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ABSTRACT
The present work assesses different Monte Carlo methods

in radiative heat transfer problems, in terms of accuracy and
computational cost. Achieving a high scalability on numerous
CPUs with the conventional forward Monte Carlo method is not
straightforward. The Emission-based Reciprocity Monte Carlo
Method (ERM) allows to treat each mesh point independently
from the others with a local monitoring of the statistical error,
becoming a perfect candidate for high-scalability. ERM is how-
ever penalized by a slow statistical convergence in cold absorb-
ing regions. This limitation has been overcome by an Optimized
ERM (OERM) using a frequency distribution function based on
the emission distribution at the maximum temperature of the sys-
tem. Another approach to enhance the convergence is the use
of low-discrepancy sampling. The obtained Quasi-Monte Carlo
method is combined with OERM. The efficiency of the considered
Monte-Carlo methods are compared.

NOMENCLATURE
DNS Direct Numerical Simulation
FM Forward Method
I Radiative intensity [W sr−1 m−2]

∗Address all correspondence to this author:
lorella.palluotto@centralesupelec.fr

LES Large Eddy Simulation
MCM Monte Carlo Method
N,n Number [-]
QMCM Quasi Monte Carlo method
ERM Emission-based Reciprocity Method
OERM Optimized Emission-based Reciprocity Method
P Radiative power per unit volume [W m−3]
PDF Probability Density Function
RANS Reynolds-Averaged Navier-Stokes equations
T Temperature [K]
TCPU Computational time [s]
T RI Turbulence-Radiation Interaction
f Probability density function [-]
rms root mean square
∆ Direction of photon bundle [m]
δ Channel half-width [m]
η Efficiency
θ Polar angle [sr]
κ Absorption coefficient [m−1]
ν Radiation Wave number [cm−1]
σ Standard Deviation
σ

2 Variance
φ Azimuthal angle [sr]
Ω Solid angle [sr]
exch Exchanged quantity

1



e Emitted quantity
○ Equilibrium quantity

INTRODUCTION
Conductive heat fluxes and radiative energy fluxes at walls

greatly affect the design stage and the material choice of combus-
tion systems. Incorporating these different contributions in nu-
merical simulations is therefore a great challenge that is widely
investigated. In the context of gas turbines, the efficient mitiga-
tion of conduction from burnt gases with film and effusion cool-
ing leaves radiation as the main contributor to wall heat fluxes.
Radiative heat transfer is however difficult to account for in tur-
bulent flows. Local radiative intensity is indeed strongly corre-
lated to the instantaneous medium distribution in the spatial do-
main. Furthermore it also shows a highly non-linear response to
temperature and species concentrations. Therefore accurate cal-
culation of radiative transfer requires an instantaneous spatially
resolved information regarding the temperature and species com-
position fields. Carrying out RANS simulations does not provide
such information as only average quantities are calculated. Then
accounting for Turbulence-Radiation Interaction (TRI) [1, 2] in
such configuration requires TRI modelling. While deriving such
models is still an ongoing research domain, another approach to
alleviate significantly this modeling issue is to couple the radia-
tive solver to direct numerical simulations (DNS) as in [3–5],
that fully resolves in time and space the flow field, but these sim-
ulations remain not accessible for use in large-scale applications.
Therefore a intermediate choice is to use large-eddy simulation
(LES) instead of DNS, providing time resolved solution and a
good estimation of the spatial correlation in the simulation do-
main. The subgrid-scale TRI effects are nonetheless strictly not
negligible and modeling efforts are ongoing [6, 7].
As regarding the methods to solve the radiative transfer equation,
Monte Carlo methods are the more interesting for their straight-
forward accounting for spectral gas radiative properties and for
complex geometries. A Monte Carlo method (MCM) is a statis-
tical method where a large number of stochastic events is sim-
ulated. In radiative transfer a stochastic event is represented by
an optical path of photons bundles whose departure point, prop-
agation direction and spectral frequency are independently and
randomly chosen according to given distribution functions. The
average of all the stochastic events contributions constitutes the
solution of the problem, i.e. the local values of radiative power
and wall radiative fluxes. In the conventional Forward Method a
large number of photon bundles are emitted in the whole system
and their history is traced until the carried energy is absorbed by
the participative medium, at the wall, or until it exits the system.
Such methods provide an estimation of the statistical error for
the computed radiative power and wall fluxes, commonly repre-
sented by the standard deviation. The standard deviation tends
to be proportional to 1/

