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ABSTRACT
People struggle to invent safe passwords for many of their
typical online activities. This leads to a variety of security
problems when they use overly simple passwords or reuse
them multiple times with minor modifications. Having differ-
ent passwords for each service generally requires password
managers or memorable (but weak) passwords, introducing
other vulnerabilities [10, 18]. Recent research [14, 6] has
offered multiple alternatives but those require either rote mem-
orization [8] or computation on a physical device [23, 7].

This paper presents the Cue-Pin-Select password family
scheme, which uses simple mental operations (counting and
character selection) to create a password from a passphrase
and the name of the service the password is targeted for. It
needs little memorization to create and retrieve passwords, and
requires no assistance from any physical device. It is durable
and adaptable to different password requirements. It is secure
against known threat models, including against adversaries
with stolen passwords. A usability test shows the successes of
users in real-life conditions over four days.
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INTRODUCTION
The usable password community has shown that people tend
to choose passwords that are easy to rehearse and remem-
ber [11]. Strategies of requiring long passwords or multiple
types of characters (mixed-case, numbers and symbols) have
been shown by Cranor and others [22, 16] to often be mislead-
ing, not improving security in practice. These password poli-
cies seldom address the issue of entropy as most of them can
be gamed with an easy to guess password like 1Monkey!! [19,
25]. In addition, encouraging people to make passwords in
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the moment, and in an ad-hoc way, can make people prone to
simply complying with the policies without creating systemat-
ically secure passwords. Those new passwords are not only
weak, but also forgettable, and lead to frequent resets of rarely
used accounts.

Moreover, the proliferation of online accounts per user [1]
means that, due to memory constraints, passwords tend to be
either handled by a password manager [11, 15] – or worse,
written down – or reused [26]. In that last case, the complexity
that users tolerate for their main password often means that
they will use it for many different online accounts. This greatly
increases the points of failure, as a breach in the servers of
any of those can compromise millions of identities [3]. In the
other case, password managers introduce a major risk in case
the device is stolen, constituting a single point of failure from
which an adversary can steal a complete identity [2].

Password generation schemes provide a potential solution to
those problems, depending on their design. Those schemes,
which create new passwords automatically, can be arbitrarily
simple or complex, and many schemes of varying strength
have been devised. Those schemes often rely on our associa-
tive memory, which might be subject to interference, priming,
nervous lapses, and attrition. As we are required to make
many passwords for many services, we may sometimes pro-
duce families of related passwords which an adversary can
feasibly infer if they learn some examples (i.e. Mypassword1!
Mypassword2...). Potential solutions exist both in software
and in published strategies for selecting good passwords, as
suggested by Lifehacker [17] and others [8]. Such proposed
simple improvements for generating or remembering pass-
words might make them more secure, and possibly easier for
humans to remember as well.

In a series of papers, Blocki, Blum, Datta, and Vempala [6,
7, 8] have framed and formalized some important issues of
Human Usability Models for passwords. The question of secu-
rity can be measured by entropy (the numerical uncertainty of
finding a specific code), access to the codes, and learnability of
the families based on knowing one or more of the passwords.
To show it can be done, they provide several approaches for
remembering something as part of a method for making hu-
man computable families of passwords. For example, their
first proposal, "DS1", requires a user to memorize a random
letter-to-digit map as the seed to their password creation. Their
"DS2" and "DS3" algorithms are similar with a slightly differ-
ent mapping approach. They then describe a more conceptual
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"WS1" that asks users to memorize both letters and words
about a topic. Finally, they describe "LP1" that requires users
to memorize a random letter permutation. These approaches
are complex and will not pass the test of being quick or easy
to use by people without paper.

In [8], the authors propose five criteria that all password
schemes should respect:

• Analyzable: that the scheme follow a deterministic algo-
rithm whose security can be assessed.

• Publishable: that the scheme is completely public (a ver-
sion of Kerckhoff’s principle1.).

• Secure: that even an adversary with higher means cannot
crack a user’s password.

• Self-rehearsing: that the only training needed to remember
all of one’s passwords should come from normal use of the
scheme itself.

• Humanly usable: that a human can easily learn and apply
the scheme within reasonable time bounds.

The methods introduced in [8] and the one in [7] satisfy the
first four, but not the usability requirement, as they take several
minutes to create (or recreate) a password. Moreover, the ones
from [6, 7] require machine computation, leaving the user
dependent on a tool that could be complex to use and might
not always be on hand.

Motivated by the need to make so many passwords and to
retrieve them easily, this paper introduces a system, Cue-Pin-
Select, that also fulfills additional usability and security criteria
in addition to those listed above:

• Agent-independent: the scheme should be doable in one’s
head without needing assistance from a physical or compu-
tational system.

• Durable: the scheme should be adaptable to idiosyncratic
requirements, including the ones that require users to fre-
quently change their passwords. It should also be compati-
ble with existing technologies.

• Scalable: the scheme should stay secure even for a large
number of passwords.

The rest of the paper follows the following structure. The Cue-
Pin-Select protocol is described and analyzed for its resistance
to various threat models. A multi-use experiment is used to
test usability over several days. Finally, multiple variants are
considered to explain the design choices leading to Cue-Pin-
Select.

