Fazia Bedouhene 
email: fbedouhene@yahoo.fr
  
Youcef Ibaouene 
email: youcef.ibaouene@etu.univ-rouen.fr
  
Omar Mellah 
email: omellah@yahoo.fr
  
Paul Raynaud De Fitte 
  
semilinear equations with Weyl almost periodic coefficients

Keywords: Weyl almost periodic, linear and semilinear differential equation, mild solution

teaching and research institutions in France or abroad, or from public or private research centers.  

Introduction

In 1927, Hermann Weyl [START_REF] Weyl | Integralgleichungen und fastperiodische Funktionen[END_REF] introduced a generalization of Bohr and Stepanov almost periodic functions. Since then, generalized almost periodic functions bear his name and numerous contributions to theory of almost periodic functions have been brought, see for instance [START_REF] Andres | Hierarchy of almost-periodic function spaces[END_REF][START_REF] Andres | On some almost-periodicity problems in various metrics[END_REF][START_REF] Besicovitch | Almost periodicity and general trigonometric series[END_REF][START_REF] Besicovitoh | Almost periodic functions[END_REF][START_REF] Danilov | On Weyl almost periodic selections of multivalued maps[END_REF][START_REF] Guter | Elements of the theory of functions[END_REF][START_REF] Ursell | Parseval's theorem for almost-periodic functions[END_REF]. Weyl-almost periodic functions are very important and have several applications in dynamical systems, in particular in symbolic dynamics [START_REF] Iwanik | Weyl almost periodic points in topological dynamics[END_REF], where an important class of Weyl almost periodic trajectories are the regular Toeplitz sequences of Jacobs and Keane [START_REF] Jacobs | 0-1-sequences of toeplitz type[END_REF].

In recent years, many authors have been interested in the study of existence and uniqueness of almost periodic solutions to different types of differential equations with Stepanov almost periodic coefficients in both deterministic and stochastic cases. We can mention, in the deterministic case, the work by Andres and Pennequin [START_REF] Andres | On Stepanov almost-periodic oscillations and their discretizations[END_REF][START_REF] Andres | On the nonexistence of purely Stepanov almost-periodic solutions of ordinary differential equations[END_REF], Long and Ding [START_REF] Long | Composition theorems of stepanov almost periodic functions and stepanov-like pseudo-almost periodic functions[END_REF], Ding et al. [START_REF] Ding | Almost periodic solutions to abstract semilinear evolution equations with Stepanov almost periodic coefficients[END_REF], Hu and Mingarelli [START_REF] Hu | Bochner theorem and stepanov almost periodic functions[END_REF], Henriquez [START_REF] Henríquez | On stepanov-almost periodic semigroups and cosine functions of operators[END_REF], Rao [START_REF] Rao | On the Stepanov-almost periodic solution of a second-order operator differential equation[END_REF], Zaidman [START_REF] Zaidman | An existence result for Stepanoff almost-periodic differential equations[END_REF]. Particularly, in [START_REF] Ding | Almost periodic solutions to abstract semilinear evolution equations with Stepanov almost periodic coefficients[END_REF], [START_REF] Long | Composition theorems of stepanov almost periodic functions and stepanov-like pseudo-almost periodic functions[END_REF], and [START_REF] Ait Dads | Behavior of bounded solutions for some almost periodic neutral partial functional differential equations[END_REF], the authors show the existence and uniqueness of almost periodic solution for an abstract semilinear evolution equation with Stepanov almost periodic coefficients. They prove the existence and uniqueness of a Bohr almost 1 periodic mild solution. Nevertheless, in the work [START_REF] Andres | On the nonexistence of purely Stepanov almost-periodic solutions of ordinary differential equations[END_REF], Andres and Pennequin proved the nonexistence of purely Stepanov almost periodic solutions of ordinary differential equations in uniformly convex Banach spaces. Until now, to our knowledge, there are only few works dedicated to the study of existence and uniqueness of Weyl almost periodic solutions to some differential equations. The first investigation in this direction is due to Lenka Radova's [START_REF] Radová | Theorems of Bohr-Neugebauer-type for almost-periodic differential equations[END_REF], but her study was limited to the scalar equation x ′ = ax + f (t), where a ∈ R and f : R → R is an essentially bounded Weyl almost periodic function. The second one is due to Andres et al. [START_REF] Andres | Almost-periodic solutions in various metrics of higher-order differential equations with a nonlinear restoring term[END_REF], and can be seen as an extension of Radova's work. Precisely, the authors investigate almost periodic solutions in various senses (Stepanov, Weyl, Besicovitch) of higher-order scalar differential equations with a nonlinear Lipschitz restoring term and a bounded Stepanov, Weyl or Besicovitch almost periodic forcing term. One can also mention the recent paper by Kostic [START_REF] Kostic | Generalized almost periodic solutions and generalized asymptotically almost periodic solutions of inhomogenous evolution equations[END_REF], where Radova's study was addressed in the context of linear evolution equations with bounded and (asymptotically) Weylalmost periodic coefficients.