√
N (Howell 1998), where N is the total

number of bundles. One of the main drawbacks is the need of a
large number of rays to obtain statistically and physically mean-
ingful results, and this handicap becomes stronger in optically
thick media, where most of photons are absorbed in the vicinity
of their emission source. Although these methods are deemed to
be computationally expensive, all the more when coupled with
unsteady 3D simulations, but the increase in computational re-
sources has nowadays made such computations possible. Nev-
ertheless, it is still necessary to reduce the cost of these coupled
simulations to make them more and more affordable.
For this purpose, different strategies have been proposed in the
last years. One alternative to reduce conventional Monte Carlo
convergence time and large memory requirement is the Recipro-
cal Monte Carlo approach proposed by Walters and Buckius [8],
where the net power exchanged between two cells is directly cal-
culated, fulfilling the reciprocity principle. The main interest of
such a reciprocal approach is that the net power exchanged be-
tween two cells at the same temperature is rigorously null. This
property is only statistically verified by the FM [9]. Cherkaoui
et al. [10] reported that the reciprocal method converges at least
two orders faster than the conventional Monte-Carlo method and
was much less sensitive to optical thickness.
But a complete Monte Carlo Reciprocity Method, based on com-
plete calculation of exchange powers between all the couples of
cells of the discretization, is not realistic for system involving
participating gases characterized by spectral radiative properties
in complex geometrical configurations.
Among the reciprocal Monte Carlo methods, the Emission Reci-
procity Method (ERM) developed by Tesse et al. [9] proposes a
deterministic estimation of the local emissive power while the lo-
cal absorbption is estimated with the reciprocal principle. Zhang
et al [11] proposed a method to improve the efficiency of ERM,
through an approach of importance sampling based on a new
frequency distribution function that aims to reduce the Monte
Carlo variance, accelerating its convergence (Optimized Emis-
sion Reciprocity Method OERM).
Another approach, alternative to the variance reduction tech-
niques, is to use a sampling mechanism whose error has a bet-
ter convergence rate than classical MCM. Using alternative sam-
pling mechanisms for numerical integration is usually referred
to as ’Quasi-Monte Carlo’ integration [12]. While considered in
semi-conductor applications [13], such methods have not been
investigated for participating media such as the ones met in com-
bustors.
This present study focuses on convergence acceleration of MC
simulations: first the interest of ERM will be highlighted, then
it will be compared to its optimized version (OERM). OERM is
then combined with the Quasi-Monte Carlo method. MC and
QMC methods will be assessed in terms of accuracy and com-
putational cost in two configurations. The first configuration is
a turbulent channel flow DNS (case C3R1 from [5]) character-
ized by a simple geometry that allows to perform simulations
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FIGURE 1. Computational domain of channel flow case. x, y and z
are, respectively, the streamwise, wall normal and spanwise directions.
Periodic boundary conditions are applied along x and z. δ is the channel
half-width, equals to 0.01 m and the dimensions of the channel case
Lx,Ly and Lz are 2πδ , 2δ and πδ . The lower wall is at 950 k and the
upper wall is at 2050 K.

FIGURE 2. Instantaneous fields of temperature on a longitudinal sec-
tion of the channel.

on a structured grid. The channel characteristics are showed in
the Fig. 1: a homogeneous non-reacting CO2−H2O−N2 gaseous
mixture, at 40 bars, flowing between two walls with imposed
temperature values (Fig. 2) and its computational domain is made
of 4.2 millions of grid points. The second configuration is a lab-
oratory scale burner [14, 15] computed in LES [16, 17] with an
unstructured grid of 8 millions cells and 1.26 millions points.
The burner hosts a turbulent premixed flame of a methane-air
mixture injected through a swirl injector and confined by cold
walls. An instantaneous field of temperature into the chamber
is showed in Fig. 3 For both configurations, instantaneous snap-
shots of unsteady 3d simulations (DNS for the first one, LES for
the second one) are used to asses the computational efficiency of
the considered Monte Carlo methods.