THE CUE-PIN-SELECT SCHEME
Cue-Pin-Select uses four different pieces of information. A
user starts with one long high-entropy passphrase that is highly
memorable despite its length, and a 4-digit PIN. The process
uses an algorithm that is easy to remember and implement,
and finally, for each service where a user needs a password,
they need to choose a small four-letter string called the cue.
1A cryptographic scheme should depend on a key, and not on a secret
algorithm

Passphrase
The main secret data has two components. The first one is a
passphrase of at least 6 English words, and the second is a
4-digit PIN of the kind that people are accustomed to associ-
ating with bank cards. To generate the passphrase, the user
is supplied with a randomly-generated sequence of 6 words,
adding words (such as articles or connectors) if they so desire.
The 4-digit number is also randomly generated.

A simple online tool (anonymized link) was also created
that can be used to help create a high-entropy memorable
passphrase. In this tool and the analyses, a special dictionary
crafted for the purpose is used. This one started with a the
first third of Peter Norvig’s 300000 most frequent ngrams [21].
Those 100000 words still included words from other languages
such as "unglaublichen" as well as some non-words like "unix-
compile", which were removed. The intersection with the
SOWPODS (list of admissible words in English Scrabble tour-
nament) was then computed to obtain a list of the 87691 most
frequent correct English words. This high number is further
explained in the usability section.

Password generation algorithm
Each time the user needs a password for a new service, they
need only apply the Cue-Pin-Select algorithm.

Data: Passphrase P of at least 6 random words
PIN K of 4 random digits
service name N

Result: String S of 12 characters
1 begin
2 From N, create string M of four characters

/* User-chosen, which should be easy to
remember */

3 L←− Length(P)
4 V ←− 0
5 S←− “”
6 for i = 0 ; i < 4 ; i++ do
7 X ←−M[i]
8 while X < P do
9 X ←− letter following X in the alphabet

10 V ←− index of next occurrence of X ∈ P after V
/* Or wrap around to the first
occurrence if the end of P is reached
*/

11 V ←−V +K[i]+3 mod (L)
12 S←→ Concatenate (S,P[V −2],P[V −1],P[V ])

/* All the indices are modulo L */
13 Print S

Algorithm 1: Cue-Pin-Select

The algorithm makes a 12-character password in 12 steps.
Say a user has created the passphrase parallel ordinary berry
disastrous divergent water and that their PIN is 6980. Say they
are making the password for their Amazon account. They start
by coming up with a ’cue’: a 4-character string corresponding
to this service, like amzn. This cue will then be used to extract
password parts from the passphrase.



Figure 1. Running the four phases of Cue-Pin-Select

Once this is done, they look for the first letter of their cue in
the passphrase. This would be the first ’a’ found in the word
parallel. They then step though the letters indicated by the
first number of their PIN, in this case 6. This would be the
last ’l’ of parallell. They add the next three letters to their
password, ’ord’. If the letter in the cue isn’t in the passphrase,
they look for the next letter in the alphabet ’b’ for this first
case (or the next after that, ’c’ if there is no ’a’ or ’b’ in their
passphrase).

They repeat the above four indexing steps three more times,
for the second, third, and fourth number in their pin, starting
each time from the last letter they used in the passphrase and
wrapping to the begining of the passphrase when they index off
the end of it. Figure 1 shows the process where each operation
corresponds to a color, creating the password ordisalelary.

Finding forgotten passwords
As the procedure is deterministic – for a given passphrase –
the only variability comes from the cue. In case they forget
their original cue, the user should be able to find it within a
few tries, from which they can derive the whole password.

The analyses in the coming section pertain to the model shown
here. Variants to the algorithm can be introduced for making
new passwords or responding to various password require-
ments. Some representative variants will be studied after the
analysis below.

SECURITY ANALYSIS
As combinatorial analysis of all combinations of words from
the dictionary with the algorithm would be intractable and
highly dependent on specific properties of our dataset, anal-
ysis here relies on Monte-Carlo models. The entropies are
computed exactly from the k-grams index, the list of k letter
sequences present in sentences made from the dictionary.

Preliminary considerations
One of the main assumptions used in the following analyses
is that the distribution of three-letter chunks composing each
password is very close to the distribution of a random chunk
taken in a random passphrase. The PIN is an essential part of
the randomization mechanism. It is important because simply
reading a sequence of characters in words when reading the
cue letter ’q’ without the PIN step would give chunks like "qu"
where ’q’ is followed by ’u’ in 1248 out of 1266 cases, with

only 2.7 bits of entropy. An ’o’, however, would give 10.4 bits
as it reveals little information on the following characters.

Distribution uniformity is achieved as the number of characters
stepped over each time through the passphrase is random
enough that the probabilities of landing on any letter of a given
word are quasi-uniform. The simulation shown in Figure 3
presents four curves2 representing the probability distribution
for the number of letters stepped over (one for each letter in
the 4-character cue). Since it is much bigger in expectation
than an average word length of 9, the probabilities of landing
on the nth letter of a word are then close enough to uniform
along n to provide no real advantage to an adversary.

