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bCNRS, UPR 288 Laboratoire d’Energétique Moléculaire et Macroscopique, Combustion (EM2C)
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Abstract
The propagation of uncertainties in the chemical reaction rate constants onto the auto-ignition delay of an air-hydrogen
mixture is studied with different approaches. An analysis of variance is carried out to reduce the number of stochastic
dimensions of the problem to three reactions for the investigated case. Comparisons between Monte-Carlo method,
adaptative cubature method and Polynomial Chaos expansion are then made, regarding both the accuracy and the
computational cost.

1. Introduction

In self-igniting systems, the auto-ignition delay is
an extensively used quantity in both low-order mod-
els and more advanced turbulent combustion models
for Reynolds Averaged Numerical Simulations or Large
Eddy Simulations. Its computation relies on detailed
chemistry mechanisms in homogeneous reactors. How-
ever, the inherent uncertainty in the kinetic parameters
of detailed chemistry mechanisms induces an uncertainty
on the auto-ignition delay itself that must be evaluated in
order to characterize some limitations in the aforemen-
tioned models.
Assuming small uncertainties, approaches based on sen-
sitivity analysis [1] or variance propagation [2] have been
used on chemical system. However, such approaches
are not well suited for problems containing large un-
certainties, where probabilistic methods are more ade-
quate. Recent years have seen the development of spec-
tral methods, which can be intrusive [3] or non intrusive
[4]. Nonetheless, spectral methods suffer from the curse
of dimensionality [5], and thus can not be used with de-
tailed chemical mechanism.
The goal of this paper is to study the uncertainty on the
auto-ignition delay of an air-hydrogen mixture due to un-
certainties in the chemical reaction rate constants of a
detailed mechanism. To do so, reference results using a
Monte-Carlo method are first obtained on the full stochas-
tic problem involving 33 uncertain chemical reaction rate
parameters. Mean, variance and PDF of the auto-ignition
delay are thus obtained. Then, the computation of Sobol
indices allows to identify irrelevant uncertain reactions.
This leads to reduced problems involving only three un-
certain parameters at most. Monte-Carlo results are then
compared to different methods affordable and more ef-
ficient in low dimensional problems, such as cubature
methods, Polynomial Chaos [6].
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2. Uncertainty quantification of the auto-ignition de-
lay: Reference results

2.1. Problem settings
Propagation of uncertainties in chemical reaction

rates onto the auto-ignition delay of an air-hydrogen mix-
ture is carried out by considering the detailed reaction
mechanism from Konnov [7]. The mechanism involves
9 species and n = 33 reactions. For each reaction, uncer-
tainty factors UFi are given along with pre-exponential
constants Ai, temperature exponents ni and activation en-
ergies Ei. Uncertainties on the efficiencies of third body
are also provided but are not taken into account in this
study.
The prescribed uncertainty factors UFi vary between the
value 1.2 and 3.2 and characterize the full uncertainty in
each reaction rate expression. Uncertain reaction rates
are modeled as the deterministic ones multiplied by an
uncertain coefficient. This is equivalent to consider that
pre-exponential constants Ai are the only uncertain pa-
rameters. Thus, the constants Ai are assumed to be inde-
pendent random variables with log-normal distributions.
Those distributions are each characterized by their uncer-
tainty factor UFi, which defines a 3σ confidence interval
(99.6% confidence interval):

Probability
Ai ∈

 A0
i

UFi
, A0

i UFi

 = 0.996 (1)

The value A0
i is the nominal value of the pre-

exponential constant as given by the detailed mechanism,
and corresponds to the median value of the log-normal
distribution.
The investigated mixture throughout this study is a sto-
ichiometric air-hydrogen mixture with a temperature of
1100 K and a pressure of 1 atm.

2.2. Characteristics of the auto-ignition delay uncer-
tainty

Once a chemical mechanism and initial thermody-
namical conditions are prescribed, the auto-ignition delay
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τ of the air-hydrogen mixture is determined from calcula-
tion of a homogeneous reactor at constant pressure. The
auto-ignition delay is here defined as the instant where
the mixture temperature is 200 K above the fresh gases
initial temperature. Since only the pre-exponential con-
stants Ai are considered uncertain, the mean auto-ignition
delay τ̄ is given by computing the following integral:

τ =

∫
Rn

+

τ (A1, ..., An) p (A1, ..., An) dA1...dAn, (2)

where p (A1, ..., An) is the joint Probability Density
Function (PDF) of the pre-exponential constants. As
shown in Eq. (2), the computation of the mean auto-
ignition delay and of other moments such as the vari-
ance relies on the evaluation of multidimensional inte-
grals. Various methods exist to approximate numerically
such integrals. Given the high-dimensionality of the un-
certain problem (n = 33), the only affordable approach
for the full problem is the Monte-Carlo method.