FIGURE 3. 2D slice of the instantaneous 3D field of temperature of
the studied burner.

RADIATION SIMULATIONS WITH RECIPROCAL
MONTE CARLO ERM

The general organization of the radiation model, based on
a reciprocal Monte Carlo approach, has been detailed by Tess
et al. [9]. The principles of this method are briefly summarized
here; in this approach the radiation computational domain is dis-
cretized into Nv and N f isothermal finite cells of volume Vi and
faces of area Si, respectively. The radiative power of the node
i per unit volume is written as the sum of the exchange powers
Pexch

i j between the node i and all the other cells j, i.e.

Pi =
Nv+N f

∑
j=1

Pexch
i j = −

Nv+N f

∑
j=1

Pexch
ji . (1)

where Pexch
i j is given by

Pexch
i j = ∫

+∞

0
κν(Ti)[I○ν(Tj)− I○ν(Ti)]∫

4π

Ai jν dΩidν , (2)

where I○ν(T) is the equilibrium spectral intensity and κν(Ti)
the spectral absorption coefficient relative to the cell i. dΩ is an
elementary solid angle. Ai jν accounts for all the paths between
emission from the node i and absorption in any point of the cell j,
after transmission, scattering and possible wall reflections along
the paths. Its expression is detailed in [9].
As in a Monte Carlo method propagation direction ∆(θ ,φ) and
wave-number ν of the photon bundles emitted are determinated
randomly according to a Probability Density Function (PDF)
fi(∆(θ ,φ),ν), that will be written as fi(∆,ν), introducing the
emitted power Pe

i (Ti) per unit volume, Eq. (2) can be written as

Pexch
i j = Pe

i (Ti)∫
+∞

0
[ I○ν(Tj)

I○ν(Ti)
−1]∫

4π

Ai jν fi(∆,ν)dΩidν , (3)
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where the PDF is expressed as

fi(∆,ν)dΩidν = f∆i(∆)dΩi fν i(ν)dν (4)

= 1
4π

dΩi
κν(Ti)I○ν(Ti)

∫
+∞

0 κν(Ti)I○ν(Ti)dν
dν .

As in this method the emitted energy is calculated in a deter-
ministic way while the absorbed one is computed by using a
statistical approach, the accuracy of computed emitted energy
will be more accurate than the absorbed energy and hence ERM
is more adapted to the zone where emission is dominant than
absorption, i.e. high temperature zone [11].
As in the ERM only the bundles leaving the node i are needed to
estimate the local radiative power. It is possible to estimate the
radiative power at one point without performing such estimation
in all other points of the domain. This main feature allows an
estimation of the radiative power in reduced parts of the domain
and it gives the possibility to have a control on the local accuracy.

Scalability
Scalability becomes a very challenging problem in large-

scale simulations involving radiative transfer. Fluid mechanics
and most other phenomena in combustion physics are short range
phenomena, so the energy balance equations can be solved over
infinitesimal volumes, making them amenable to domain decom-
position. Conversely, radiation is a long-distance phenomenon
and corresponding equations must be solved over the entire con-
sidered domain, thus creating difficulties for domain decomposi-
tion. Each node of the domain needs information about all other
nodes, so each processor shares radiation field variables with
all other processors. Achieving a high level of scalability with
the conventional forward Monte Carlo method is not straight-
forward. Moreover scalability in massively-parallel computing
is difficult to obtain due to load imbalancing and interprocessor
communication demands. The feature of the ERM method to
treat each mesh point independently from the others with a local
monitoring of the statistical error insures a high degree of scal-
ability. The RAINIER code used for the simulations presented
in this paper solves the radiative transfer equation in order to
determine the fields of radiative power and radiative heat fluxes
to walls. It is characterized by a master/slave framework. The
master process assigns work to all of the other processes, called
slaves and the exchange of information occurs through MPI com-
mands. The master, then, collects and saves the results as they
are returned from the slaves. As each slave process completes
the assigned work, it requests additional work to the master pro-
cess. To exhibit the computational demand of the ERM method
for different cores counts, a scalability analysis was performed
on a Bull cluster equipped with Intel E5-2690 processors. The