The length of the passphrase itself follows a Bell-like distri-
bution (being a product of distributions that are themselves
Bell-like). It has 99% probability of being between 33 and 65
characters long, centered around 48 and has a large variance.
As a consequence, with high probability, the second trigram
comes later than the first in the passphrase. However, thanks to
the large variance in the probability function, the probabilities
of the second trigram preceeding or following the third trigram
are not too far apart, and the same can be said for all the other
pairs. Figure 2 shows the logscale distribution of passphrase
lengths (exact computation based on our dictionary).

Scalability
The scalability of a scheme corresponds to two different no-
tions. First, it should be scalable in number of users. Any
person who uses an obscure but adequately complex scheme
will be protected by a lack of specialized attacks targeting it.
This is not true for a scheme used by millions of people. As
such, all the threat models should assume Kerckhoff’s princi-
ple that only the key (cue, PIN, and service code) are private,
the algorithm being public. This corresponds to [8]’s notion of
publishable. In our situation, there could actually be a positive
impact of large-scale implementation, in that people using it
in a variety of languages reduces the possibility of statistical
and dictionary attacks, marginally increasing the general level
of security.

The second type of scalability corresponds to the number of
passwords used by a single user; frequently using a scheme
2The shape of those curves might seem to follow Zipf’s law [12],
with the number of letters covered being inversely proportional to the
letter’s rank frequency – to which an offset has been added because
of the random PIN. However, in such a case the maximum would be
reached with fewer than 10 letters stepped over.



Figure 2. Distribution of passphrase length on k words in vertical
logscale
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Figure 3. Distribution of length covered in one step
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should not make it more vulnerable (besides the higher risk of
multiple plain-text attacks). For a given attacker with specific
computing resources, knowing some plain-text passwords,
and other information, the probability of uncovering pass-
words should only marginally increase with the number of
passwords created by the user through the scheme. A simple
unscaleable example would be a system that solely depends
on a passphrase composed of four sections, where the user
randomly selects two sections each time they need a password.
If they use this scheme less than 3 times, assuming each sec-
tion has sufficient entropy, passwords don’t reveal each other.
After 7 uses, however, some of the passwords will be repeated.
On the other hand, while having a completely new password
for each new service is infinitely scalable, as described above,
it will require some way of remembering the passwords, which
introduces vulnerability.

For Cue-Pin-Select, it is enough to show that all the passwords
generated will be different from each other. It’s clear that
it should be the case when the user has different cues (in
particular, ones that don’t have the same first three letters).

However, a simulation where each passphrase generates 20
passwords demonstrated that the average distance between
two passwords is close to what would be expected from two
random strings (at most a few letters being shared ). The edit
distance between the two closest passwords generated was
also calculated (corresponding to the risk of having one other
password stolen when the worst password is stolen). This
showed that even in this worst situation, in more than 99% of
cases an adversary would have to change at least three letters
(a quarter of the password), assuming they already possess
one of the two closest passwords.

Brute-force and dictionary attacks
Attacking the password
Current entropy recommendations against brute-force attacks
vary from 29 bits to 128 bits of security, depending on the
attack model [5]. One common recommendation proposes 36
bits of security on any given password for web services; such
a password would require 1000 tries per second for one year to
break. Assuming the attacker uses online servers to distribute
the attack, in 2018 this would require more than $1000 per
password, even with strong economies of scale [4].

In our case, assuming the adversary knows the scheme used, a
strong attack would be to guess which trigram is used in each
position. However, an analysis of the distribution of trigrams
in the dictionary shows that each trigram adds around 13 bits
of entropy. This is highest for prefix trigrams with 14 bits,
close to 13 bits for central subwords and lowest for suffix
trigrams with 11.4 bits. Thus, each password has around 52
bits of entropy. This is close to the optimal performance of
uniform alphabetic passwords of length 12, which have 56 bits
of entropy.

Attacking the passphrase
The passphrase is much more valuable than any of the pass-
words; however, it also has much higher security. Indeed,
the six mandatory words are uniformly distributed among a
dictionary of 87691, leading to a raw entropy above 98 bits.
Adding the PIN gives 111 bits of entropy, way more than any
user could reasonably use, even against distributed attacks.
This value is reduced by two factors: the user chooses the
order of the passphrase, which can reduce entropy by 3-7 bits
depending on the model, and they can also redraw random
words a few times if they don’t like the first ones (removing
one or two bits). This small cost is partially compensated
by the fact that they can use auxiliary words. Against dumb
brute-force attacks, it would have more than 210 bits of en-
tropy, confirming the problem with using raw entropy without
specifying the adversarial model.

Resistance to plain-text attacks
Plain-text attacks are one of the main vulnerabilities found in
most user behaviors today, generally stemming from password
reuse. This is also where typical methods as described by
LifeHacker fail [17]. Assume that, with the drop in computing
costs, the adversary tries not just the exact password they have
access to but also simple variants of it. The remaining entropy
should stay high, even assuming that the adversary knows both
the method and at least one plain-text password [11].



The scheme was designed to provide high security even in
the event that one (or even a few) of the passwords are com-
promised, which can happen independently of the user’s best
practices. As said earlier, trying to guess one password from
another in Cue-Pin-Select is a hard problem in the general
case, as the edit distance is great. The easiest way of attack
then seems to go through the derivation of the passphrase from
a password obtained by the attacker.