Motivated by the previous papers, the aim of this paper is to generalize the previous investigations to the case of semilinear evolution equations, without any boundedness restriction on the forcing term. More precisely, we consider the following abstract semilinear evolution equation:

u ′ (t) = Au(t) + f (t, u(t)) ∀t ∈ R, (1) 
where A : D (A) ⊂ X → X is a linear operator (possibly unbounded) which generates an exponentially stable C 0 -semigroup on a Banach space X, and (t, x) → f (t, x) is a parametric Weyl almost periodic function of degree p ≥ 1. We show that, under some conditions, (1) has a unique solution which is bounded and Weyl almost periodic. Note that, contrarily to the Stepanov case, the solution can be purely Weyl almost periodic.

The major problem encountered in our study is that the space of Weyl almost periodic functions endowed with the Weyl semi-norm is not complete [START_REF] Andres | On some almost-periodicity problems in various metrics[END_REF], which makes the approach and classical tools of functional analysis inapplicable, especially the fixed-point theorem in Banach spaces. To overcome this difficulty, we have opted for the method used by Kamenskii et al [START_REF] Kamenskii | Weak averaging of semilinear stochastic differential equations with almost periodic coefficients[END_REF], which consists in showing "manually" that the unique bounded mild solution to (1), obtained using the fixed-point theorem, is Weyl almost periodic.

This work is organized as follows: In the second section, we recall some definitions and results related to Stepanov almost periodic and Weyl almost periodic functions. In section 3, we present three essential parts. In the first part, based on a compactness property established by Danilov [START_REF] Danilov | On Weyl almost periodic selections of multivalued maps[END_REF], we give a new superposition result in the space of Weyl almost periodic functions. In the second part, after providing examples of bounded and purely Weyl almost periodic solutions, we tackle the problem of existence and uniqueness of a bounded Weyl almost periodic solution to an abstract linear differential equation. Finally, in the third part, inspired from [START_REF] Kamenskii | Weak averaging of semilinear stochastic differential equations with almost periodic coefficients[END_REF], we prove that equation (1) has a unique bounded mild solution which is Weyl almost periodic.

Notations and Preliminaries

First, we give some basic definitions and results on Stepanov almost periodic functions and Weyl almost periodic functions (for more details, see [START_REF] Andres | Hierarchy of almost-periodic function spaces[END_REF][START_REF] Besicovitch | Almost periodicity and general trigonometric series[END_REF][START_REF] Besicovitoh | Almost periodic functions[END_REF]).

We denote by R the set of real numbers and by X a Banach space endowed with the norm . . We denote also by CB(R, X) the Banach space of continuous and bounded functions from R to X, endowed with the norm

u ∞ = sup t∈R u(t) .

Stepanov and Weyl norm

Given l > 0, the Stepanov norm associated with l of a locally integrable function f : R → X, i.e f ∈ L p loc (R, X) (p ≥ 1), is defined by

f S p l = sup ξ∈R 1 l ξ+l ξ f (t) p dt 1 p
.