FIGURE 4. Scalability plot. Blue circles: test performed with 200
rays; red triangles: test performed with 1000 rays; dashed line: ideal
curve.

case retained for the scalability test is the laboratory scale burner
whose computational domain is made of 8 millions cells. Tests
have been conducted on a range of cores, from 120 up to 1920.
Two tests have been performed with a fixed number of rays emit-
ted in each point of the domain (200 for the first case, 1000 for
the second one), and no convergence criteria have been imposed.
The test characterized by a lower number of emitted rays presents
some disadvantageous conditions to scalability, as a huge number
of communications between slaves and master is required. The
results of the scalability analysis are summarized in Fig. 4 where
it can be noticed a perfect ability of the method to require less
wall-clock time as the number of processors is increased up to
1000 cores. When the cores number is higher than 1000, the time
to exchange the informations between the master process and the
slaves improves. Consequently the case with a lower number of
rays prevents to achieve good scalability at larger process counts
because of an overload of the master, which increases in propor-
tion to the number of processes used. On the contrary, when the
load of the slaves grows, a linear scalability is accomplished up
to 1920 cores, with no deviation from the ideal scalability curve,
meaning that the scalability limit is not reached. This trend let
us expect that strong scalability will continue further, for a larger
number of processors.

The efficiency plot in fig. 5 confirms the code performance.
In the case characterized by the overloading of the master, the ef-
ficiency decreases to 70 % for a large number of cores, while, for
the second case, it remains close to 100% whatever the number
of cores.
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FIGURE 5. Efficiency bar chart. Blue: test performed with 200 rays;
red: test performed with 1000 rays.

Local Convergence
As already mentioned, one of the main interests of the ERM

method is the possibility to control the local convergence. To
show this feature, instantaneous snapshots of unsteady 3D DNS
simulations of the turbulent channel flow, defined in fig. 1, are
used to solve the radiation field.

To estimate the local standard deviation the actual total
number of optical paths (N) is divided into n packages with
N/n optical paths for each package. In order to evaluate the
convergence of a Monte Carlo solution, the control is done on
the relative and the absolute value of the standard deviation.
The relative standard deviation is the ratio of the local standard
deviation to the local radiative power. However, this parameter
is not enough as there can be some regions, such as the injector
of a combustion chamber, where there are no participating gases,
and the radiative power is zero. Therefore the absolute value
of the local standard deviation, is checked to be lower than a
prescribed maximum.
The ERM method is simulated in two different cases: in the first
one a given number of realizations, or optical paths, is imposed
to be the same for all the nodes of the domain; in the second one
a local convergence criterion is imposed. For all the simulations
the gases spectral properties are computed using the correlated
κ-distribution [18].

Case 1: Simulations with a fixed rays number In
this test, the rays number is imposed to 10,000 for all the com-
puted points. To evaluate the achieved level of convergence, it
can be interesting to take a look at the standard deviation of the

FIGURE 6. Field of RMS of radiative power on a transversal section
of the channel (top). Plot of RMS of radiative power (red) and tempera-
ture (blue) on the same section obtained with the Monte Carlo ERM in
fixed rays number tests (bottom).

radiative power. This variable, together with the temperature, is
plotted over the y-axis of the channel in Fig. 6, showing that a
better accuracy is reached in the region near the hot wall of the
channel, while high values of rms radiative power are encoun-
tered in the colder regions of the channel.