Plain-text attacks
To analyze the security of the passphrase from plain-text at-
tacks, suppose that the adversary knows not only the plain-text
but also the length of the passphrase and the position of the
plain-text inside the passphrase. This gives way more infor-
mation to the adversary than is realistic, due to the variation
in passphrase length discussed above. Even in such a case, we
can show that it is hard to find the passphrase from a single
password.

104 random (passphrase/cue) couples were computed to get in
each case a passphrase where only certain characters were re-
vealed. Dynamic programming was then used to compute the
number of passphrases that used exactly 6 words, compatible
with the revealed letters and had the right length. This gave
the number of potential combinations in each case, which is
shown in logscale (hence corresponding to the number of bits
of entropy) on the following histogram:

Figure 4. Entropy left with a single plain-text
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This shows that Cue-Pin-Select can guarantee a minimum of
40 bits of entropy in case of a plain-text attack, with an average
of 54 bits (the standard deviation is 6 bits), and a maximum of
79 bits.

The curves for the remaining entropy, when the lucky adver-
sary has access not only to the length and positions of revealed
letters, but also to either two or three passwords, are shown on
Figure 5 (5×103 runs each).

In those two curves, the average number of bits of entropy
left is respectively 32 and 20 bits. However, a large standard
deviation (around 9 bits in both cases) and a variability in
passphrase length means that in degenerate cases (which hap-
pened once in each group of 5000 simulations of the adversary

Figure 5. Entropy left with two and three plain-texts
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having several revealed passwords, the length and position
of the revealed letters), a double plain-text lead to only 7
bits of entropy, and a triple plain-text completely revealed a
passphrase. This is to be expected as this would reveal up
to 36 characters, and close to 2% of passphrases are smaller
than that. As some of the plain-texts can also give redundant
information, the maximal entropies left were 64 and 56 bits.

The guaranteed high level of entropy against at least two plain-
text attacks means that users should be secure if they maintain
good security hygiene and change their passphrase when they
think they have been compromised. Even adversaries with
decent computational means and knowledge of the system
used should have no real chance of cracking their passphrase.

Resistance to side-channel and other attacks
Schemes have been proposed that are resistant to brute-force
while requiring little effort on the user’s part, but require some
computation, or storing of information on a trusted device.
This can be as simple as a persistent physical memory, corre-
sponding to writing passwords in a notebook, using a password
manager on a potentially vulnerable computer (e.g. to keylog-
gers), or, as in [6, 7], requiring semi-secure computation in
the form of challenges from a computer. It can also include
hybrid methods such as the password card [24, 25], in which
obtaining the physical card does not give complete access but
reduces the entropy of all the owner’s passwords to about 10
bits each.

As Cue-Pin-Select can stay entirely in the user’s mind, it
should be entirely secure against side-channel attacks, as
the only links between the passwords are entirely immate-
rial. Those passwords are the only information available no
matter the adversary’s means, so the security of the scheme
corresponds exactly to the security shown above.

This, however, ignores two possibilities. The first is that some-
one could know the user well enough that they could guess
the user’s choices. While other schemes that rely on mental
association are also potentially vulnerable to someone who
knows the user extremely well (even more so if they also have
access to computational power to get through the last bits of



entropy), Cue-Pin-Select does not. This is why the words of
the passphrase should be generated randomly, in a way that
doesn’t depend on the user’s typical choices.

The second possibility is more down-to-earth: some users
might write down their passphrase to help them create their
first few passwords, or to create a new one. As long as they
destroy this physical (or digital, if written in a text editor)
evidence, they still have the same level of security, but it is a
behavior that should be discouraged, especially as it is possible
to perform the task mentally, as shown in the usability test.

Remaining threats
One main way of attacking this system relies on finding a big
intersection between two passwords. This mainly happens
when two cues are extremely similar, leading to very close
passwords that can leave the adversary with only three charac-
ters left to guess. This could push some hackers to target the
user data of services whose natural cues might be close to the
ones of valuable services.

There is, however, a simple way to lower the risk: telling
users to create their cue in a memorable way, while trying to
avoid very similar cues: if they need cues for "GoDaddy" and
"GoAir", they should choose "gdad" and "gair" for their cues,
instead of "goay" and "goai". This is reasonable, as users can
create more than 600 cues before they run out of high-security
possibilities.

The scheme is analyzable, as it is deterministic. We have also
shown that the scheme is publishable and secure. We must
now look at its usability.

USABILITY
Regardless of how secure a password is, if it is too hard to
make, it will be reused. If it is too hard to remember, it might
be stored in a possibly insecure way, such as on paper or in
a file. Usability constraints of retrievability, low effort, and
durability are all critical to the success of a scheme.

Retrievability
One of the biggest sources of online frustration[1] is forgetting
a password and trying several plausible ones before abandon-
ing and resetting it – when possible. This can be compounded
by the fact that the next few proposed passwords might get
discarded as they correspond to past passwords, pushing the
user to create ever harder passwords, getting confused about
which ones worked and so on, and forgetting them even more
frequently. Moreover, frequent resets can pose security risks
by themselves.

Passphrase
In the case of Cue-Pin-Select, the information needed to re-
trieve the passwords is easily memorable or retrievable, and
generally both. The most important is the passphrase itself,
which should be easy to remember by being quite short [20]
and meaningful to the user. Three factors play a role in
its memorability. First, allowing users to create their own
passphrase from six given words by manipulating the order
and having the opportunity to add their own words makes
it more personal, safer in its extra length and still easier to
remember.

