letter in the 4-character cue). Since it is much bigger in
expectation than an average word length of 9, the probabilities
of landing on the n-th letter of a word are then close enough to
uniform along n to provide no real advantage to an adversary.

The length of the passphrase itself follows a Bell-like dis-
tribution (being a product of distributions that are themselves
Bell-like). It has 99% probability of being between 33 and 65
characters long, centred around 48 and has a large variance.
As a consequence, with high probability, the second trigram
comes later than the first in the passphrase. However, thanks to
the large variance in the probability function, the probabilities
of the second trigram preceding or following the third trigram
are not too far apart, and the same can be said for all the other
pairs.

0 10 20 30 40 50 60 70
Number of letters covered by one step of Cue+Pin

0

50

100

150

200

250

Nu
m
be
r o

f c
as
es
 o
ut
 o
f 5

00
0

First letter of the cue
Second letter of the cue
Third letter of the cue
Fourth letter of the cue

Fig. 2. Distribution of the number of characters covered in one step
of Cue+Pin, obtained by simulation on 5 000 (passphrase/cue) pairs, for
passphrases of average length 48.
B. Scalability

1) Publishability: The scalability of a scheme corresponds
to two different notions. First, it should be scalable in number
of users. Any person who uses an obscure but adequately
complex scheme will be protected by a lack of specialised
attacks targeting it. This is not true for a scheme used by
millions of people. As such, all the threat models should
assume Kerckhoffs’s principle that only the key (cue, PIN,
and service code) are private, the algorithm being public. This
corresponds to [5]’s notion of publishable. In our situation,
there could actually be a small positive impact of large-
scale implementation, in that people using it in a variety of
languages reduces the possibility of statistical and dictionary
attacks, marginally increasing the general level of security (as
opposed to only American English users).

2) Creating many passwords: The second type of scalabil-
ity corresponds to the number of passwords used by a single
user; frequently using a scheme should not make it more
vulnerable (besides the higher risk of multiple plain-text at-
tacks). For a given attacker with specific computing resources,
knowing some plain-text passwords, and other information, the
probability of uncovering passwords should only marginally
increase with the number of passwords created by the user
through the scheme. A simple unscalable example would be
a system that solely depends on a passphrase composed of

four sections, where the user randomly selects two sections
each time they need a password. If they use this scheme less
than 3 times, assuming each section has sufficient entropy,
passwords don’t reveal each other. After 7 uses, however, some
of the passwords will be repeated. On the other hand, while
having a completely new password for each new service is
infinitely scalable, as described above, it will require some way
of remembering the passwords, which introduces vulnerability.

For Cue-Pin-Select, it is enough to show that all the pass-
words generated will be different from each other — unless
the server itself is malicious, which is treated further down. It’s
clear that it should be the case in general, when the user has
different cues (in particular, ones that don’t have the same first
three letters). However, a simulation where each passphrase
generates 20 passwords demonstrated that the average distance
between two passwords is close to what would be expected
from two random strings (at most a few letters being shared).
The edit distance between the two closest passwords generated
was also calculated (corresponding to the risk of having one
other password stolen when the worst password is stolen). This
showed that even in this worst situation, in more than 99% of
cases an adversary would have to change at least three letters (a
quarter of the password, although they don’t know which one,
corresponding to 15 bits of security3), assuming they already
possess one of the two closest passwords.

C. Brute-force and dictionary attacks

1) Attacking the password: Current entropy recommenda-
tions against brute-force attacks vary from 29 bits to 128 bits
of security, depending on the attack model [32]. One common
recommendation proposes 36 bits of security on any given
password for web services; such a password would require
1 000 tries per second for one year to break. Assuming the
attacker uses online servers to distribute the attack (and avoid
rate-limiting), in 2019 this would require more than $1000
per password, even with strong economies of scale [33]. This
is consistent with NIST recommendations as long as a key
derivation function is used [34], which limits the amount of
offline computation.

In our case, assuming the adversary knows the scheme used,
a smarter attack would be to guess which trigram is used
in each position. However, an analysis of the distribution of
trigrams in the dictionary shows that each trigram adds around
13 bits of entropy. To get this number, we computed explicit
probabilities for each potential trigram in English using the
SOWPODS dictionary — not only within words but also
trigrams crossing over words. We also assumed one additional
hypothesis: that the start of the trigram in the word is uni-
formly distributed. This is not entirely accurate, as it depends
on the letter chosen in the Cue phase, but the Pin phase
adds enough uncertainty to make it quite uniform (as was
tested on random sentences and PINs. Explicit computation
on trigrams gave the amount of entropy per trigram — within

3Although 15 bits of security might seem low, it stills corresponds to more
than 10 000 login attempts, assuming that the adversary is lucky and already
knows the closest password and not just a random password.

our dictionary — depending on the type of trigram, which can
be either within a word or across two words. Computing them
showed that the entropy is highest for trigrams composed of
the last letter of a word and the first two letters of the next, with
13.95 bits. The lowest was for trigrams composed of the last
two letters of a word and the first of the next, with 11.42 bits,
and trigrams within single words had 13.17 bits of entropy.
As the latter are by far the most frequent type of trigrams,
it is reasonable to assume that each password has around 52
bits of entropy. This is close to the optimal performance of
uniform alphabetic passwords of length 12, which have 56.41
bits of entropy.