Case 2: Simulations with imposed convergence
criteria This test case is set-up in such a way that calculations
are performed until the relative criterion is lower than 5% or
the locale absolute value of the standard deviation is lower than
10% of the maximum value of the mean radiative power. Here
the number of rays generated from each cell is not anymore set
a priori, but it varies spatially according to the local standard
deviation. The local convergence controlling algorithm makes
possible to relate the local standard deviation to the local
number of optical paths: the fig. 7 shows that in regions where
the convergence is difficult to achieve, more optical paths are
provided, or equivalently that the regions characterized by a
number of shots lower then the maximum, have achieved the
convergence.

To conclude it can be confirmed that the radiative power field
predicted by ERM is easier to converge in high temperature re-
gions where the accuracy is bigger. The reason of the differ-
ent behavior in hot and cold zones lies in the frequency distribu-
tion function used in ERM, as it is based on the spectral emitted
power. Consequently the optical paths issued from colder cells
are characterized by low frequencies. But the radiative power ab-
sorbed by a cold cell has mainly be emitted by hot regions, emit-
ting at much higher frequencies. The absorbed radiative power is
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FIGURE 7. Number of rays (top) and relative standard deviation (bot-
tom) obtained with the Monte Carlo ERM in controlled convergence.

then strongly underestimated in cold regions. This phenomenon
does not appear for hot cells as the emitted radiation spectrum is
very close to the absorbed one [11]. These considerations clearly
show that the distribution function used in the ERM method may
not be optimized for fast convergence in the cold regions, leading
to excessive CPU time.

MONTE CARLO OERM

To alleviate the mentioned problem different methods exist,
one of the most important ones is the so-called importance sam-
pling: a variance reduction method to accelerate Monte Carlo
convergence. This is the core of the Optimized Emission-based
Reciprocity Method (OERM) [11], where the frequency distri-
bution function is chosen in such a way as to correct the ERM
drawback and decrease the variance.
In the OERM method the frequency distribution function,
fν(ν ,Tmax), is based on the emission distribution at the maxi-
mum temperature encountered in the system and it is expressed

as

fν(ν ,Tmax) =
κν(Tmax)I○ν(Tmax)

∫
+∞

0 κν(Tmax)I○ν(Tmax)dν
. (5)

In these conditions, the radiative exchange power for unit volume
between i and j, given by (2), can be expressed as

Pexch
i j =Pe

i (Tmax)∫
+∞

0

I○ν(Ti)
I○ν(Tmax)

κν(Ti)
κν(TImax)

(6)

[ I○ν(Tj)
I○ν(Ti)

−1] fν(ν ,Tmax)dν fΩidΩi

The use of the pdf (5) allows to eliminate the disadvantage
of the classical approaches of ERM in the cold regions. To il-
lustrate the advantages of the OERM method, computations of
the radiative transfer in the channel flow are performed. In a first
step solutions of radiative field obtained with a OERM approach
are obtained with the same computation conditions of the case
1, at imposed number of rays, and they are compared to the so-
lutions obtained with the ERM method. The standard deviation
for both of the methods is exhibited in Fig. 8: on the hot wall
results of ERM and OERM overlap as the two frequency distri-
bution functions are practically identical, therefore OERM turns
into ERM. Focusing on the colder regions on the bottom of the
section, the same figure shows that the standard deviation in the
OERM case is much lower than in the ERM case, meaning that
with the same number of realizations, the frequency distribution
function of OERM allows the absorption by the cold regions to
be more accurately computed, contrary to the case of ERM.
Consequently if a convergence criterion is fixed, calculations
conducted with an OERM method need a lower number of re-
alizations to satisfy the same criterion as it can be seen in fig. 9,
leading to a less expensive computational cost.

The OERM method is now investigated on a semi-industrial
configuration, the burner of fig. 3. The temperature, pressure,
CO2 and H2O molar fractions used in OERM simulations are in-
stantaneous values extracted from unsteady 3D Large Eddy Sim-
ulations of the flow. As seen in Fig. 10 most of the domain emits
energy through radiative heat transfer (negative radiative power);
the regions where energy absorption dominates (positive radia-
tive power) are the coldest gas pockets mainly located in thin
layers near the walls.
In the set-up of this case relative and absolute values of stan-
dard deviation are controlled in order to insure that the simula-
tion completes in a limited CPU time, so a maximum number
of rays emitted per point is imposed. If the simulation is locally
stopped because of this criterion, the convergence is not achieved
in these points. Tests are performed limiting the maximum num-
ber of possible optical paths departing from the nodes to 10 000
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FIGURE 8. Instantaneous field of rms of radiative power obtained
with Monte Carlo OERM (top). Plot of the rms of radiative power for
ERM (blue line) and OERM (red line) in test with fixed rays number.