Second, more than 35% of users need a password for a new
service at least once per week, and more than 90% need at
least a few per year [1]. Repeated use of the scheme will serve
as rehearsals and cement the passphrase in their memory.

Third, if the user never uses their passphrase or the generated
passwords, it has low utility for them, and no scheme would
truly work in such a case. However, there is the possibility
of a user never creating new passwords after an initial period
and memorizing the ones they have. In such a case, those
passwords could serve as strong information that would help
their memory.

The passphrase becomes more memorable after the user has
started using it. It is also retrievable if they forget part of it
after a period of disuse. Together, the last two correspond to
the self-rehearsing constraint mentioned in [8].

There is one risk, however: if the user does not know the
words presented during the passphrase generation, they will
be hard to remember. There is a chance that some words in
the 87691 word dictionary would be extremely unfamiliar to
the user. Two factors mitigate this:

• The dictionary includes many words derived from others,
forming what are called word families. For example, fam-
ily, families, familiar, familiarity, unfamiliar, and 23 others
share the same root. Estimates on the number of words
known vary from 27 000 to 52 000 for native speakers [9],
going down to less than 10 000 for non-native speakers.
However, those studies look at lemmas and do not include
many derived forms (for those, the studies show a vocabu-
lary as high as 215 000 words for native English speaking
undergraduate students [13]).

Most speakers, then, should be familiar with the words of
the dictionary despite its size.

• If the user cannot easily create a sentence or use some other
way they are comfortable with to remember the words, they
have the opportunity of restarting the passphrase generation
without having any real impact on the entropy of passwords
they will eventually create using it.

PIN
As can be seen from the global use of 4-digit numbers for
credit cards, phone passwords, and door codes, people are
used to and capable of remembering this kind of PIN. Despite
this, some users could forget their PIN. In such a case, it would
be easy to find it back using only the passphrase and one of
their passwords. Finally, if some users struggle with numbers
and might risk forgetting both the PIN and their passwords,
we provide a variant that does not require it (albeit at a small
entropy cost).

Cue
As the cue is short and users are discouraged from having a
complex cue, it should be memorable. More importantly, it
is retrievable as there are only a few imaginable cues each
user could create from a given service, so a few tries would be
enough to get the cue back.



Password
The password is the least memorable piece of information,
being composed of 12 pseudo-random alphabetic characters.
However, any secure password of such length will also be
hard to remember, unless it shares strong similarities with
other passwords (thus making it vulnerable). Despite this,
thanks to the fact that it is created from parts of words and
through associative memory and repetition, users should be
able to remember their most frequently used passwords. Fi-
nally, the password is easily and entirely retrievable from the
other pieces of information in a quick and deterministic fash-
ion.

When a user forgets their password, which will happen, their
first step is to rerun Cue-Pin-Select to obtain their original
password. However, that might not work if they are starting
from a wrong cue or have forgotten about special constraints.
In such a case, the user just needs to look at the password
constraints on the service they are using to figure whether they
had added any special characters (which is a deterministic
process). This means that if they know the constraints and
their passphrase, the only unknown left is the cue, so at most
a few tries would be needed.

Low effort
Initializing the password scheme, creating or retrieving a pass-
word, and entering it should all be tasks that are not difficult
in time or effort for users. If they are hard, the user will re-
sent it or make mistakes as they have other goals for using
services than simply securing them. There are also many
cases where it is strongly advantageous to have no dependence
on physical devices (such as when one is in public, forgets
their computer, or tries to give their password on the phone).
Hence, having a computer, or even a pen and paper, should
only marginally help the user and it should be feasible to use
the password scheme without those (see user study below).
This corresponds to the constraints of human usability and
agent independence.

Below we analyze the different kinds of efforts for the ap-
proach:

• Time and difficulty to learn how to use Cue-Pin-Select and
create the passphrase and first passwords.

• Difficulty to remember and enter passwords once Cue-Pin-
Select is used in everyday life.

• Effort to get your password back when you lose it.

Generating the initial passphrase is easy, as one only needs to
get six random words and a random PIN from a any generator
(some being findable online), and organize them in the order
of their choice.

To create a new password, one starts by generating a cue which
is immediate as it should be the first 4-letter string that comes
into the user’s mind. The rest consists of counting and moving
4 groups of 3 characters. It has only 3 steps between adding
to the password being typed – 12 steps total. It requires no
mental arithmetics, so it should be accessible to people with
dyscalculia and should not even require a piece of paper once
the user is familiar with the system.

Passwords by themselves should be easy to enter, being com-
posed entirely of alphabetical characters (and sometimes the
required one or two special characters), but the user must
first remember the password and this is not a given. We can
distinguish three main cases:

• Frequently used passwords (entered at least every few days)
tend to be remembered by the users even in case of relatively
high complexity, which also applies to passwords created
using Cue-Pin-Select, leading to no increased effort or loss
of performance.

• Rarely used passwords (entered at most a few times per
year) tend to be forgotten by the users, leading to frustra-
tion, many tries, and password resets. For Cue-Pin-Select,
this only leads to password regeneration, which requires
recomputing it from a small remembered cue and is still
low-effort.