The Weyl norm is defined by

f W p = lim l→+∞ f S p l .
The limit always exists for l → +∞ [ 

Almost periodicity in Stepanov and Weyl senses

Let us recall some definitions of Stepanov and Weyl almost periodic functions. Recall that a set T of real numbers is relatively dense if there exists a real number k > 0, such that T ∩ [a, a + k] = ∅, for all a in R. Definition 2.1 ([2, p.76-77], [START_REF] Andres | Hierarchy of almost-periodic function spaces[END_REF][START_REF] Andres | On some almost-periodicity problems in various metrics[END_REF], [10, p.77], [11, p.173], [14, p.188]) A function f ∈ L p loc (R, X) is said to be almost periodic in the sense of Stepanov (or p-Stepanov almost periodic if we want to highlight the degree p) if, for every ε > 0, the set

T S p (ε, f ) =    τ ∈ R; sup ξ∈R ξ+1 ξ f (t + τ ) -f (t) p dt 1 p < ε  
 is relatively dense. The number τ is called an ε-Stepanov almost-period (or Stepanov ε-translation number of f ). We denote the set of all such functions by S p AP(R, X).

Definition 2.2 ([4, 5], [10, p.78], [14, p.190]) A function f ∈ L p loc (R, X) is called Weyl almost periodic if, for every ε > 0, there exist l = l(ε) > 0 such that, the set

T S p l (ε, f ) =    τ ∈ R; sup ξ∈R 1 l ξ+l ξ f (t + τ ) -f (t) p dt 1 p < ε    (2) 
is relatively dense. This means that for every ε > 0, there exists l = l(ε) > 0 such that f ∈ S p l AP(R, X). The number τ is called a Weyl ε-translation number of f . We denote the set of all such functions by W p AP(R, X).

There is, however, another interesting definition given by Ursell [START_REF] Ursell | Parseval's theorem for almost-periodic functions[END_REF]:

Definition 2.3 ([27]) A function f ∈ L p loc (R, X
) is said to be Weyl *-almost periodic (or W.a.p following Ursell's notations) if, for every ε > 0, there exists l = l(ε) such that the set

T * S p l (ε, f ) =    τ ∈ R; 1 l l 0 f (t + τ ) -f (t) p dt 1 p < ε  
 is relatively dense. We denote the set of all such functions by W p * AP(R, X).

Ursell [START_REF] Ursell | Parseval's theorem for almost-periodic functions[END_REF] has shown that Theorem 2.4 The classes W p AP(R, X) and W p * AP(R, X) coincide.

This identification is very important when establishing our main result.

Remark 2.5 1. Some authors name the Weyl almost periodicity by equi-Weyl almost periodicity (e.g [START_REF] Andres | Hierarchy of almost-periodic function spaces[END_REF][START_REF] Andres | On some almost-periodicity problems in various metrics[END_REF][START_REF] Radová | Theorems of Bohr-Neugebauer-type for almost-periodic differential equations[END_REF]), distinguishing between the above definition and the following one introduced by Kovanko [START_REF] Kovanko | Sur la compacité des systèmes de fonctions presque périodiques généralisées de H. Weyl[END_REF]: A function f ∈ L p loc (R, X) is said to be almost periodic in the sense of Weyl according to [START_REF] Andres | Hierarchy of almost-periodic function spaces[END_REF][START_REF] Andres | On some almost-periodicity problems in various metrics[END_REF][START_REF] Radová | Theorems of Bohr-Neugebauer-type for almost-periodic differential equations[END_REF] if, for every ε > 0, the set

T W p (ε, f ) =    τ ∈ R; lim l→+∞ sup ξ∈R 1 l ξ+l ξ f (t + τ ) -f (t) p dt 1 p < ε  
 is relatively dense. We denote the set of all such functions by W p (R, X).

Of course the space W p AP(R, X) is an intermediate space between S p AP(R, X) and W p (R, X), i.e. we have

S p AP(R, X) ⊂ W p AP(R, X) ⊂ W p (R, X).
According to [START_REF] Andres | Hierarchy of almost-periodic function spaces[END_REF][START_REF] Andres | On some almost-periodicity problems in various metrics[END_REF], the previous inclusions are strict.

2. Every Weyl almost periodic function of degree p is S p -bounded and also W p -bounded and also (see [START_REF] Andres | Hierarchy of almost-periodic function spaces[END_REF]). Actually, the spaces

BS p (R, X) :=    f ∈ L p loc (R, X); sup ξ∈R 1 L ξ+L ξ f (t) p dt 1 p < ∞    ∀L > 0,
and

BW p (R, X) :=    f ∈ L p loc (R, X); lim l→∞ sup ξ∈R 1 l ξ+l ξ f (t) p dt 1 p < ∞    , coincide, see [4].