and 20 packages of 500 realizations each are taken into account
for the error estimation. The convergence condition of the Monte
Carlo algorithm is that of an rms lower than 3 % of the mean
value; while in the regions where the criterion of relative rms is
never satisfied, a control on the absolute value of the rms, whose
value is imposed at 3 % of the maximum value of the mean radia-
tive power, is done. In the fig. 11 gray zones are the ones where
the absolute criterion is respected, keeping in mind that in these
zones the rms of the radiative power is close to zero, while in
the remaining part of the chamber a control on the relative error
is done. It can be seen that zones where it is most difficult at-
tain the established convergence criterion are characterized by a
larger number of realizations.

FIGURE 9. Plot of the number of rays needed for the ERM (blue line)
and OERM (red line) in controlled convergence.

FIGURE 10. Instantaneous fields of Radiative Power (top) and the
opposite of the emitted power (bottom). Black line is the iso-contour
for radiative power = 0.

QUASI MONTE CARLO
If the technique used in the OERM method is aimed to

reduce the variance through importance sampling; another ap-
proach to improve the Monte Carlo error is to replace the
pure random sampling with a quasi-random (also called low-
discrepancy) sampling, without modifying the frequency distri-
bution function. Lower error and improved convergence may be
attained by replacing the pseudo-random sequences using low-
discrepancy sequences, whose points are distributed in a way to
provide greater uniformity (fig. 12). For this study a Sobol se-
quence has been used and its construction uses results from [19].

7



FIGURE 11. Number of rays (top) and relative rms of radiative power
(bottom) obtained using the Monte Carlo OERM method.

Using this alternative sampling method in the context of multi-
variate integration is usually referred to as Quasi Monte-Carlo,
that can be seen like a deterministic version of Monte Carlo
method.
Its advantage lies in enhancing the convergence rate [20]. It
is possible to asses the error using a Randomized Quasi-Monte
Carlo [12]. In the context of radiation simulations, as for the
Monte Carlo, n packages are considered; within each of this
package, a low discrepancy sequence of N/n points is used,
while the n sequences of the packages are randomized using an I-
binomial scrambling [21]. This approach allows to benefit from
the faster convergence rate of Quasi-Monte Carlo within each
package and to have an estimation of the error using the variance
between the packages, as it is done for the Monte Carlo method.
The obtained Quasi-Monte Carlo method can be combined with
both ERM and OERM methods, so that a comparison with
the Monte Carlo simulations, previously presented, can be con-
ducted. Only OERM results are considered in the following.

Quasi Monte Carlo combined with OERM method
Simulations with a Quasi-Monte Carlo method in its OERM

version have been conducted on snapshots of 3D LES of the lab-
oratory scale burner. In a first step, simulations have been carried
out setting the same number of optical paths departing from all
the nodes of the domain, without imposing convergence criteria.
Such an analysis allows to evaluate the accuracy of both methods.
In fig. 13 the relative standard deviation for both the methods is
shown on the whole longitudinal section of the chamber. It can
be seen that with the same number of realizations, QMC simu-

FIGURE 12. Sampling of polar (θ ) and azimuthal angle (φ ) using a
Sobol sequence (left) and a random sequence (right).

lations are more accurate than MC ones, as the relative error is
much lower on the whole domain, even in the zones more diffi-
cult to converge, such as the ones close to the cold walls of the
chamber.
In order to compare the convergence rate of Monte Carlo and
Quasi Monte Carlo simulations, in a second step tests of conver-
gence are performed. Their set-up is the same of OERM sim-
ulations of the previous chapter, in terms of maximum number
of rays and packages, and parameters for the control error. Tests
withs local convergence control allow to highlight the advantage
of QMC in terms of computational cost. As expected, the number
of realizations necessary to respect the convergence criterion is
much lower in the case of QMC simulations as showed in fig. 14.