• Passwords used with medium or variable frequency might
be forgotten by users, and a simpler password would have
a higher resistance to this risk. However, Cue-Pin-Select
can be used to regenerate the password without changing
it, giving the user one more rehearsal opportunity. On the
other hand, with the usual password schemes, having to
reset it and pick a completely different one wipes out the
previous effort made to remember it, even if it happens less
frequently, making it costlier in the long term.

Durability
To be usable, schemes must be adaptable and applicable regard-
less of the password character set, length, and reuse change
policy that a service imposes. Password requirement can also
be contradictory between different services (like short maxi-
mal length constraints or forbidden numbers). Any exception
that prevents the user from using one scheme drastically dimin-
ishes the interest in using that scheme. Among protocols that
are now known to create usability errors [16], some still ask
users to regularly change their passwords, avoiding any that
have some similarity to ones used previously in a large time
frame. Also, it happens that the user forgets their password
despite their best efforts, which can even arise when they make
a typo while defining it to the service. A durable password
scheme must then include the possibility of creating new pass-
words for a single service without introducing confusion as
to which one is the current password, as most users dislike
changing habits and will keep one scheme (or one password)
for multiple years at a time.

The passwords created by Cue-Pin-Select heretofore in this
paper have been in lower-case alphabetical characters. This
provides enough security by itself but could be changed as
needed to work with idiosyncratic password requirements.
Even the most trivial extension that takes care of this for each
of the following requirements does not reduce entropy:

• If the password requires capitalization, the user should re-
member to capitalize one letter in their cue, and capitalize
the corresponding three letters of their password.



• If it requires a number, the user can start with 0 and insert it
at the center of their password, then increase it by one each
time they renew this password.

• If it requires a special character, they can pick one in partic-
ular, like "!" that they will put at the end (or in the center)
of every password that requires it.

• If it has a maximal length, they can just truncate the pass-
word without losing too much entropy (and a service that
limits passwords to lengths smaller than 12 probably has
bad security in any case).

• If it requires the user to change their password at set in-
tervals of time (such as every month), without repetition
for a certain time (such as a year or two), they can change
the first letter of the cue (or the first two letters) by cycling
slowly over the alphabet. AMZN would become BMZN
and then CMZN and so forth, and the passwords would be
strongly different each time (with high probability), as it
changes the starting point.

These simple changes give ways to adhere to the security
constraints required by service providers without reducing the
entropy of the password or significantly reducing usability.

TESTING CUE-PIN-SELECT
With strong arguments in favor of the usability of Cue-Pin-
Select, a usability test was organized, with 11 subjects using
it for short tasks each day for four days. Their personal data
was neither stored nor shared. We encouraged them to take
the benefit of learning this simplifying system for later use for
their own passwords. The group consisted of five men and six
women of diverse backgrounds, varying in ages from 18 to 65.

Protocol
Participants were initially given a document explaining what
they needed to know, including how to use Cue-Pin-Select.
The document explained that they could leave at any time,
that they should not use the passwords they would generate
over the experiment as we would ask for that information, but
that they were free to use the system with another passphrase
after the experiment. They were progressively given three
sets of tasks, each lasting a few minutes. They were then told
to follow the self-administered tasks at the rate of one in the
morning and one in the afternoon, and send us the results, as
well as the time it took them to accomplish each task. The list
of tasks is as follows:

• Day 1, task 1: Create their passphrase and PIN. Create two
passwords with cues already provided. Create cues and then
passwords for two services (Hotmail and Yahoo). After this
task, they were given feedback to explain potential errors in
making a password they might have done.
• Day 1, task 2: Create a password with a provided cue, and

then a (cue/password) couple for New York Times. Told to
try to remember their passphrase, as they would have to
recall it from memory from the second day onward.
• Day 2, task 1: Recall the passphrase, then create a password

with a cue provided and a (cue/password) couple for Twitter.
• Day 2, task 2: Create a (cue/password) couple for Snapchat,

and recall the one they did for New York Times.

• Day 3, task 1: Create 2 (cue/password) couples for Reddit
and AT&T.
• Day 3, task 2: From this step on, the participants were told

to apply the algorithm entirely in their head (writing down
only the letters of their passwords as they computed them).
Create 2 (cue/password) couples for The Guardian and HP.
• Day 4, task 1: Create 2 (cue/password) couples for Spotify

and Gmail.
• Day 4, task 2: Recall the couples they created for Snapchat,

AT&T and HP.

After the experiment, users were presented with questions
asking them if they had trouble remembering their passphrases
(instead of asking them if they cheated), which tasks they had
done with pen and paper and which in their head (as it appeared
that some switched earlier than in the instructions), whether
certain aspects made them lose some time, and whether they
would consider using it in its current state.

Results
Only one participant had trouble remembering their passphrase
on the second day (they were missing one word) and had to be
given it back. Most of them developed mnemonic schemes to
help them remember (or increase their speed), such as splitting
it into two sentences or creating mental imagery. A few had
trouble remembering their cues.