2) Attacking the passphrase: The passphrase is much more
valuable than any of the passwords; however, it also has much
higher security. Indeed, the six mandatory words are uniformly
distributed among a dictionary of 87 691, leading to a raw
entropy above 98 bits. Adding the PIN gives 111 bits of
entropy, way more than any user could reasonably use, even
against distributed attacks. Two factors reduce this value: the
user chooses the order of the passphrase, which can reduce
entropy by 3-7 bits depending on the model, and they can
also redraw random words a few times if they don’t like
the first ones (removing less than a bit). This small cost is
partially compensated by the fact that they can use auxiliary
words. Overall, assuming the worst case and finicky users,
the passphrase and PIN should still give at least 102 bits of
entropy. Against dumb brute-force attacks, it would have more
than 210 bits of entropy, confirming the problem with using
raw entropy without specifying the adversarial model.

3) Resistance to plain-text attacks: Plain-text attacks are
one of the main vulnerabilities found in most user behaviours
today, generally stemming from password reuse. This is also
where typical methods as described by LifeHacker fail [26].
Assume that, with the drop in computing costs, the adversary
tries not just the exact password they have access to but also
simple variants of it. The remaining entropy should stay high,
even assuming that the adversary knows both the method and
at least one plain-text password [20].

The scheme was designed to provide high security even
in the event that one (or even a few) of the passwords are
compromised, which can happen independently of the user’s
best practices. As said earlier, trying to guess one password
from another in Cue-Pin-Select is a hard problem in the
general case, as the edit distance is great (only marginally
lower than the edit distance between the password and a
random string). The easiest way of attack then seems to go
through the derivation of the passphrase from a password
obtained by the attacker.

a) Plain-text attacks: To analyse the security of the
passphrase from plain-text attacks, suppose that the adver-
sary knows not only the plain-text but also the length of
the passphrase and the position of the plain-text inside the
passphrase. This gives way more information to the adversary
than is realistic, due to the variation in passphrase length
discussed above. Even in such a case, we can show that it
is hard to find the passphrase from a single password.

104 random (passphrase/cue) couples were computed to get
in each case a passphrase where only certain characters were
revealed. Dynamic programming was then used to compute the
number of passphrases that used exactly 6 words, compatible
with the revealed letters and had the right length. This gave
the number of potential combinations in each case, which is
shown in logscale (hence corresponding to the number of bits
of entropy) in the top curve of Figure 3.

This shows that Cue-Pin-Select can guarantee a minimum
of 40 bits of entropy in case of a plain-text attack, with an
average of 54 bits (the standard deviation is 6 bits), and a
maximum of 79 bits.

The curves for the remaining entropy, when the lucky
adversary has access not only to the length and positions of
revealed letters, but also to either two or three passwords, are
shown on the bottom curve of Figure 3 (5× 103 runs each).

40 50 60 70 80
Bits of entropy

0

2

4

6

8

10

Fr
eq

ue
nc

y
(%

)

0 10 20 30 40 50 60
Bits of entropy

0

2

4

6

8

10

12

Fr
eq

ue
nc
y
(%

)

Two plain-texts Three plain-texts

Fig. 3. Bits of entropy left on a passphrase when a plain-text and the position
of its letters are revealed. The left figure corresponds to a single plain-text,
while the right one features the curves for 2 and 3 plain-texts. Obtained by
simulating 10 000 random (passphrase/cue) couples – for the left figure —
and 5 000 (passphrase/cue 1/cue 2/cue 3) tuples for the right one. The bits
of entropy come from the exact number of possibilities remaining using the
passphrase length and the revealed passwords (computed from the cues) as
constraints.

In those two curves, the average number of bits of entropy
left is respectively 32 and 20 bits. However, a large standard
deviation (around 9 bits in both cases) and a variability
in passphrase length means that in degenerate cases (which
happened once in each group of 5 000 simulations of the
adversary having several revealed passwords, the length and
position of the revealed letters), a double plain-text lead to only
7 bits of entropy, and a triple plain-text completely revealed
a passphrase. This is to be expected as this would reveal up
to 36 characters, and close to 2% of passphrases are smaller
than that. As some of the plain-texts can also give redundant
information, the maximal entropies left were 64 and 56 bits.

The guaranteed high level of entropy against at least two
plain-text attacks means that users should be secure if they
maintain good security hygiene and change their passphrase
when they think they have been compromised. Even adver-
saries with decent computational means and knowledge of
the system used should have no real chance of cracking their
passphrase.