Weyl almost periodic functions depending on a parameter

1. We say that a parametric function f : R×X → X is Weyl almost periodic if, for every x ∈ X, the function f (., x) is Weyl almost periodic, we denote by W p AP(R × X, X) the space of such functions.

2. A function f : R × X → X, (t, u) → f (t, u) with f (., u) ∈ L p loc (R, X) for each u ∈ X is said to be Weyl almost periodic in t ∈ R uniformly with respect compact subsets of X if, for each ε > 0, there exists l = l(ε) > 0 and for all compacts K in X, the set

T S p l (ε, f, K) =    τ ∈ R; sup u∈K sup ξ∈R 1 l ξ+l ξ f (t + τ, u) -f (t, u) p dt 1 p < ε  
 is relatively dense. We denote by W p AP K (R × X, X) the set of such functions.

It is clear that

W p AP K (R × X, X) ⊂ W p AP(R × X, X).
Let us introduce some notations due to Danilov [START_REF] Danilov | On Weyl almost periodic selections of multivalued maps[END_REF]. We denote by

M * p (R, X) the set of functions f ∈ BS p (R, X) such that lim δ→0 + lim l 0 →∞ sup l>l 0 sup ξ∈R 1 l sup T ⊆[ξ,ξ+l]: κ(T )≤δl T f (t) p dt 1 p = 0
holds, where κ is the Lebesgue measure on R.

On the space X we also consider the truncated norm . * = min{1, . }. Let W 0 AP(R, X) := W 1 AP(R, (X, . * )) denote the space of Weyl almost periodic functions f : R → X (of degree 1), when X is endowed with . * . From Danilov [START_REF] Danilov | On Weyl almost periodic selections of multivalued maps[END_REF], we have Theorem 2.6 (Danilov [START_REF] Danilov | On Weyl almost periodic selections of multivalued maps[END_REF])

1. The following characterization holds true:

W p AP(R, X) = W 0 AP(R, X) ∩ M * p (R, X). (3) 
2. If f ∈ W p AP(R, X), then for every ε, δ > 0 there exist a number l > 0 and a compact set K ε,δ ⊂ X such that

sup ξ∈R 1 l κ {t ∈ [ξ, ξ + l] : d (f (t), K ε,δ ) ≥ δ} < ε.
Note that, as for almost periodicity in Stepanov sense, which is a metric property [8, Remark 2.4], it can be easily shown that almost periodicity in Weyl sense is a metric property too. In fact, using the arguments in [8, Remark 2.4], let g = exp +∞ n=2 g n , where g n is a 4n-periodic function given by

g n (t) = β n 1 - 2 α n |t -n| 1l [n-2 αn ,n+ 2 αn ] (t), t ∈ [-2n, 2n],
where α n ∈]0, 1 2 [, and β n > 0. As shown in [START_REF] Andres | On the nonexistence of purely Stepanov almost-periodic solutions of ordinary differential equations[END_REF], for α n = 1/n 5 and β n = n 3 , we have

g S 1 ≥ αnβ 2 n 6 → ∞.
Which means that g is not S 1 -bounded. Hence g cannot be in W 1 AP(R), . However, the function g is almost periodic in Lebesgue measure, that is, it belongs to S 0 AP(R) := S 1 AP R, (R, . * ) . In view of the inclusion S 0 AP(R) ⊂ W 0 AP(R), we deduce that g belongs to W 0 AP(R). This shows also that the inclusion W p AP(R) ⊂ W 0 AP(R) is strict, and that M * p (R, X) depends on the norm of the space X.

3 Main results

A superposition theorem in W p AP(R, X)

In this section, we establish a composition theorem for Weyl almost periodic functions.

Our result is based on Theorem 2.6. In the following, we assume that 1 p = 1 q + 1 r with p, q and r ≥ 1.