Some users had trouble following the initial instructions3 (or
found them unclear). The most common mistake was restart-
ing from the start of the word at each new cue. Feedback was
given after the first set of tasks and first password to teach
them to use Cue-Pin-Select correctly. By the second set of
tasks, all users could correctly execute the algorithm (with an
occasional mistake).

All users sped up with a strong learning effect shown in the
following figures 6, 7 and 8. Tasks on the afternoon of the
third day took longer, as all users switched and couldn’t use
pen/paper or their electronic device anymore4.

Figure 6. Time taken day 1

Time(s) Task 1.1a 1.1b 1.1c 1.1d 1.2a 1.2b

Average 89 82 72 63 70 59
Median 72 56 51 56 66 55

Max 233 211 222 108 132 113
Min 47 35 35 32 32 33

Users saw the algorithm’s value, despite the lower case only,
no special characters demonstration. Four out of eight users
who gave feedback said they would use this system, at least for
their important passwords. Two were hesitant; one thought that
Cue-Pin-Select wasn’t adaptable enough (indeed, they were
not shown how to use capitalization or special characters).

3instructions have since been simplified
4Two users decided to do all tasks mentally from day 2 onward, and
their data was not counted in the tables for days 2 and 3, but they
show the same learning behavior as the others. Instead of writing
down the passwords as they created it, some users tried to create all
of it before writing it down; this data is included in the tables.



Figure 7. Time taken day 2 and morning 3

Time(s) Task 2.1a 2.1b 2.2a 2.2b 3.1a 3.1b

Average 50 49 54 45 51 42
Median 44 47 51 40 50 40

Max 87 68 70 61 74 53
Min 30 32 42 31 38 30

Figure 8. Time taken afternoon 3 and day 4 (mental tasks only)

Time(s) Task 3.2a 3.2b 4.1a 4.1b 4.2a 4.2b 4.2c

Average 105 86 81 74 67 58 57
Median 90 80 77 71 65 56 54

Max 220 131 130 117 106 86 71
Min 65 47 46 47 24 33 31

Finally, one said it didn’t fit their personal security/usability
needs and they wouldn’t use it.

Feedback
Multiple participants observed that there was a strong cost in
time (and usability) when they had a letter that was absent
from their passphrase and had to go through their passphrase
multiple times. They said that if they ever used the scheme
again, they would make sure to have more vowels in their
passphrases, as well as a higher letter diversity (which is also
good from a security standpoint). Two of them also mentioned
they would prefer a PIN with lower numbers.

VARIANTS OF THE ALGORITHM
A first extension of Cue-Pin-Select as introduced above is
shown in the Appendix, along with another variant with im-
proved security.

As it is easy to add vulnerabilities, each variant must be sys-
tematically analyzed. Here are some natural variants with
serious flaws.

Lower security variants
Fewer words or fewer characters
Reducing the passphrase from 6 to 5 might be tempting. Direct
analysis shows that with this approach, many single-plain-
text attacks would leave the user with fewer than 28 bits of
security, down to 16 bits in certain cases. Fewer characters
in the password would be imaginable but would lower the
individual resistance, and the number of possibilities would
be limited as:

• Having 3 passes in the algorithm would lower the entropy
too much.

• Extracting 1 or 2 characters would require more passes, and
be less user friendly.

Getting rid of the PIN
Getting rid of the PIN might seem to simplify the algorithm.
This is a dangerous idea; as described above, this PIN plays
an important part in making the algorithm secure. As cues can
be easily guessable by an adversary, they could accumulate

way more information on the passphrase by guessing the cues
(and then could perform targeted attacks to obtain the rest).

If the problem is not using the PIN but remembering it, a viable
password generation scheme with a further reduction on mem-
ory would come from making the PIN from the passphrase.
This alternative that strongly mitigates the risk is to have a PIN
that corresponds to the lengths of the last four words (modulo
10). This maintains a high level of security while making the
PIN trivial to retrieve.

Using chunks of words
Instead of extracting chunks from the passphrase, it would
be simpler to extract chunks from words one at a time. For
example, one could take a random letter and the corresponding
prefix or suffix to create those chunks, which would be faster
and easier for the user. Unfortunately, this would reduce
entropy so much that it would either require more words, more
passes, or make the passphrase itself unsecure, depending on
how many letters are extracted each time.

Higher security variants
A few variants which have either a higher degree of security
or more easily provable and analyzable security, at the cost of
a reduced usability.

Using letter-values
The first version of this algorithm behaved differently in the
Cue step. Instead of looking for the next letter identical to the
one in the cue, the user was supposed to convert the cue into a
number, and then advance by that many characters (plus the
PIN digit). This means that the distribution of chunks is even
closer to a uniform one, and also means that any modification
to the first letter of the cue entirely changes the rest of the pass-
word. However, the mental load associated with converting a
letter to a number and moving by more than 15 characters on
average slows down the scheme and makes it more complex
to explain and perform.

Using more words
Finally, we could imagine having the same scheme but extract-
ing k ≥ 4 chunks from m > 6 words. This is obviously less
usable, but it increases security by a huge factor, especially in
the case of multiple plain-text attacks (when we increase m).
For example, going to m = 8 guarantees high entropy against
triple plain-text attacks. Experimentally, every added word in-
creases entropy by 16 bits, and every added plain-text reduces
entropy by less than 20 bits, although those two procedures
also increase the entropy variance.