4) Resistance to side-channel and other attacks: Schemes
have been proposed that are resistant to brute-force while
requiring little effort on the user’s part, but require some com-
putation, or storing of information on a trusted device. This can

be as simple as a persistent physical memory, corresponding
to writing passwords in a notebook, using a password manager
on a potentially vulnerable computer (e.g. to keyloggers), or,
as in [4], [7], requiring semi-secure computation in the form of
challenges from a computer. It can also include hybrid methods
such as the password card [35], [36], in which obtaining the
card does not give complete access but reduces the entropy of
the owner’s passwords to about 10 bits each.

As Cue-Pin-Select can stay entirely in the user’s mind,
it should be entirely secure against side-channel attacks, as
the only links between the passwords are entirely immaterial.
Those passwords are the only information available no matter
the adversary’s means, so the security of the scheme corre-
sponds exactly to the security shown above.

This, however, ignores three possibilities. The first is that
someone could know the user well enough that they could
guess the user’s choices. While other schemes that rely on
mental association are also potentially vulnerable to someone
who knows the user extremely well (even more so if they also
have access to computational power to get through the last bits
of entropy), Cue-Pin-Select does not. This is why the words
of the passphrase should be generated randomly, in a way that
doesn’t depend on the user’s typical choices.

The second possibility is more down-to-earth: some users
might write down their passphrase to help them create their
first few passwords, or to create a new one. As long as they
destroy this physical (or digital, if written in a text editor)
evidence, they still have the same level of security, but it
is a behaviour that should be discouraged, especially as it is
possible to perform the task mentally, as shown in the usability
test.

The last attack is quite involved but extremely dangerous.
Each time a user creates a password and sends it (unhashed)
to a server, it gives the server some information. An adversary
that would manage to obtain control of the server of a company
that requires frequent changes would be able — after a delay
— to obtain multiple passwords for all users. A few factors
mitigate this, thankfully. First, password policies are on their
way out [37]. Second, this requires either a hacker that is
durably infiltrating a server or a malicious organisation that
imposes password changes on its users (which they might
not tolerate as such changes are mostly seen in company
servers or banking systems [38]). Finally, all usable password
composition practices today — short of randomly generated
passwords — suffer from this issue, which is compounded by
the fact that hashing is often done imperfectly [39].

D. Remaining threats

One smart way of attacking this system relies on finding a
big intersection between two passwords. This mainly happens
when two cues are extremely similar — e.g. sharing the first
three letters — leading to very close passwords that can leave
the adversary with only three characters left to guess. This
could push some hackers to target the user data of services
whose natural cues might be close to the ones of valuable
services.

There is, however, a simple way to lower the risk: telling
users to create their cue in a memorable way, while trying to
avoid very similar cues: if they need cues for "GoDaddy" and
"GoAir", they should choose gdad and gair for their cues,
instead of goay and goai. This is reasonable, and a quick
simulation shows that, even without changing a single letter,
the median number of cues generated before a real collision
is 79, quite above the number of accounts most users have at
any point [9].

The scheme is analysable, as it is deterministic. We have
also shown that the scheme is publishable and secure against
most known attacks. We must now look at its usability.

V. USABILITY

Regardless of how secure a password is, if it is too hard
to make, it will be reused. If it is too hard to remember, it
might be stored in a possibly insecure way, such as on paper
or in a file. Usability constraints of retrievability, low effort,
and adaptability are all critical to the success of a scheme.

A. Retrievability

One of the biggest sources of online frustration [9] is
forgetting a password and trying several plausible ones before
abandoning and resetting it — when possible. This can be
compounded by the fact that the next few proposed passwords
might get discarded as they correspond to past passwords,
pushing the user to create ever harder passwords, getting
confused about which ones worked and so on, and forgetting
them even more frequently. Moreover, frequent resets can pose
security risks by themselves.

1) Passphrase: In the case of Cue-Pin-Select, the infor-
mation needed to retrieve the passwords is easily memorable
or retrievable, and generally both. The most important is the
passphrase itself, which should be easy to remember by being
quite short [40] and meaningful to the user. Three factors play
a role in its memorability. First, allowing users to create their
own passphrase from six given words by manipulating the
order and having the opportunity to add their own words makes
it more personal, safer in its extra length and still easier to
remember, as in [29].

Second, more than 35% of users need a password for a new
service at least once per week, and more than 90% need at
least a few per year [9]. Repeated use of the scheme will serve
as rehearsals and cement the passphrase in their memory.

Third, if the user never uses their passphrase or the gener-
ated passwords, it has low utility for them, and no scheme
would truly work in such a case. However, there is the
possibility of a user never creating new passwords after an
initial period and memorising the ones they have. In such a
case, those passwords could serve as strong information that
would help their memory.