2.3. Monte-Carlo method
2.3.1. Presentation of the method

Monte-Carlo method [8] is a stochastic method to
compute integrals from probability theory. The conver-
gence rate is quite slow as it is inversely proportional
to
√

Neval where Neval is the number of evaluation of the
function to integrate. Nonetheless, a key advantage of
the Monte-Carlo method is that the asymptotical conver-
gence rate is independent of the dimension of the prob-
lem, avoiding the ”curse of dimensionality” that affects
other methods. Thus, the Monte-Carlo method becomes
the most efficient numerical integration method for prob-
lems with a large dimensionality, typically more than 4
or 5 [9]. Besides, the accuracy of the results can be esti-
mated and therefore controled.
By generating independent random pre-exponential con-
stants A( j)

i following their prescribed lognormal distribu-
tion, the mean auto-ignition delay is estimated by

τ ≈
1

Neval

Neval∑
j=1

τ
(
A( j)

1 , ..., A( j)
n

)
. (3)

In practice, the random parameters A( j)
i are generated

from random number generators of uniform distribution.
Thus, A( j)

i = F(v( j)
i ) where the variables vi follow a uni-

form distribution on an interval [a, b]. The integral in
Eq. (2) can then be written equivalently as the following
one:

τ =
1

(b − a)n

∫
[a,b]n

τ (F(v1), ..., F(vn)) dv1...dvn (4)

This expression of the integral on an hypercube will be
useful for cubature methods introduced in Sec. 4.2.

2.3.2. Monte-Carlo results
The Monte-Carlo method is carried with all 33 uncer-

tain reactions taken into account. The required accuracy

Figure 1: Histogram of the PDF of the auto-ignition delay
taking into account all 33 uncertain chemical parameters
Ai. Plain black line: fitted lognormal distribution profile.

for the mean and standard deviation of the auto-ignition
delay is set to 1%. The results are presented in Tab. 1.
The mean value τ differs slightly from the deterministic
value of the auto-ignition delay τ0 = 109.90 µs. The stan-
dard deviationστ is roughly 8% of the mean auto-ignition
delay, showing that the uncertainties in the detailed mech-
anism result in a moderate uncertainty in τ for the inves-
tigated case.

τ (µs) στ (µs) Neval Tcpu UFτ
110.76±0.11 9.07 ± 0.09 11, 559 6h40m 1.266

Table 1: Mean (τ), standard deviation (στ) and uncer-
tainty factor UFτ of auto-ignition delay, number of evalu-
ations (Neval), computational time (Tcpu) using the Monte-
Carlo method for the full mechanism. Standard devia-
tions of the estimated value of τ and στ are given.

An histogram of the PDF of the auto-ignition delay
is presented in Fig. 1 along with a lognormal distribution
with the same mean and standard deviation. The good
agreement demonstrates that the distribution of τ can here
be molded by a lognormal.

3. Dimension reduction
3.1. Sensitivity analysis based on Sobol indices

Among all parameters in the full problem, several of
them might not contribute noticeably to the resulting un-
certainty in the auto-ignition delay. Identifying irrelevant
dimensions help decreasing significantly the dimension-
ality of the problem. If the number of remaining dimen-
sions is not too large, other approaches more efficient than
the Monte-Carlo method can be considered.
An analysis of variance is carried out where Sobol indices
for each reaction are computed using Polynomial Chaos
(PC) [10]. The Sobol index of a chemical reaction rate is
the ratio between the variance due to the corresponding
uncertain pre-exponential constant on the total variance.
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It varies then between 0 and 1 and quantifies the global
sensitivity of the uncertainty in the auto-ignition delay for
each reaction.

3.2. Relevant reactions
In the condition prescribed for the initial mixture,

only 3 Sobol indices, reported in Tab. 2 have been found
greater than 1%. The sum of the Sobol indices associ-
ated to these 3 reactions is 97%, which shows that they
account for most of the variance in the auto-ignition de-
lay. The influence of the uncertainty in other reactions is
negligible.
Although the uncertainty factors of the three reactions are
quite low compared to others, the impact of those reac-
tions on the uncertainty is the more important. This is
not surprising given that the identified reactions are well-
known for their key role in auto-ignition at high temper-
ature. For the investigated mixture, reducing the uncer-
tainty in the auto-ignition delay requires mainly to in-
crease the accuracy of H + O2 = OH + H.