CPU efficiency of Monte Carlo and Quasi-Monte Carlo
methods

A more complete comparison can be done evaluating the ef-
ficiency of both Monte Carlo and Quasi Monte Carlo methods.
The local efficiency of both the methods has been compared and
evaluated as

ηi =
1

σ2
i ⋅nbint,i ⋅(TCPU/nbint,tot)

(7)

where i represents the considered point, nbint,i is the number of
the intersections of the point i, TCPU/nbint,tot is the cost of an in-
tersection. In the fig. 15 the ratio of the local efficiencies of quasi
Monte Carlo algorithm and Monte Carlo is showed on a longitu-
dinal plane of the chamber: the ratio is bigger than 1 on almost
the whole domain, meaning that the QMC method improves the
efficiency of the MC, by a value that can be greater than 5, de-
pending on the considered points of the domain.
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FIGURE 13. Instantaneous field of rms of radiative power obtained
with Monte Carlo OERM (top) and Quasi-Monte Carlo OERM (bottom)
at imposed number of rays.

FIGURE 14. Number of rays necessary for the convergence used by
Monte Carlo OERM (top) and Quasi-Monte Carlo OERM (bottom) in
controlled convergence.

In order to localize the regions where Quasi Monte Carlo
becomes more efficient, it is interesting to look at the scatter plot
of the efficiency ratio in relation to the temperature for all the do-
main points and it is shown in Fig. 16. It is worth noting that this
ratio is high in the cold pockets of the chamber near the walls,
where normally the convergence is hard to be achieved, and that
the regions characterized by a higher efficiency ratio are the ones
at intermediate temperature (around 1000 K), which cover most
of the domain.

Concerning the computational time needed for the simula-
tions of the two retained geometries under the best case scenario
(Quasi Monte Carlo-OERM in controlled convergence tests), a

FIGURE 15. 2D map of the ratio between efficiency of Quasi-Monte
Carlo and Monte Carlo methods.

FIGURE 16. Scatter plot of temperature in relation to the efficiency
ratio between Quasi-Monte Carlo and Monte Carlo for all the points of
the domain.

radiative solution needs 70 CPU hours for the channel flow con-
figuration, while for the semi-industrial burner the amount of
CPU hours increases up to 190, running both the computations
with 168 cores. The computational cost of coupled simulations
can then be estimated a priori. When fluid and radiation solvers
are coupled, two parameters should be taken into account: the
number of cores dedicated to each code and the coupling fre-
quency, i.e. how many iterations fluid and radiation solvers ex-
change data:

N f T f
CPU = T r

CPU (8)

where T f
CPU and T r

CPU represent the cost of one iteration of the
fluid and radiative solver, respectively, and N f the number of
fluid iterations. If the coupling is performed each time step, the
cost of a coupled simulation becomes 10 000 times more expen-
sive than a combustion simulation, thus meaning that the radia-
tion solver would need a big number of cores to ensure the same
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elapsed time than the fluid solver. In order to make the com-
putation more affordable, the choice of the coupling frequency
parameter becomes significant; for instance, coupling each 2000
fluid iterations, a coupled simulation would become 10 times
more expensive than a combustion simulation.

CONCLUSION
Monte Carlo methods applied to radiative heat transfer prob-

lems are known for being computationally expensive. In order
to afford coupled 3D simulations of reactive flows, it is neces-
sary to reduce the computational cost. Different strategies have
been proposed to face this limit, some of them, like the ERM
or the OERM methods, have been used in this study. Finally
a technique to further improve the efficiency of Monte Carlo
method, based on a low-discrepancy sampling, has been applied
and the obtained quasi-Monte Carlo method has been combined
with OERM and compared to the Monte Carlo in a complex con-
figuration. Simulations results have shown a significant improve-
ment from the quasi-Monte Carlo in terms of computational ef-
ficiency, introducing them as an excellent candidate for coupled
high-fidelity simulations.
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