The passphrase becomes more memorable after the user has
started using it. It is also retrievable if they forget part of it
after a period of disuse. Together, the last two correspond to
the self-rehearsing constraint mentioned in [5].

a) PIN: As can be seen from the global use of 4-digit
numbers for credit cards, phone passwords, and door codes,
people are used to and capable of remembering this kind of
PIN. Despite this, some users could forget their PIN. In such a
case, it would be easy to find it back using only the passphrase
and one of their passwords. Finally, if some users struggle
with numbers and might risk forgetting both the PIN and their
passwords, we provide a variant that does not require it (albeit
at a small entropy cost).

b) Cue: As the cue is short and users are discouraged
from having a complex cue, it should be memorable. More
importantly, it is retrievable as there are only a few imaginable
cues each user could create from a given service, so a few tries
would be enough to get the cue back. Also, it is possible to
write down the list of cues in a file, as the security analyses
don’t assume that they are secret. This is especially true for the
variant where the user has to change their password frequently.

c) Password: The password is the least memorable piece
of information, being composed of 12 pseudo-random alpha-
betic characters. However, any secure password of such length
will also be hard to remember, unless it shares strong similari-
ties with other passwords (thus making it vulnerable). Despite
this, thanks to the fact that it is created from parts of words
and through associative memory and repetition, users should
be able to remember their most frequently used passwords.
Finally, the password is easily and entirely retrievable from
the other pieces of information in a quick and deterministic
fashion.

When a user forgets their password, which will happen, their
first step is to rerun Cue-Pin-Select to obtain their original
password. However, that might not work if they are starting
from a wrong cue or have forgotten about special constraints.
In such a case, the user just needs to look at the password
constraints on the service they are using to figure whether
they had added any special characters (which is a deterministic
process). This means that if they know the constraints and their
passphrase, the only unknown left is the cue, so at most a few
tries would be needed.

B. Low effort

Initialising the password scheme, creating or retrieving a
password, and entering it should all be tasks that are not
difficult for users, in both time and effort.. If they are hard,
the user will resent it or make mistakes as they have other
goals for using services than simply securing them. There are
also many cases where it is strongly advantageous to have
no dependence on physical devices (such as when one is in
public, forgets their computer, or tries to give their password
on the phone). Hence, having a computer, or even a pen and
paper, should only marginally help the user and it should be
feasible to use the password scheme without those (see user
study below). This corresponds to the constraints of human
usability and agent independence.

The efforts needed for mental password managers can be
split into three categories, as long as we’re following the
principle of self-rehearsal:

• Time and difficulty to learn how to use the scheme and
initialise it (such as by creating a passphrase).

• Difficulty to remember and enter passwords once it is
used in everyday life.

• Effort to get your password back when you lose it.
Generating the initial passphrase and PIN is easy, as one

only needs to get six random words and a random PIN from
any generator (some being findable online), and organise them
in the order of their choice.

To create a new password, one starts by generating a cue
which is immediate as it should be the first 4-letter string
that comes into the user’s mind. The rest consists of counting
and moving 4 groups of 3 characters. It has only 3 steps
between adding to the password being typed — 12 steps total.
It requires no mental arithmetics, so it should be accessible to
people with dyscalculia and should not even require a piece
of paper once the user is familiar with the system.

Passwords generated by Cue-Pin-Select should be easy to
enter, being composed entirely of alphabetical characters (and
when absolutely necessary the required one or two special
characters), but the user must first remember the password,
and this is not a given. We can distinguish three main cases:

• Frequently used passwords (entered at least every few
days): they tend to be remembered by the users even in
case of relatively high complexity. As this also applies to
passwords created using Cue-Pin-Select, frequently used
passwords should not suffer from increased effort or loss
of performance.

• Rarely used passwords (entered at most a few times per
year): they tend to be forgotten by the users, leading to
frustration, many tries, and password resets. For Cue-Pin-
Select, this only leads to password regeneration, which
requires recomputing it from a small remembered — or
stored — cue and is still lower effort compared to trying
a few times before resetting the account.

• Passwords used with medium or variable frequency: users
might forget them, and a simpler password could be
more memorable than one generated with Cue-Pin-Select.
However, Cue-Pin-Select can be used to regenerate the
password without changing it, giving the user one more
rehearsal opportunity. On the other hand, with the usual
password schemes, having to reset it and pick a com-
pletely different one wipes out the previous effort made
to remember it, even if it happens less frequently, making
it costlier in the long term.

C. Adaptability

It then seems that for most users and use-cases, systematic
use of Cue-Pin-Select should be easier. That, however, requires
the scheme to be always applicable, no matter the constraints
imposed by the service provider. It must then have no depen-
dence on the password character set, length, and reuse change
policy that a service imposes. Password requirement can also
be contradictory between different services (like short maximal
length constraints or forbidden numbers). Any exception that
prevents the user from using one scheme drastically diminishes

the interest in using that scheme. Among protocols that are
now known to create usability errors [19], some still ask
users to regularly change their passwords, avoiding any that
have some similarity to ones used previously in a large
time frame. Some users also forget their password despite
their best efforts or make a typo while defining it for the
first time. Adaptable password scheme must then include the
possibility of creating new passwords for a single service
without introducing confusion as to which one is the current
password, as users dislike changing habits and will keep one
scheme (or one password) for multiple years at a time.

The passwords created by Cue-Pin-Select heretofore have
been in lower-case alphabetical characters. This provides
enough security by itself but could be changed as needed to
work with idiosyncratic password requirements. Even the most
trivial extension that takes care of this for each of the following
requirements does not reduce entropy:

• If the password requires capitalisation, the user should re-
member to capitalise one letter in their cue, and capitalise
the corresponding three letters of their password.