Theorem 3.1 Let f ∈ W p AP K (R × X, X). Assume that there exists a positive function L(.) ∈ BW r (R), such that f (t, u) -f (t, v) ≤ L(t) u -v ∀t ∈ R, u, v ∈ X. (4) 
Then, for every x(.) ∈ W q AP(R, X), we have

f (., x(.)) ∈ W p AP(R, X).
Proof For a measurable set A ⊂ R and l > 0, let us introduce the notation

κ l (A) = sup ξ∈R 1 l κ {t ∈ [ξ, ξ + l] ∩ A} ,
and let us denote by A c the complementary set of A. Fix ε > 0. Let x(.) ∈ W q AP(R, X).

In view of (3), we can find δ ε > 0 and l 0 = l 0 (ε) > 0 such that, for every measurable set

A, if κ l 0 (A) ≤ δ ε , then sup x∈R 1 l 0 A∩[x,x+l 0 ] x(s) p ds 1 p ≤ ε. (5) 
Using the second item of Theorem 2.6, for the above ε > 0 and the corresponding δ ε > 0, there exist a compact subset K ε ⊂ X and a positive number

l 1 = l 1 (ε) > 0 such that κ l 1 (T ε ) < δ ε , (6) 
where

T ε = t ∈ R : d(x(t), K ε ) ≥ ε 24 L W r .
Hence, we obtain by taking l 2 = max(l 0 , l 1 ),

sup x∈R 1 l 2 Tε∩[x,x+l 2 ] x(s) p ds 1 p ≤ ε 24 L W r . ( 7 
)
The compactness of K ε yields that for every t ∈ R, there exists

x * t ∈ K ε such that d(x(t), K ε ) = x(t) -x * t .
Now, since x(.) ∈ M * p (R, X) and {x * t ; t ∈ R} ⊂ K ε , we obtain by ( 7) that,

sup ξ∈R 1 l 2 Tε∩[ξ,ξ+l 2 ] x(t) -x * t q dt 1 q < ε 24 L W r . (8) 
We also have

sup ξ∈R 1 l 2 T c ε ∩[ξ,ξ+l 2 ] x(t) -x * t q dt 1 q < ε 24 L W r . (9) 
Using again the compactness of K ε , we can find a finite sequence

y 1 , y 2 , • • • , y n ∈ K ε such that K ε ⊂ n i=1 B y i , ε 24 L W r . ( 10 
) Since x * t ∈ K ε , it follows that, for every t ∈ R, there exists i(t) ∈ {1, 2, • • • , n} such that sup ξ∈R 1 l 1 ξ+l ξ x * t -y i(t) q dt 1 q < ε 24 L W r . ( 11 
)
On the other hand, as f ∈ W p AP K (R×X, X) and x(.) ∈ W q AP(R, X), for the above ε > 0, we can chose l 3 = l 3 (ε) > 0 and a common relatively dense set

T S p l (ε, x, f ) ⊂ R such that sup ξ∈R 1 l 3 ξ+l 3 ξ x(t + τ ) -x(t) q dt 1 q < ε 2 L W r , (12) 
and

sup ξ∈R 1 l 3 ξ+l 3 ξ f (t + τ, v) -f (t, v) p dt 1 p < ε 12n , (13) 
for all τ ∈ T S p l (ε, x, f ) and v ∈ K ε . Furthermore, by triangular inequality, we have, for l = max(l 2 , l 3 ) and for every τ ∈ T S p l (ε, x, f ),

sup ξ∈R 1 l ξ+l ξ f (t + τ, x(t + τ )) -f (t, x(t)) p dt 1 p ≤ sup ξ∈R 1 l ξ+l ξ f (t + τ, x(t + τ )) -f (t + τ, x(t)) p dt 1 p + sup ξ∈R 1 l ξ+l ξ f (t + τ, x(t)) -f (t, x(t)) p dt 1 p =:I 1 + I 2 .
Let us estimate I 1 and I 2 . For I 1 , by ( 4), ( 12) and Hölder's inequality ( r p , q p ), we have, for every τ ∈ T S p l (ε, x, f ),

I 1 = sup ξ∈R 1 l ξ+l ξ f (t + τ, x(t + τ )) -f (t + τ, x(t)) p dt 1 p ≤ L W r sup ξ∈R 1 l ξ+l ξ x(t + τ ) -x(t) q dt 1 q < ε 2 .
For I 2 , for all τ ∈ T S p l (ε, x, f ), we have

