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Introduction

In self-igniting systems, the auto-ignition delay is an extensively used quantity in both low-order models and more advanced turbulent combustion models for Reynolds Averaged Numerical Simulations or Large Eddy Simulations. Its computation relies on detailed chemistry mechanisms in homogeneous reactors. However, the inherent uncertainty in the kinetic parameters of detailed chemistry mechanisms induces an uncertainty on the auto-ignition delay itself that must be evaluated in order to characterize some limitations in the aforementioned models. Assuming small uncertainties, approaches based on sensitivity analysis [1] or variance propagation [2] have been used on chemical system. However, such approaches are not well suited for problems containing large uncertainties, where probabilistic methods are more adequate. Recent years have seen the development of spectral methods, which can be intrusive [START_REF] Ghanem | Stochastic finite elements: a spectral approach[END_REF] or non intrusive [START_REF] Reagana | [END_REF]. Nonetheless, spectral methods suffer from the curse of dimensionality [START_REF] Bellman | Dynamic programming[END_REF], and thus can not be used with detailed chemical mechanism. The goal of this paper is to study the uncertainty on the auto-ignition delay of an air-hydrogen mixture due to uncertainties in the chemical reaction rate constants of a detailed mechanism. To do so, reference results using a Monte-Carlo method are first obtained on the full stochastic problem involving 33 uncertain chemical reaction rate parameters. Mean, variance and PDF of the auto-ignition delay are thus obtained. Then, the computation of Sobol indices allows to identify irrelevant uncertain reactions. This leads to reduced problems involving only three uncertain parameters at most. Monte-Carlo results are then compared to different methods affordable and more efficient in low dimensional problems, such as cubature methods, Polynomial Chaos [START_REF] Wiener | [END_REF].

Uncertainty quantification of the auto-ignition delay: Reference results

Problem settings

Propagation of uncertainties in chemical reaction rates onto the auto-ignition delay of an air-hydrogen mixture is carried out by considering the detailed reaction mechanism from Konnov [7]. The mechanism involves 9 species and n = 33 reactions. For each reaction, uncertainty factors UF i are given along with pre-exponential constants A i , temperature exponents n i and activation energies E i . Uncertainties on the efficiencies of third body are also provided but are not taken into account in this study. The prescribed uncertainty factors UF i vary between the value 1.2 and 3.2 and characterize the full uncertainty in each reaction rate expression. Uncertain reaction rates are modeled as the deterministic ones multiplied by an uncertain coefficient. This is equivalent to consider that pre-exponential constants A i are the only uncertain parameters. Thus, the constants A i are assumed to be independent random variables with log-normal distributions. Those distributions are each characterized by their uncertainty factor UF i , which defines a 3σ confidence interval (99.6% confidence interval):

Probability       A i ∈       A 0 i UF i , A 0 i UF i             = 0.996 (1) 
The value A 0 i is the nominal value of the preexponential constant as given by the detailed mechanism, and corresponds to the median value of the log-normal distribution.

The investigated mixture throughout this study is a stoichiometric air-hydrogen mixture with a temperature of 1100 K and a pressure of 1 atm.

Characteristics of the auto-ignition delay uncer-

tainty Once a chemical mechanism and initial thermodynamical conditions are prescribed, the auto-ignition delay τ of the air-hydrogen mixture is determined from calculation of a homogeneous reactor at constant pressure. The auto-ignition delay is here defined as the instant where the mixture temperature is 200 K above the fresh gases initial temperature. Since only the pre-exponential constants A i are considered uncertain, the mean auto-ignition delay τ is given by computing the following integral:

τ = R n + τ (A 1 , ..., A n ) p (A 1 , ..., A n ) dA 1 ...dA n , (2)
where p (A 1 , ..., A n ) is the joint Probability Density Function (PDF) of the pre-exponential constants. As shown in Eq. ( 2), the computation of the mean autoignition delay and of other moments such as the variance relies on the evaluation of multidimensional integrals. Various methods exist to approximate numerically such integrals. Given the high-dimensionality of the uncertain problem (n = 33), the only affordable approach for the full problem is the Monte-Carlo method.