• If it requires a number, the user can start with 0 and insert
it at the center of their password, then increase it by one
each time they renew this password.

• If it requires a special character, they can pick one in
particular, like "!" that they will put at the end (or in the
center) of every password that requires it.

• If it has a maximal length, they can just truncate the
password without losing too much entropy (and a service
that limits passwords to lengths smaller than 12 probably
has bad security in any case).

• If it requires the user to change their password at set
intervals of time (such as every month), without repetition
for a certain time, they can change the first letter of
the cue (or the first two letters) by cycling slowly over
the alphabet. AMZN would become BMZN and then
CMZN and so forth, and the passwords would be strongly
different each time (with high probability), as it changes
the starting point.

These simple changes give ways to adhere to the security
constraints required by service providers without reducing the
entropy of the password or significantly reducing usability.

VI. TESTING CUE-PIN-SELECT

With strong arguments in favour of the usability of Cue-Pin-
Select, a usability test was organised, with 11 subjects using
it for short tasks each day for four days4. Their personal data

4Due to funding constraints, volunteers were used, which limited the
duration of the experiment if we wanted a variety of users while limiting the
amount of drop-outs. As we were writing this paper, we received anecdotal
evidence from a colleague who was not involved in the development of the
algorithm but started using it after we discussed it in the lab. They reported
that after a few months, caching effects created through habits — such as
going immediately to the corresponding letter in the passphrase from the cue
and PIN — made the scheme much more efficient. Only account creation was
still slow as they took care to avoid creating a wrong password or double-
checked their computations. Even then, they self-reported that it seldom took
more than 30s.

was neither stored nor shared. We told them not to use the
passwords generated, but encouraged them to take the benefit
of learning this simplifying system for later use with their own
passphrase and passwords. The group consisted of five men
and six women of diverse non-scientific backgrounds, varying
in ages from 18 to 65.

A. Protocol

Users were initially given a document explaining what they
needed to know, including how to use Cue-Pin-Select. The
document explained that they could leave at any time, that they
should not use the passwords they would generate over the
experiment as we would ask for that information, but that they
were free to use the system with another passphrase after the
experiment. They were progressively given three sets of tasks,
each lasting a few minutes. They were then told to follow the
self-administered tasks at the rate of one in the morning and
one in the afternoon, and send us the results, as well as the
time it took them to accomplish each task. The list of tasks is
as follows:

• Day 1, task 1: Create their passphrase and PIN (task
0). Create two passwords with cues already provided.
Create cues and then passwords for two services (Hotmail
and Yahoo). After this task, they were given feedback to
explain potential errors in making a password they might
have done.

• Day 1, task 2: Create a password with a provided cue, and
then a (cue/password) couple for New York Times. Told
to try to remember their passphrase, as they would have
to recall it from memory from the second day onward.

• Day 2, task 1: Recall the passphrase, then create a pass-
word with a cue provided and a (cue/password) couple
for Twitter.

• Day 2, task 2: Create a (cue/password) couple for
Snapchat, and recall the one they did for New York Times.

• Day 3, task 1: Create 2 (cue/password) couples for Reddit
and AT&T.

• Day 3, task 2: From this step on, the participants were
told to apply the algorithm entirely in their head (writing
down only the letters of their passwords as they computed
them). Create 2 (cue/password) couples for The Guardian
and HP.

• Day 4, task 1: Create 2 (cue/password) couples for Spotify
and Gmail.

• Day 4, task 2: Recall the couples they created for
Snapchat, AT&T and HP.

After the experiment, users were presented with questions
asking them if they had trouble remembering their passphrases
(instead of asking them if they cheated), which tasks they
had done with pen and paper and which in their head (as it
appeared that some switched earlier than in the instructions),
whether certain aspects made them lose some time, and
whether they would consider using it in its current state.

B. Results

Only one participant had trouble remembering their
passphrase on the second day (they were missing one word)
and had to be given it back. Most of them developed mnemonic
schemes to help them remember (or increase their speed), such
as splitting it into two sentences or creating mental imagery.
A few had trouble remembering their cues.

Some users had trouble following the initial instructions (or
found them unclear) as they were not very well explained.
The most common mistake was restarting from the start of the
word at each new cue. Feedback was given after the first set of
tasks and first password to teach them to use Cue-Pin-Select
correctly. By the second set of tasks, all users could correctly
execute the algorithm (with only three recorded mistakes in
that task and the following).

As is shown in Figure 4 — with detailed data in Figure
5 — there was a general speed-up over the course of the
experiment. We can see a speed-up within each set of tasks,
and a slowdown between sets, with a stronger slowdown on
the afternoon of the third day, as all users had to compute
passwords mentally and couldn’t use pen or paper or their
electronic device anymore5. As we can see from the end of
the table, speeds were still increasing at the end of the fourth
day, but that’s when we had to stop the experiment. The real
time taken by users who regularly use this method can then
be inferred to be lower than the one attained at the end of the
experiment, although we do not know by what margin.