I 2 ≤ sup ξ∈R 1 l Tε∩[ξ,ξ+l] f (t + τ, x(t)) -f (t, x(t)) p dt + sup ξ∈R 1 l T c ε ∩[ξ,ξ+l] f (t + τ, x(t)) -f (t, x(t)) p dt 1 p := I 1 2 + I 2 2 .
First, we consider I 1 2 . Using triangular inequality, the condition (4), ( 8) and Hölder's inequality ( p r , p q ), we get, for all τ ∈ T S p l (ε, x, f ),

I 1 2 = sup ξ∈R 1 l Tε∩[ξ,ξ+l] f (t + τ, x(t)) -f (t, x(t)) p dt 1 p ≤ ε 24 + sup ξ∈R 1 l ξ+l ξ f (t + τ, x * t ) -f (t, x * t ) p dt 1 p + ε 24 := ε 12 + I * . By (13), for each τ ∈ T S p l (ε, x, f ) and i = 1, 2, • • • , n, we obtain that sup ξ∈R 1 l ξ+l ξ f (t + τ, y i ) -f (t, y i ) p dt 1 p < ε 12n . (14) 
Using ( 4) and ( 11), it follows that, for every τ ∈ T S p l (ε, x, f ),

I * ≤2 L W r sup ξ∈R 1 l ξ+l ξ y i(t) -x * t q dt 1 q + sup ξ∈R 1 l ξ+l ξ f (t + τ, y i(t) ) -f (t, y i(t) ) p dt 1 p ≤ ε 12 + n l j=1 sup ξ∈R 1 l ξ+l ξ f (t + τ, y j ) -f (t, y j ) p dt 1 p < ε 6 .
We thus have, for all τ ∈ T S p l (ε, x, f ),

I 1 2 = sup ξ∈R 1 l Tε∩[ξ,ξ+l] f (t + τ, x(t)) -f (t, x(t)) p dt 1 p < ε 4 .
For I 2 2 , by ( 4), ( 9), ( 11), ( 14) and Hölder's inequality, we follow the same steps than for I 1 2 , we obtain, for every τ ∈ T S p l (ε, x, f ),

I 2 2 = sup ξ∈R 1 l T c ε ∩[ξ,ξ+l] f (t + τ, x(t)) -f (t, x(t)) p dt 1 p < ε 4 .
Then, for all τ ∈ T S p l (ε, x, f ), we get that

I 2 = sup ξ∈R 1 l ξ+l ξ f (t + τ, x(t)) -f (t, x(t)) p dt 1 p < ε 2 .
Finally, combining I 1 and I 2 , we obtain, for every τ ∈ T S p l (ε, x, f ),

sup ξ∈R 1 l ξ+l ξ f (t + τ, x(t + τ )) -f (t, x(t)) p dt 1 p < ε, that is, f (., x(.)) ∈ W p AP(R, X).
Now, we discuss the Weyl almost periodic solutions to linear differential equations.

Existence and uniqueness of bounded Weyl almost periodic solution to abstract linear differential equation

We investigate now the Weyl almost periodic solutions to

u ′ (t) = Au(t) + f (t), (15) 
where A : D (A) ⊂ X → X is a linear operator which generates an exponentially stable C 0 -semigroup (T (t)) t≥0 on a Banach space X, and f : R → X is Weyl almost periodic. We recall that a function u : R → X is a mild solution to [START_REF] Henríquez | On stepanov-almost periodic semigroups and cosine functions of operators[END_REF] if

u(t) = T (t -a)u(a) + b a T (t -s)f (s)ds, t ≥ s.
Let us also recall that a semigroup (T (t)) t∈R of linear operators is exponentially stable if there exist δ > 0 and M ≥ 1 such that

T (t) ≤ M e -δt . (16) 
The main motivation of this study is that, contrarily the Stepanov case (see [START_REF] Andres | On the nonexistence of purely Stepanov almost-periodic solutions of ordinary differential equations[END_REF] and [START_REF] Bedouhene | Almost periodic solution in distribution for stochastic differential equations with Stepanov almost periodic coefficients[END_REF]), where it is shown the nonexistence of purely Stepanov almost periodic solutions for ordinary differential equations with Stepanov almost periodic coefficients, we can find, in the Weyl case, a bounded and purely Weyl almost periodic mild solution to Equation [START_REF] Henríquez | On stepanov-almost periodic semigroups and cosine functions of operators[END_REF]. The problem is closely related to Bohl-Bohr theorem which fails in the Weyl case. Indeed, the following example shows that there exist Weyl almost periodic functions such that their integrals are bounded but not Bohr almost periodic, nor Stepanov almost periodic. However, they are (purely) Weyl almost periodic.