Monte-Carlo method 2.3.1. Presentation of the method

Monte-Carlo method [8] is a stochastic method to compute integrals from probability theory. The convergence rate is quite slow as it is inversely proportional to √ N eval where N eval is the number of evaluation of the function to integrate. Nonetheless, a key advantage of the Monte-Carlo method is that the asymptotical convergence rate is independent of the dimension of the problem, avoiding the "curse of dimensionality" that affects other methods. Thus, the Monte-Carlo method becomes the most efficient numerical integration method for problems with a large dimensionality, typically more than 4 or 5 [START_REF] Lemieux | Monte Carlo and Quasi-Monte Carlo Sampling[END_REF]. Besides, the accuracy of the results can be estimated and therefore controled. By generating independent random pre-exponential constants A ( j) i following their prescribed lognormal distribution, the mean auto-ignition delay is estimated by

τ ≈ 1 N eval N eval j=1 τ A ( j) 1 , ..., A ( j) n . (3) 
In practice, the random parameters A ( j) i are generated from random number generators of uniform distribution. Thus, A ( j) i = F(v ( j) i ) where the variables v i follow a uniform distribution on an interval [a, b]. The integral in Eq. ( 2) can then be written equivalently as the following one:

τ = 1 (b -a) n [a,b] n τ (F(v 1 ), ..., F(v n )) dv 1 ...dv n (4) 
This expression of the integral on an hypercube will be useful for cubature methods introduced in Sec. 4.2.

Monte-Carlo results

The Monte-Carlo method is carried with all 33 uncertain reactions taken into account. The required accuracy Table 1: Mean (τ), standard deviation (σ τ ) and uncertainty factor UF τ of auto-ignition delay, number of evaluations (N eval ), computational time (T cpu ) using the Monte-Carlo method for the full mechanism. Standard deviations of the estimated value of τ and σ τ are given.

An histogram of the PDF of the auto-ignition delay is presented in Fig. 1 along with a lognormal distribution with the same mean and standard deviation. The good agreement demonstrates that the distribution of τ can here be molded by a lognormal.

Dimension reduction 3.1. Sensitivity analysis based on Sobol indices

Among all parameters in the full problem, several of them might not contribute noticeably to the resulting uncertainty in the auto-ignition delay. Identifying irrelevant dimensions help decreasing significantly the dimensionality of the problem. If the number of remaining dimensions is not too large, other approaches more efficient than the Monte-Carlo method can be considered. An analysis of variance is carried out where Sobol indices for each reaction are computed using Polynomial Chaos (PC) [START_REF] Crestaux | [END_REF]. The Sobol index of a chemical reaction rate is the ratio between the variance due to the corresponding uncertain pre-exponential constant on the total variance. It varies then between 0 and 1 and quantifies the global sensitivity of the uncertainty in the auto-ignition delay for each reaction.

Relevant reactions

In the condition prescribed for the initial mixture, only 3 Sobol indices, reported in Tab. 2 have been found greater than 1%. The sum of the Sobol indices associated to these 3 reactions is 97%, which shows that they account for most of the variance in the auto-ignition delay. The influence of the uncertainty in other reactions is negligible. Although the uncertainty factors of the three reactions are quite low compared to others, the impact of those reactions on the uncertainty is the more important. This is not surprising given that the identified reactions are wellknown for their key role in auto-ignition at high temperature. For the investigated mixture, reducing the uncertainty in the auto-ignition delay requires mainly to increase the accuracy of H + O 2 = OH + H.

Reaction UF i S i H + O 2 = OH + H 1.5 88% O + H 2 = OH + H 1.3 5% H 2 + OH = H 2 O + H 2.0 4%
Table 2: Chemical reaction, uncertainty factor (UF i ) and Sobol indices (S i ) for the 3 reactions with an associated Sobol indice greater than 1%.

As only three reactions have a significant impact, the dimensionality of the problem is strongly reduced by considering only these three reactions to be uncertain. Other chemical reaction rate constants are set to their nominal value. The impact of the reduced dimensionality is studied by considering one, two or three uncertain reactions. The corresponding 1D, 2D and 3D problems are given in Tab. 3.