Fig. 4. Time taken by participants to create a password over the course of the
experiments. The solid curve corresponds to the median time and the shaded
area represents the time taken by people between the 25th and 75th percentiles.
The sudden increase at 3.2 corresponds to the switch to mental-only tasks.

Users saw the algorithm’s value, despite the lower case only,
no special characters demonstration. Four out of eight users

5Two users decided to do all tasks mentally from day 2 onward, and their
data was not counted in the tables for days 2 and 3, but they show the same
learning behaviour as the others. Instead of writing down the passwords as
they created it, some users tried to create all of it before writing it down; this
data is included in the tables.

Task 1.1a 1.1b 1.1c 1.1d 1.2a 1.2b 2.1a 2.1b 2.2a 2.2b

Mean 89 82 72 63 70 59 50 49 54 45
Median 72 56 51 56 66 55 44 47 51 40

Max 233 211 222 108 132 113 87 68 70 61
Min 47 35 35 32 32 33 30 32 42 31

Task 3.1a 3.1b 3.2a 3.2b 4.1a 4.1b 4.2a 4.2b 4.2c

Average 51 42 105 86 81 74 67 58 57
Median 50 40 90 80 77 71 65 56 54

Max 74 53 220 131 130 117 106 86 71
Min 38 30 65 47 46 47 24 33 31

Fig. 5. Time taken by participants to create each password, in seconds. The
top table has the times from the first and second days, and the bottom table
has the third and fourth days. As in Figure 4, the increase at 3.2 is caused by
the added rule that forbade participants from using pen and paper, having to
compute the passwords mentally instead.

who gave feedback said they would use this system, at least for
their important passwords. Two were hesitant; one thought that
Cue-Pin-Select wasn’t adaptable enough (indeed, they were
not shown how to use capitalisation or special characters).
Finally, one said they wouldn’t use it as it didn’t fit their
personal security needs.

C. Feedback

Multiple participants observed that there was a strong cost
in time (and usability) when they had a letter that was absent
from their passphrase and had to go through their passphrase
multiple times. They said that if they ever used the scheme
again, they would make sure to have more vowels in their
passphrases, as well as a higher letter diversity (which is also
good from a security standpoint). Two of them also mentioned
they would prefer a PIN with lower numbers.

VII. CONCLUSION

This paper has introduced the Cue-Pin-Select usable pass-
word creation scheme and analysed its security and usability. It
can be learned and applied by a novice in less than two minutes
and after making a few passwords, all testers were able to
create 12-character retrievable passwords in under a minute in
their head. Some participants were able to create or retrieve
passwords in less than half a minute. The scheme is robust
against many types of attacks, including against an adversary
in possession of some of the generated passwords. All of the
passwords in the scheme are easily retrievable assuming the
participant remembers their passphrase. The passphrase itself
is easily memorable, frequently rehearsed, and retrievable via
associative memory if the participant remembers some of the
passwords. It allows a participant to create a cue that works
for them. Finally, it is compatible with text-based password
constraints and can be used durably without frustration or
risk from an evolving constraint environment. In summary,
it satisfies [5]’s five criteria of analysability, publishability,
security, self-rehearsal and human usability, as well as our
criteria of agent independence, adaptability, and scalability.
When compared with the previous work, those three properties

are crucial as they mean that improvements do not necessitate
a complete overhaul of web service authentication systems.

The analysis performed gives worst-case lower bounds on
the security of Cue-Pin-Select, by making strong assumptions
on the amount of information available to the adversary.
Instead of having clear-text passwords, analyses supposed that
they knew the length of the passphrase and the location of
each letter, while a significant chunk of the security of the
scheme relies on their secrecy. Despite those assumptions, the
system guarantees 40-bit security even against single plain-text
attacks. Those bounds could be increased by a more thorough
analysis of realistic attacks, to prove a higher level of security
against multiple plain-texts attacks.

This exercise had several goals. It shows the existence of an
easy-to-use password generation and retrieval system. It gains
security from not requiring a computer, from the entropy of a
memorable secret, and from its adaptability. It gains usability
by being personalised, based on language, and by rehearsing
the only things that have to be remembered. It gains robustness
in the ease it gives for retrieving any passwords a user does not
remember, and for giving the users simple rules to make up
alternative passwords for any service. With a greater speed and
no reliance on mathematical primitives, the system is easier
to use and more secure than earlier proposals [5].

That said, some questions remain open. Getting accurate
values on the usability would be welcome, by having ex-
periments with both more users, and longer total duration.
Seeing how those users would handle the variant that addresses
idiosyncratic constraints and how much of a cost it creates
would also be interesting. Sadly, it is hard to compare it
directly to previous proposals, as they do not tend to address
the adaptability constraint. However, different schemes could
be developed to allow for comparative studies.

In a different direction, the strong security constraints could
be relaxed to get a more usable scheme with a slightly weaker
but still strong security features. A thorough analysis of more
realistic threat models against Cue-Pin-Select and derived
schemes that rely less on private information held by the
adversary would help in this endeavour. Some variants that
could make such analyses easier can be found in [41].