Example 3.2 We consider the following function f : R → R defined by

f (t) = 1 for 0 < t < 1 2 ; 0 elsewhere, ( 17 
)
which is purely Weyl almost periodic (see [4, p.145]). Let F : R → R with

F (t) = t -∞ f (s)ds =    0 for t ≤ 0; t for 0 < t < 1 2 ;
1 2 elsewhere, be a primitive of f . Clearly F is bounded on R. Moreover, for every t 1 , t 2 ∈ R, we have

|F (t 1 ) -F (t 2 )| ≤ |t 1 -t 2 | .
Thus F is uniformly continuous. So by [START_REF] Radová | Theorems of Bohr-Neugebauer-type for almost-periodic differential equations[END_REF]Proposition 4], F is Weyl almost periodic. On the other hand, for ε < 1 4 , there exists t ∈ [0, 1 4 ] such that, for every τ > ε, we have

|F (t + τ ) -F (t)| ≥ 1 4 > ε.
So, the function F is not Bohr almost periodic. We can show more, that is [START_REF] Iwanik | Weyl almost periodic points in topological dynamics[END_REF]. Its unique bounded solution is given by

F
x(t) =    0 for t ≤ 0; 1 -exp(-t)
for 0 < t < 1 2 ; ( exp(1) -1) exp(-t) elsewhere. . Then, every τ

such that τ + 1 2 > -ln ε √ exp(1)-1
, satisfies

x 1 2 -x τ + 1 2 = 2ε -( exp(1) -1) exp(-τ - 1 2 ) ≥ 2ε -ε = ε.
Which means that x is not almost periodic, nor Stepanov almost periodic.

Theorem 3.4 There exists a unique bounded mild solution to [START_REF] Henríquez | On stepanov-almost periodic semigroups and cosine functions of operators[END_REF]. This solution is Weyl almost periodic of degree p and is given by

u(t) = t -∞ T (t -s)f (s)ds. ( 19 
)
Proof First, we show that the function u(t) = t -∞ T (ts)f (s)ds is well defined, i.e, lim a→-∞ t a T (ts)f (s)ds exists. We set

G(a) = t a T (t -s)f (s)ds.
Let us show that (G(a)) a∈R is Cauchy at -∞. If a < b, then by ( 16), we have

G(b) -G(a) ≤ b a T (t -s) f (s) ds ≤ M b a e -δ(t-s) f (s) ds.
Since f is Weyl almost periodic, we have f ∈ BS p L (R, X), for every L > 0. Thus, there exists N ∈ N, such that, by Hölder's inequality ( 1p , 1 q ), we have

G(b) -G(a) ≤ M N k=0 b-kL b-(k+1)L e -δ(t-s) f (s) ds ≤ M N k=0 b-kL b-(k+1)L
e -δq(t-s) ds

1 q b-kL b-(k+1)L f (s) p ds 1 p ≤ M L f S p L e -δq(t-b) 1 -e -δq(N +1)L 1 -e -δqL .
Consequently,

lim b→-∞ G(b) -G(a) ≤ lim b→-∞ M L f S p L e -δq(t-b) 1 -e -δq(N +1)L
1e -δqL = 0.

Thus the limit lim a→-∞ t a T (ts)f (s)ds exists. This means that u is well-defined. Moreover, it is easy to see that u given by ( 19) is a mild solution to [START_REF] Henríquez | On stepanov-almost periodic semigroups and cosine functions of operators[END_REF].