Uncertain reactions 1D

H

+ O 2 = OH + H 2D H + O 2 = OH + H O + H 2 = OH + H 3D H + O 2 = OH + H O + H 2 = OH + H H 2 + OH = H 2 O + H
Table 3: Uncertain chemical reactions taken into account in the 1D, 2D and 3D problems.

Uncertainty quantification of the auto-ignition delay: Reduced problems

The aforementioned reduced problems are hereafter considered with different approaches.

Monte Carlo results

The Monte-Carlo method has been applied to the 1D, 2D and 3D problems. Results are presented in Tab. 4. The mean and standard deviation of the auto-ignition delay are determined with an accuracy of 1%, providing reference results of the resulting uncertainty in these reduced problems. Table 4: Mean (τ), standard deviation (σ τ ) and uncertainty factor UF τ of auto-ignition delay, number of evaluations (N eval ), computational time (T cpu ) using the Monte-Carlo method for the reduced problems. Standard deviations of the estimated value of τ and σ τ are given.

On the one hand, the reduction of dimension has no impact on the mean auto-ignition delay compared to the value obtained by taking into account all reactions as uncertain. On the other hand, the resulting standard deviation σ τ decreases slightly. This reduction is linked to the Sobol indices of the retained uncertain reactions as shown in Tab. 5 where the relative variation of σ τ compared to the value σ re f τ in Sec. 2.3.2 on the full problem is given. and the sum of Sobol indices associated to the reactions involved ( S i ) for the different studied cases.

Case σ τ /σ re f τ 2 S i 1D 89% 88% 2D 92% 93% 3D 96% 97%
An histogram of the probability density function of the auto-ignition delay is presented on figure 2 only for the 3D case. The agreement with the previously fitted lognormal distribution is remarkable, demonstrating the adequacy of the dimension reduction.

Cubature methods

Contrary to the Monte-Carlo method which is stochastic, cubature methods are deterministic, which means that they use predefined points and weights, specific to the chosen method to calculate an approximation of the integral. When the number of dimensions is small, such methods significantly outperform the Monte-Carlo method. Multidimensional integral approximations rely on quadrature rules in one dimension which are first briefly detailed.

1D quadrature rule

Among classical quadrature rules, one can cite trapezoidal and Simpson's rule. Other quadrature rules like Gauss-Legendre [11], Clenshaw-Curtis and Fèjer [12] quadrature rules are much more interesting because of their very high convergence rate (spectral like) under some assumptions on the regularity of the function. All quadrature rules considered throughout this study will be quadrature rules on the [-1, 1] interval, which remains general as seen in obtaining Eq. ( 4). Thus, if only one uncertain reaction is considered, the mean auto-ignition delay can be expressed as:

τ = 1 2 [-1,1] τ (F (v)) dv ≈ N i=1 w i τ (F (v i )) (5) 
In this expression, the v i are points of [-1, 1] where the function has to be evaluated, and the w i are weights characteristic of the quadrature rule considered. The convergence rate with the number of evaluations N eval is an important criterion for choosing a quadrature rule, but some other criteria have also to be taken into account. In our case, the extremity of the interval (i.e. -1 and 1) correspond to a forward chemical rate constant equal to 0 or to a forward chemical rate constant equal to ∞. Those extreme values for the chemical rate constant can lead to an absence of auto-ignition, which corresponds to an infinite auto-ignition delay. Those situation have normally a zero-probability for a lognormal distribution, but the use of a quadrature rule that relies on those extreme values gives them a non-zero probability due to the corresponding weight which can be non-zero there. As a consequence, quadrature rules such as Clenshaw-Curtis that use the points -1 and 1 in their estimation are not retained. Another desirable property is to use nested quadrature rules. A nested quadrature rule allows to reuse the previous evaluations when increasing the number of points to gain in accuracy. This is not the case of the Gauss-Legendre quadrature rule. All those reasons led us to choose using the second Fèjer quadrature rule: it is a nested quadrature rule that does not rely on the extreme values of the interval.