VIII. ACKNOWLEDGEMENTS

We’d like to thank Nicolas Schabanel, Alan Sherman and
the participants of Stanford’s EE380 seminar for their com-
ments.

This work was supported partly by the French PIA project
“Lorraine Université d’Excellence”, reference ANR-15-IDEX-
04-LUE.

REFERENCES

[1] A. Das, J. Bonneau, M. Caesar, N. Borisov, and X. Wang, “The tangled
web of password reuse.” in NDSS, vol. 14, 2014, pp. 23–26.

[2] P. Lipa, “The security risks of using "forgot my password"
to manage passwords,” 2016, accessed: 2017-12-18. [Online].
Available: https://web.archive.org/web/20170802185615/https:
//www.stickypassword.com/blog/the-security-risks-of-using-forgot-
my-password-to-manage-passwords/

[3] N. J. Hopper and M. Blum, “Secure human identification protocols,” in
International Conference on the Theory and Application of Cryptology
and Information Security. Springer, 2001, pp. 52–66.

[4] J. Blocki, M. Blum, and A. Datta, “Naturally rehearsing passwords,” in
International Conference on the Theory and Application of Cryptology
and Information Security. Springer, 2013, pp. 361–380.

[5] M. Blum and S. S. Vempala, “Publishable humanly usable secure
password creation schemas.” in 3rd AAAI Conference on Human Com-
putation and Crowdsourcing, 2015.

[6] H.-M. Sun, Y.-H. Chen, and Y.-H. Lin, “oPass: A user authentication
protocol resistant to password stealing and password reuse attacks,”
IEEE Transactions on Information Forensics and Security, vol. 7, no. 2,
pp. 651–663, 2012.

[7] J. Blocki, M. Blum, A. Datta, and S. Vempala, “Towards human com-
putable passwords,” 8th Innovations in Theoretical Computer Science
Conference – ITCS 2017, 2017.

[8] U. Topkara, M. J. Atallah, and M. Topkara, “Passwords decay, words
endure: Secure and re-usable multiple password mnemonics,” in Pro-
ceedings of the 2007 ACM Symposium on Applied Computing, ser. SAC
’07. New York, NY, USA: ACM, 2007, pp. 292–299.

[9] Centrify, “Centrify password survey: Summary,” Centrify, Tech.
Rep., 2014, accessed: 2017-12-20. [Online]. Available: https://
www.centrify.com/resources/5778-centrify-password-survey-summary/

[10] Lastpass, “Psychology of passwords survey,” Lastpass, Tech. Rep., 2016.
[11] M. S. A. N. Ranak, S. Azad, M. Safwan Fathi Bin, Z. Kamal, and

M. Rahman, “An analysis on vulnerabilities of password retrying,” 5th
International Conference on Software Engineering & Computer System,
2017.

[12] G. Stewart and D. Lacey, “Death by a thousand facts: Criticising the
technocratic approach to information security awareness,” Information
Management & Computer Security, vol. 20, no. 1, pp. 29–38, 2012.

[13] J. Abawajy, “User preference of cyber security awareness delivery
methods,” Behaviour & Information Technology, vol. 33, no. 3, pp. 237–
248, 2014.

[14] N. Alkaldi and K. Renaud, “Why do people adopt, or reject, smartphone
password managers?” in Proceedings of EuroUSEC, 2016, eprint on
Enlighten: Publications.

[15] D. Florêncio, C. Herley, and P. C. van Oorschot, “Password portfolios
and the finite-effort user: Sustainably managing large numbers
of accounts,” in 23rd USENIX Security Symposium. San Diego,
CA: USENIX Association, 2014, pp. 575–590. [Online]. Available:
https://web.archive.org/web/20170823094633/https://www.usenix.org/
conference/usenixsecurity14/technical-sessions/presentation/florencio

[16] F. Mwagwabi, T. McGill, and M. Dixon, “Improving compliance with
password guidelines: How user perceptions of passwords and security
threats affect compliance with guidelines,” in 47th Hawaii International
Conference on System Sciences – HICSS, vol. 00, 1 2014, pp. 3188–
3197.

[17] D. E. Kieras and S. Bovair, “The role of a mental model in learning to
operate a device,” Cognitive Science, vol. 8, no. 3, pp. 255–273, 1984.

[18] R. Shay, S. Komanduri, A. L. Durity, P. S. Huh, M. L. Mazurek,
S. M. Segreti, B. Ur, L. Bauer, N. Christin, and L. F. Cranor, “Can
long passwords be secure and usable?” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, ser. CHI ’14.
New York, NY, USA: ACM, 2014, pp. 2927–2936.

[19] S. Komanduri, R. Shay, P. G. Kelley, M. L. Mazurek, L. Bauer,
N. Christin, L. F. Cranor, and S. Egelman, “Of passwords and people:
Measuring the effect of password-composition policies,” in Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
ser. CHI ’11. New York, NY, USA: ACM, 2011, pp. 2595–2604.