Reaction UFi S i
H + O2 = OH + H 1.5 88%
O + H2 = OH + H 1.3 5%

H2 + OH = H2O + H 2.0 4%

Table 2: Chemical reaction, uncertainty factor (UFi) and
Sobol indices (S i) for the 3 reactions with an associated
Sobol indice greater than 1%.

As only three reactions have a significant impact, the
dimensionality of the problem is strongly reduced by con-
sidering only these three reactions to be uncertain. Other
chemical reaction rate constants are set to their nominal
value. The impact of the reduced dimensionality is stud-
ied by considering one, two or three uncertain reactions.
The corresponding 1D, 2D and 3D problems are given in
Tab. 3.

Uncertain reactions
1D H + O2 = OH + H

2D H + O2 = OH + H
O + H2 = OH + H

3D
H + O2 = OH + H
O + H2 = OH + H

H2 + OH = H2O + H

Table 3: Uncertain chemical reactions taken into account
in the 1D, 2D and 3D problems.

4. Uncertainty quantification of the auto-ignition de-
lay: Reduced problems
The aforementioned reduced problems are hereafter

considered with different approaches.

4.1. Monte Carlo results
The Monte-Carlo method has been applied to the 1D,

2D and 3D problems. Results are presented in Tab. 4. The
mean and standard deviation of the auto-ignition delay

are determined with an accuracy of 1%, providing refer-
ence results of the resulting uncertainty in these reduced
problems.

τ (µs) στ (µs) Neval Tcpu UFτ
1D 110.64±0.17 8.56 ± 0.08 2, 508 1h26m 1.251
2D 110.68±0.13 8.70 ± 0.09 6, 220 3h34m 1.256
3D 110.84±0.12 8.90 ± 0.08 5, 006 2h51m 1.261

Table 4: Mean (τ), standard deviation (στ) and uncer-
tainty factor UFτ of auto-ignition delay, number of evalu-
ations (Neval), computational time (Tcpu) using the Monte-
Carlo method for the reduced problems. Standard devia-
tions of the estimated value of τ and στ are given.

On the one hand, the reduction of dimension has no
impact on the mean auto-ignition delay compared to the
value obtained by taking into account all reactions as un-
certain. On the other hand, the resulting standard devia-
tion στ decreases slightly. This reduction is linked to the
Sobol indices of the retained uncertain reactions as shown
in Tab. 5 where the relative variation of στ compared to
the value σre f

τ in Sec. 2.3.2 on the full problem is given.

Case
(
στ/σ

re f
τ

)2 ∑
S i

1D 89% 88%
2D 92% 93%
3D 96% 97%

Table 5: Comparison between the ratio of variances(
στ/σ

re f
τ

)2
and the sum of Sobol indices associated to the

reactions involved (
∑

S i) for the different studied cases.

An histogram of the probability density function of
the auto-ignition delay is presented on figure 2 only for
the 3D case. The agreement with the previously fitted
lognormal distribution is remarkable, demonstrating the
adequacy of the dimension reduction.

4.2. Cubature methods
Contrary to the Monte-Carlo method which is

stochastic, cubature methods are deterministic, which
means that they use predefined points and weights, spe-
cific to the chosen method to calculate an approxima-
tion of the integral. When the number of dimensions is
small, such methods significantly outperform the Monte-
Carlo method. Multidimensional integral approximations
rely on quadrature rules in one dimension which are first
briefly detailed.

4.2.1. 1D quadrature rule
Among classical quadrature rules, one can cite trape-

zoidal and Simpson’s rule. Other quadrature rules like
Gauss-Legendre [11], Clenshaw-Curtis and Fèjer [12]
quadrature rules are much more interesting because of
their very high convergence rate (spectral like) under
some assumptions on the regularity of the function.
All quadrature rules considered throughout this study will
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Figure 2: Histogram of the PDF of the auto-ignition delay
of the 3D case. Plain black line: fitted lognormal distri-
bution profile of the full problem.

be quadrature rules on the [−1, 1] interval, which remains
general as seen in obtaining Eq. (4). Thus, if only one
uncertain reaction is considered, the mean auto-ignition
delay can be expressed as:

τ =
1
2

∫
[−1,1]

τ (F (v)) dv ≈
N∑

i=1

wiτ (F (vi)) (5)