Multidimensional cubature

Cubature methods are extensions of monodimensional quadrature rules in multidimensional integration problems. Cubature methods are obtained by tensorization of quadrature rules that are used on each dimension. This tensorization gives a grid of points with weights where the integrated function is evaluated. One big problem of the cubature methods is that, for a given accuracy of the estimator of the integrals, the number of evaluations grows exponentially with the number of dimensions. This phenomena, called the "curse of dimensionality", is the reason why in practice, the Monte-Carlo method remain better than all cubature methods for multidimensional problems involving more than 4 or 5 dimensions [START_REF] Lemieux | Monte Carlo and Quasi-Monte Carlo Sampling[END_REF]. It is possible to moderate the "curse of dimensionality" by using a sparse grid instead of the full grid obtained by a simple tensorization. Sparse grids can be obtained using the method first proposed by Smolyak [13]. However, only nested quadratures rules can be used to build sparse grids.

Cubature method results

Sparse grids coupled to the second Fèjer quadrature rule have been used to compute the mean and the standard deviation of the auto-ignition delay in the 1D, 2D and 3D reduced problems. The implementation of the algorithm used to construct sparse grid is based on the one presented in [START_REF] Le Maître | Spectral methods for uncertainty quantification: with applications to computational fluid dynamics[END_REF]. This algorithm iteratively construct an adaptative sparse grid to estimate the value of the integral. It stops when the difference of the estimator's value between two successive steps of the computation is below a prescribed accuracy. Here, this criterion has been taken equal to 1% of the value of the estimator, for both the mean and the standard deviation. This is identical with the previous results obtained with the Monte-Carlo method. The results for the different cases are presented in the Tab. 6. Table 6: Mean (τ), standard deviation (σ τ ) and uncertainty factor UF τ of auto-ignition delay, number of evaluations (N eval ), computational time (T cpu ) using cubature method based on second Féjer quadrature rule.

The indicated errors correspond to the value of the stop criterion between the two last steps. Results are similar to the ones obtained with the Monte Carlo method in Tab. 5. The CPU time is much less than the CPU time for the Monte-Carlo for the same cases, which confirm the fact that cubature methods are much more advantageous in low dimension problems. However, an histogram of the PDF of the auto-ignition delay is not accessible directly with cubature method. This drawback that is not present in methods such as polynomial chaos expansion which provide a surface response for τA 1 , ..., A n along with an estimation of the mean and variance of τ.

Polynomial Chaos 4.3.1. Presentation of Polynomial Chaos

The auto-ignition delay, as a multidimensional function, can be approximated by Polynomial Chaos (PC) expansion [START_REF] Xiu | [END_REF], introduced for the first time in [START_REF] Wiener | [END_REF]. Those Polynomial have the property to form an orthonormal basis as explained in [START_REF] Le Maître | Spectral methods for uncertainty quantification: with applications to computational fluid dynamics[END_REF]. This expansion of the autoignition delay in terms of PC can be expressed as:

τ (F (v 1 , ..., v n )) ≈ N p i=0 α i P (v 1 , ..., v n ) (6)
Due to the orthonormal character of the PC basis, the mean and the variance of the auto-ignition delay have simple expression in function of the coefficient α i : τ = α 0 ( 7)

Var (τ) ≈ N p i=1 α 2 i (8)
Furthermore, the PC expansion gives an approximation of the auto-ignition delay, which can be used as a response surface. Therefore, the knowledge of the α i is necessary. In this study, the substitution of the equation 4 has been done, and the corresponding PC considered are the generalized PC of Legendre polynomial [START_REF] Canuto | Spectral Methods in Fluid Dynamics (Scientific Computation)[END_REF], and the expression of the corresponding coefficients α i is given by the following integral:

α i = 1 2 n [-1,1] n τ (F (v 1 , ..., v n )) P i (v 1 , ..., v n ) dv 1 ...dv n (9) 
This integration can be done using Monte-Carlo or cubature methods. An interest of this expansion is that an evaluation onto this surface response is significantly less expensive than a direct evaluation of the auto-ignition delay, and a Monte-Carlo simulation on this surface response can rapidly give approximate CDF or PDF of the auto-ignition delay. Thus, even if a cubature method has been used to compute the projection coefficient α i , one can access to the PDF or the CDF of the function indirectly thanks to the response surface given by the PC expansion. Unfortunately, the PC suffer also from a curse of dimensionality. Indeed, for a PC basis in a multidimensional case involving n variables, and with a maximum degree d for the polynomials of the basis, the number N p of polynomials in the basis is given by :

N p = (n + d)! n!d! (10) 
Depending on the function, one can need to use polynome of high degree to approximate correctly the function, and thus have a good response surface. Due to the dependance of the number of polynome in the basis with the dimension and the degree, it is not possible in high dimensional problem to have high degree for polynomials for computational cost. The use of PC to obtain a response surface is thus often restricted to low dimensional problems.