DISCUSSION
This paper has proposed, analyzed, and tested the Cue-Pin-
Select usable password creation scheme. It can be learned
and applied by a novice in less than two minutes and after
making a few passwords, all testers were able to create 12-
character retrievable passwords in under a minute in their head.
Some users were able to create or retrieve passwords in less
than half a minute. The scheme is robust against many types
of attacks, including against an adversary in possession of
some of the generated passwords. All of the passwords in the
scheme are easily retrievable assuming the user remembers



their passphrase. The passphrase itself is easily memorable,
frequently rehearsed, and retrievable via associative memory if
the user remembers some of the passwords. It allows a user to
create a cue that works for them. Finally, it is compatible with
text-based password constraints, and can be used durably with-
out frustration or risk. In summary, it satisfies [8]’s five criteria
of analyzability, publishability, security, self-rehearsal and
human usability, as well as our criteria of agent independence,
durability, and scalability.

Users found it took a few minutes to learn at first but quickly
gained proficiency. They had next to no trouble remembering
their passphrase thanks to the multiple rehearsals. Working
with the system for a few minutes each day, they all gained
speed and accuracy in using the password creation algorithm.
By the third day, all of them could create a password in under
55 seconds, and most could do it in their head in less than
a minute by the end. This does not mean that they would
spend 55 seconds each time they need to enter it, as any fre-
quently used password would be itself remembered, requiring
no recomputation. The strength of the scheme lies in having
secure, diverse, and memorable passwords, that can be quickly
recomputed even after a long time.

This exercise had several goals. It shows the existence of an
easy-to-use password generation and retrieval system. It gains
security from not using a computer, from its entropy, from the
diversity of parts of its seed, and from its adaptability. It gains
usability by being personalized and based on language, and by
rehearsing the only things that have to be remembered. It gains
robustness in the ease it gives for retrieving any passwords a
user does not remember, and for giving the user simple rules
to make up alternative passwords for any service.

The analysis performed gives worst-case lower bounds on the
security of Cue-Pin-Select, by making strong assumptions on
the amount of information available to the adversary. Despite
those assumptions, the system guarantees 40-bit security even
against single plain-text attacks. Those bounds could be in-
creased by a more thorough analysis of realistic attacks, to
prove a higher level of security against multiple plain-texts
attacks.

This paper shows that the new criteria of agent independence,
durability and scalability can be added to Blum’s criteria of
being analyzable, publishable, secure, self-rehearsing, and
humanly-usable, in making a password creation system. Its
speed being faster and not relying on computation, the system
is easier to use and more secure than earlier proposals [8]. We
would be delighted to see this working demonstration leading
to new families of more secure, usable password creation and
retrieval systems. For example, the strong security constraints
described in this paper could be relaxed to get a more usable
scheme with a slightly weaker but still strong security features.
A thorough analysis of more realistic threat models against
Cue-Pin-Select and derived schemes that rely less on private
information held by the adversary would help in this endeavor.
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APPENDIX

VARIANTS
Here are two variants of the algorithm found in section 2. The
first is a higher-security one for the users who are good at
mental arithmetic, which is more resistant to multiple plain-
text attacks and easier to analyze. The second is a completely
usable and adaptable one.

Data: Passphrase P of at least 8 random words
PIN K of 4 random digits
service name N

Result: string S of 12 characters
1 begin
2 From N create string M of four characters

/* This user-chosen string should be easy
to remember */

3 V ←− 0
4 L←− Length(P)
5 S←− ””
6 for i = 0 ; i < 4 ; i++ do
7 X ←−Integer(M[i])

/* X ←− n, if M[i] is the n-th letter in
the alphabet */

8 V ←−V +X +K[i]+3 mod (L)
9 S←− Concatenate (S,P[V −2],P[V −1],P[V ])

10 Print S
Algorithm 2: Higher Security Cue-Pin-Select

Data: Passphrase P of at least 6 random words
PIN K of 4 random digits
service name N

/* If the user struggles with numbers, the PIN
can correspond to the length of the last 4
words */

Result: string S of around 12 characters
1 begin
2 From N create string M of four characters

/* This user-chosen string should be easy
to remember */

3 if Service requires mixed-case then
4 M should be in mixed-case
5 if User had a previous cue for this service then
6 M[0] and M[2] become the next letters in the alphabet
7 L←− Length(P)
8 V ←− 0
9 S←− ””

10 for i = 0 ; i < 4 ; i++ do
11 X ←−M[i]
12 while X < P do
13 X ←− letter following X in the alphabet
14 V ←− next occurrence of X ∈ P after V

/* Or the first occurrence if we reach
the end of P */

15 V ←−V +K[i]
16 P←→ Concatenate (P[V ],P[V +1],P[V +2])
17 if M[i] is upper-case then
18 Make P upper-case
19 S←− Concatenate (S,P)
20 if service requires a number then
21 S←− Concatenate (S,′ 0′)
22 if service requires a special character then
23 S←− Concatenate (S,′ !′)
24 if service requires a password of length L− y then
25 S←− Suffix (S,y)

/* We avoid the security measures by adding
characters that don’t change entropy,
and remove the first few letters if
needed */

26 Print S
Algorithm 3: Adaptable Cue-Pin-Select
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