In this expression, the vi are points of [−1, 1] where
the function has to be evaluated, and the wi are weights
characteristic of the quadrature rule considered. The con-
vergence rate with the number of evaluations Neval is an
important criterion for choosing a quadrature rule, but
some other criteria have also to be taken into account.
In our case, the extremity of the interval (i.e. −1 and
1) correspond to a forward chemical rate constant equal
to 0 or to a forward chemical rate constant equal to ∞.
Those extreme values for the chemical rate constant can
lead to an absence of auto-ignition, which corresponds
to an infinite auto-ignition delay. Those situation have
normally a zero-probability for a lognormal distribution,
but the use of a quadrature rule that relies on those ex-
treme values gives them a non-zero probability due to the
corresponding weight which can be non-zero there. As
a consequence, quadrature rules such as Clenshaw-Curtis
that use the points −1 and 1 in their estimation are not
retained.
Another desirable property is to use nested quadrature
rules. A nested quadrature rule allows to reuse the pre-
vious evaluations when increasing the number of points
to gain in accuracy. This is not the case of the Gauss-
Legendre quadrature rule.
All those reasons led us to choose using the second Fèjer
quadrature rule: it is a nested quadrature rule that does
not rely on the extreme values of the interval.

4.2.2. Multidimensional cubature
Cubature methods are extensions of mono-

dimensional quadrature rules in multidimensional
integration problems. Cubature methods are obtained by
tensorization of quadrature rules that are used on each
dimension. This tensorization gives a grid of points with
weights where the integrated function is evaluated.
One big problem of the cubature methods is that, for
a given accuracy of the estimator of the integrals, the
number of evaluations grows exponentially with the
number of dimensions. This phenomena, called the
”curse of dimensionality”, is the reason why in practice,
the Monte-Carlo method remain better than all cubature
methods for multidimensional problems involving more
than 4 or 5 dimensions [9].
It is possible to moderate the ”curse of dimensionality”
by using a sparse grid instead of the full grid obtained
by a simple tensorization. Sparse grids can be obtained
using the method first proposed by Smolyak [13].
However, only nested quadratures rules can be used to
build sparse grids.

4.2.3. Cubature method results
Sparse grids coupled to the second Fèjer quadrature

rule have been used to compute the mean and the standard
deviation of the auto-ignition delay in the 1D, 2D and 3D
reduced problems. The implementation of the algorithm
used to construct sparse grid is based on the one presented
in [14]. This algorithm iteratively construct an adaptative
sparse grid to estimate the value of the integral. It stops
when the difference of the estimator’s value between two
successive steps of the computation is below a prescribed
accuracy. Here, this criterion has been taken equal to 1%
of the value of the estimator, for both the mean and the
standard deviation. This is identical with the previous re-
sults obtained with the Monte-Carlo method. The results
for the different cases are presented in the Tab. 6.

τ (µs) στ (µs) Neval Tcpu UFτ
1D 110.56 ± 0.01 8.51 ± 0.09 31 13s 1.249
2D 110.53±0.008 8.75 ± 0.05 33 48s 1.257
3D 110.83 ± 0.34 8.86 ± 0.05 383 115s 1.260

Table 6: Mean (τ), standard deviation (στ) and uncer-
tainty factor UFτ of auto-ignition delay, number of eval-
uations (Neval), computational time (Tcpu) using cubature
method based on second Féjer quadrature rule.

The indicated errors correspond to the value of the
stop criterion between the two last steps. Results are sim-
ilar to the ones obtained with the Monte Carlo method in
Tab. 5. The CPU time is much less than the CPU time for
the Monte-Carlo for the same cases, which confirm the
fact that cubature methods are much more advantageous
in low dimension problems. However, an histogram of
the PDF of the auto-ignition delay is not accessible di-
rectly with cubature method. This drawback that is not
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present in methods such as polynomial chaos expansion
which provide a surface response for τA1, ..., An along
with an estimation of the mean and variance of τ.

4.3. Polynomial Chaos
4.3.1. Presentation of Polynomial Chaos

The auto-ignition delay, as a multidimensional func-
tion, can be approximated by Polynomial Chaos (PC) ex-
pansion [15], introduced for the first time in [6]. Those
Polynomial have the property to form an orthonormal
basis as explained in [14]. This expansion of the auto-
ignition delay in terms of PC can be expressed as:

τ (F (v1, ..., vn)) ≈
Np∑
i=0

αiP (v1, ..., vn) (6)

Due to the orthonormal character of the PC basis, the
mean and the variance of the auto-ignition delay have
simple expression in function of the coefficient αi:

τ̄ = α0 (7)

Var (τ) ≈
Np∑
i=1

α2
i (8)

Furthermore, the PC expansion gives an approxima-
tion of the auto-ignition delay, which can be used as a
response surface. Therefore, the knowledge of the αi is
necessary. In this study, the substitution of the equation 4
has been done, and the corresponding PC considered are
the generalized PC of Legendre polynomial [16], and the
expression of the corresponding coefficients αi is given
by the following integral:

αi =
1
2n

∫
[−1,1]n

τ (F (v1, ..., vn)) Pi (v1, ..., vn) dv1...dvn

(9)
This integration can be done using Monte-Carlo or

cubature methods. An interest of this expansion is that
an evaluation onto this surface response is significantly
less expensive than a direct evaluation of the auto-ignition
delay, and a Monte-Carlo simulation on this surface re-
sponse can rapidly give approximate CDF or PDF of the
auto-ignition delay. Thus, even if a cubature method has
been used to compute the projection coefficient αi, one
can access to the PDF or the CDF of the function indi-
rectly thanks to the response surface given by the PC ex-
pansion.
Unfortunately, the PC suffer also from a curse of dimen-
sionality. Indeed, for a PC basis in a multidimensional
case involving n variables, and with a maximum degree d
for the polynomials of the basis, the number Np of poly-
nomials in the basis is given by :

Np =
(n + d)!

n!d!
(10)

Depending on the function, one can need to use poly-
nome of high degree to approximate correctly the func-
tion, and thus have a good response surface. Due to the

dependance of the number of polynome in the basis with
the dimension and the degree, it is not possible in high di-
mensional problem to have high degree for polynomials
for computational cost. The use of PC to obtain a re-
sponse surface is thus often restricted to low dimensional
problems.

4.3.2. Polynomial Chaos results
The cubature method of Sec. 4.2.3 was used to com-

pute coefficients αi of PC expansions of maximum de-
gree varying from one to four for 1D, 2D and 3D cases.
The mean value and the standard deviation of the auto-
ignition delay were computed using Eq. (7) and (8). Re-
sults are reported in Tab.. 7, 8 and 9.

d τ (µs) στ (µs) Neval Tcpu UFτ
1 110.56 8.25 31 151s 1.241
2 110.56 8.28 127 164s 1.242
3 110.56 8.44 127 138s 1.247
4 110.56 8.44 511 288s 1.247

Table 7: Maximum degree of the PC expansion basis (d),
Mean (τ), Standard deviation (στ), and uncertainty factor
UFτ of auto-ignition delay, number of evaluations (Neval),
computational time (Tcpu) using a PC expansion in the 1D
case computed using a cubature method based on second
Féjer quadrature rule.

d τ (µs) στ (µs) Neval Tcpu UFτ
1 110.53 8.45 225 578s 1.247
2 110.53 8.46 705 320s 1.248
3 110.53 8.63 961 688s 1.253
4 110.53 8.64 961 911s 1.253

Table 8: Maximum degree of the PC expansion basis (d),
Mean (τ), Standard deviation (στ), and uncertainty factor
UFτ of auto-ignition delay, number of evaluations (Neval),
computational time (Tcpu) using a PC expansion in the 2D
case computed using a cubature method based on second
Féjer quadrature rule.

d τ (µs) στ (µs) Neval Tcpu UFτ
1 110.83 8.67 239 154s 1.253
2 110.83 8.70 13663 3514s 1.254
3 110.83 8.86 13663 3457s 1.260
4 110.83 8.87 25695 6656s 1.260

Table 9: Maximum degree of the PC expansion basis (d),
Mean (τ), Standard deviation (στ), and uncertainty factor
UFτ of auto-ignition delay, number of evaluations (Neval),
computational time (Tcpu) using a PC expansion in the 1D
case computed using a cubature method based on second
Féjer quadrature rule.

As the polynomial P0 is equal to 1, the computed
value of the coefficient α0 is equal to the mean value of
the auto-ignition delay computed in Sec. 4.2. The values
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Figure 3: PDF of the PC expansion of degree 3 for the
3D case, and its corresponding lognormal

for the standard deviation differ slightly from the ones ob-
tained with the Monte-Carlo method, but get closer as the
maximal degree of the polynomial basis increases. The
chosen PC basis might not be suited to approximate ac-
curately the auto-ignition delay, as shown by the PDF of
the response surface given by the polynomial chaos ex-
pansion presented on Fig. 3, that does not coincide with
the PDF of the corresponding lognormal as the Monte-
Carlo does.

5. Conclusions
In this paper, the impact of the uncertainties in chem-

ical reaction rate constants of the detailed mechanism
from Konnov[7] onto the auto-ignition delay has been
investigated. Reference results of the full problem in-
volving the 33 uncertain chemical reaction rates were ob-
tained using a Monte-Carlo method. Then, a sensitivity
study based on Sobol indices was done, allowing to re-
duce the number of retained uncertain reactions to three.
A comparative study was finally done between methods
such as Monte-Carlo, cubature methods, and Polynomial
Chaos expansion in terms of accuracy and computational
cost.
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