[20] S. Gaw and E. W. Felten, “Password management strategies for online
accounts,” in Proceedings of the Second Symposium on Usable Privacy
and Security, ser. SOUPS ’06. New York, NY, USA: ACM, 2006, pp.
44–55.

[21] Z. Li, W. He, D. Akhawe, and D. Song, “The emperor’s new password
manager: Security analysis of web-based password managers,” in 23rd
USENIX Security Symposium. San Diego, CA: USENIX Association,
2014, pp. 465–479. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity14/technical-sessions/presentation/li_zhiwei

[22] N. Memon, “How biometric authentication poses new challenges to
our security and privacy [in the spotlight],” IEEE Signal Processing
Magazine, vol. 34, no. 4, pp. 196–194, 2017.

[23] B. Choudhury, P. Then, B. Issac, V. Raman, and M. Haldar, “A survey
on biometrics and cancelable biometrics systems,” International Journal
of Image and Graphics, vol. 18, p. 1850006, 01 2018.

[24] J. Bonneau, C. Herley, P. C. van Oorschot, and F. Stajano, “The quest
to replace passwords: A framework for comparative evaluation of web
authentication schemes,” in IEEE Symposium on Security and Privacy.
IEEE, 2012, pp. 553–567.

[25] C. Kuo, S. Romanosky, and L. F. Cranor, “Human selection of mnemonic
phrase-based passwords,” in Proceedings of the second symposium on
Usable privacy and security. ACM, 2006, pp. 67–78.

[26] K. Lee, “Four methods to create a secure password you’ll
actually remember,” 2014, accessed: 2017-12-18. [Online].
Available: https://web.archive.org/web/20190123014846/https:
//www.lifehacker.com.au/2014/07/four-methods-to-create-a-secure-
password-youll-actually-remember/

[27] M. Blum and S. Vempala, “The complexity of human computation:
A concrete model with an application to passwords,” CoRR,
vol. abs/1707.01204, 2017. [Online]. Available: http://arxiv.org/abs/
1707.01204

[28] S. Samadi, S. Vempala, and A. T. Kalai, “Usability of humanly com-
putable passwords,” in 6th AAAI Conference on Human Computation
and Crowdsourcing, 2018.

[29] N. K. Blanchard, C. Malaingre, and T. Selker, “Improving security and
usability with guided word choice,” 34th Annual Computer Security
Applications Conference – ACSAC, 2018.

[30] P. Norvig, “Natural language corpus data,” Beautiful Data, pp. 219–242,
2009.

[31] L. Q. Ha, E. I. Sicilia-Garcia, J. Ming, and F. J. Smith, “Extension
of zipf’s law to words and phrases,” in Proceedings of the 19th
International Conference on Computational Linguistics - Volume 1, ser.
COLING ’02. Stroudsburg, PA, USA: Association for Computational
Linguistics, 2002, pp. 1–6.

[32] D. I. Eastlake, J. Schiller, and S. Crocker. (2005) Rfc4086:
Randomness requirements for security. [Online]. Available: https:
//tools.ietf.org/html/rfc4086

[33] “Amazon AWS S3 cost calculator,” Amazon, 2018, accessed: 2017-12-
18. [Online]. Available: https://calculator.s3.amazonaws.com/index.html

[34] P. Grassi, M. Garcia, and J. Fenton, “NIST special publication 800-63-
3,” Digital Identity Guidelines, vol. 1, 2017.

[35] A. Toponce, “Password cards,” 2010, accessed: 2017-12-18.
[Online]. Available: https://web.archive.org/web/20121101053014/http:
//pthree.org/2010/09/21/password-cards/

[36] ——, “Strong Passwords NEED Entropy,” 2011, accessed: 2017-12-18.
[Online]. Available: https://web.archive.org/web/20180223215746/https:
//pthree.org/2011/03/07/strong-passwords-need-entropy/

[37] L. Spitzner, “Time for password expiration to
die,” 2019, accessed: 2019-10-03. [Online]. Available:
https://web.archive.org/web/20190709132850/https://www.sans.org/
security-awareness-training/blog/time-password-expiration-die

[38] H. Habib, P. E. Naeini, S. Devlin, M. Oates, C. Swoopes, L. Bauer,
N. Christin, and L. F. Cranor, “User behaviors and attitudes under
password expiration policies,” in Fourteenth Symposium on Usable
Privacy and Security ({SOUPS} 2018), 2018, pp. 13–30.

[39] N. K. Blanchard, X. Coquand, and T. Selker, “Moving to client-sided
hashing for online authentication,” in Workshop on Socio-Technical
Aspects in Security and Trust – STAST, 2019.

[40] G. A. Miller, “The magical number seven, plus or minus two: some
limits on our capacity for processing information.” Psychological review,
vol. 63, no. 2, p. 81, 1956.

[41] E. Blanchard, “Usability: low tech, high security,” Ph.D. dissertation,
2019. [Online]. Available: http://theses.fr/2019USPCC005