Polynomial Chaos results

The cubature method of Sec. 4.2.3 was used to compute coefficients α i of PC expansions of maximum degree varying from one to four for 1D, 2D and 3D cases. The mean value and the standard deviation of the autoignition delay were computed using Eq. ( 7) and (8) Table 9: Maximum degree of the PC expansion basis (d), Mean (τ), Standard deviation (σ τ ), and uncertainty factor UF τ of auto-ignition delay, number of evaluations (N eval ), computational time (T cpu ) using a PC expansion in the 1D case computed using a cubature method based on second Féjer quadrature rule.

As the polynomial P 0 is equal to 1, the computed value of the coefficient α 0 is equal to the mean value of the auto-ignition delay computed in Sec. 4.2. The values Figure 3: PDF of the PC expansion of degree 3 for the 3D case, and its corresponding lognormal for the standard deviation differ slightly from the ones obtained with the Monte-Carlo method, but get closer as the maximal degree of the polynomial basis increases. The chosen PC basis might not be suited to approximate accurately the auto-ignition delay, as shown by the PDF of the response surface given by the polynomial chaos expansion presented on Fig. 3, that does not coincide with the PDF of the corresponding lognormal as the Monte-Carlo does.

Conclusions

In this paper, the impact of the uncertainties in chemical reaction rate constants of the detailed mechanism from Konnov [7] onto the auto-ignition delay has been investigated. Reference results of the full problem involving the 33 uncertain chemical reaction rates were obtained using a Monte-Carlo method. Then, a sensitivity study based on Sobol indices was done, allowing to reduce the number of retained uncertain reactions to three. A comparative study was finally done between methods such as Monte-Carlo, cubature methods, and Polynomial Chaos expansion in terms of accuracy and computational cost.

Figure 1 :

 1 Figure 1: Histogram of the PDF of the auto-ignition delay taking into account all 33 uncertain chemical parameters A i . Plain black line: fitted lognormal distribution profile.

Figure 2 :

 2 Figure 2: Histogram of the PDF of the auto-ignition delay of the 3D case. Plain black line: fitted lognormal distribution profile of the full problem.

Table 5 :

 5 Comparison between the ratio of variances σ

τ /σ re f τ 2

  . Results are reported in Tab.. 7, 8 and 9.

	d	τ (µs)	σ τ (µs)	N eval	T cpu	UF τ
	1	110.56	8.25	31	151s	1.241
	2	110.56	8.28	127	164s	1.242
	3	110.56	8.44	127	138s	1.247
	4	110.56	8.44	511	288s	1.247

Table 7 :

 7 Maximum degree of the PC expansion basis (d), Mean (τ), Standard deviation (σ τ ), and uncertainty factor UF τ of auto-ignition delay, number of evaluations (N eval ), computational time (T cpu ) using a PC expansion in the 1D case computed using a cubature method based on second Féjer quadrature rule.

	d	τ (µs)	σ τ (µs)	N eval	T cpu	UF τ
	1	110.53	8.45	225	578s	1.247
	2	110.53	8.46	705	320s	1.248
	3	110.53	8.63	961	688s	1.253
	4	110.53	8.64	961	911s	1.253

Table 8 :

 8 Maximum degree of the PC expansion basis (d), Mean (τ), Standard deviation (σ τ ), and uncertainty factor UF τ of auto-ignition delay, number of evaluations (N eval ), computational time (T cpu ) using a PC expansion in the 2D case computed using a cubature method based on second Féjer quadrature rule.

	d	τ (µs)	σ τ (µs)	N eval	T cpu	UF τ
	1	110.83	8.67	239	154s	1.253
	2	110.83	8.70	13663	3514s	1.254
	3	110.83	8.86	13663	3457s	1.260
	4	110.83	8.87	25695	6656s	1.260
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