In the following, we show that u is bounded. By Hölder's inequality and ( 16), we obtain

u(t) ≤ t -∞ T (t -s) f (s) ds ≤ M ∞ k=0 e -δk t-k t-k-1 f (s) p ds 1 p . Then, we have sup t∈R u(t) ≤ M ∞ k=0 e -δk sup t∈R t-k t-k-1 f (s) p ds 1 p .
Since Weyl almost periodic functions of degree p are S p -bounded, we have

sup t∈R u(t) ∞ ≤ M f S p ∞ k=0 e -δk < ∞.
Thus u is bounded. Now, we prove that the solution to (15) is Weyl almost periodic. Using a change of variable and Hölder's inequality ( 1 p + 1 q = 1), we have any τ ∈ R,

u(t + τ ) -u(t) ≤ M 0 -∞ e δs f (t + s + τ ) -f (t + s) ds ≤ M 2 δq 1 q 0 -∞ e δps 2 f (t + s + τ ) -f (t + s) p ds 1 p
.

Let l > 0. Using Fubini's theorem, we get, for every τ ∈ R,

sup ξ∈R 1 l ξ+l ξ u(t + τ ) -u(t) p dt 1 p ≤ M 2 δq 1 q sup ξ∈R   1 l ξ+l ξ 0 -∞ e δps 2 f (t + s + τ ) -f (t + s) p ds 1 p p dt   1 p ≤ M 2 δq 1 q 0 -∞ e δps 2 sup ξ∈R 1 l ξ+l ξ f (t + s + τ ) -f (t + s) p dt ds 1 p
.

Since f is Weyl almost periodic, for any ε > 0, we can choose positive number l = l(ε) and there exists a relatively dense set

T S p l (ε, f ) as in (2), such that 0 -∞ e δps 2 sup ξ∈R 1 l ξ+l ξ f (t + s + τ ) -f (t + s) p dt ds 1 p ≤ 2 δp 1 p ε ∀τ ∈ T S p l (ε, f ). Hence, sup ξ∈R 1 l ξ+l ξ u(t + τ ) -u(t) p dt 1 p ≤ Cε,
where

C = M 2 δq 1 q 2 δp 1 p .
Summing up, we have shown that, for every ε > 0, there corresponds a positive number l = l(ε) and there exists a relatively dense set

T S p l (ε, u) = T S p l ( ε C , f ) such that sup ξ∈R 1 l ξ+l ξ u(t + τ ) -u(t) p dt 1 p < ε; ∀τ ∈ T S p l (ε, u).
Which implies the Weyl-almost-periodicity of the solution u. Uniqueness of the solution follows from the same arguments as those in [START_REF] Ding | Almost periodic solutions to abstract semilinear evolution equations with Stepanov almost periodic coefficients[END_REF][START_REF] Long | Composition theorems of stepanov almost periodic functions and stepanov-like pseudo-almost periodic functions[END_REF]. We omit the details.

Existence and uniqueness of bounded Weyl almost periodic solution to abstract semilinear differential equation

In this section we study the existence and uniqueness of the Weyl almost periodic mild solution to equation

u ′ (t) = Au(t) + f (t, u(t)), (20) 
where A : D (A) ⊂ X → X is unbounded linear, of domain D(A) dense in X, and f : R × X → X measurable function.

We consider the following hypothesis:

(H1) The operator A generates a C 0 -semigroup (T (t)) t≥0 , exponentially stable.

(H2) f ∈ W p AP K (R × X, X).
(H3) The function f is L(.)-Lipschitz i.e., there exists a nonnegative function L(.) ∈ BW p (R) such that

f (t, u) -f (t, v) ≤ L(t) u -v ; ∀t ∈ R, ∀ u, v ∈ X.
Theorem 3.5 Let the assumptions (H1)-(H3) be fulfilled. For p ≥ 2, the equation (1) has a unique mild solution in CB(R, X) given by

u(t) = t -∞ T (t -s)f (s, u(s))ds, (21) 
provided that

L S p < δq M q 1 q e δ -1 e δ , ( 22 
)
where

1 p + 1 q = 1. If, furthermore L S p < pδ M p 2 p+1 e pδ 4 -1 e pδ 4 pδ 2p -4 p-2 for p > 2, ( 23 
)
or

L S 2 < pδ 8M 2 e 2δ 4 -1 e 2δ 4 for p = 2, (24) 
then, u is Weyl almost periodic.

Before giving the proof of Theorem 3.5, we need the following technical results.

Lemma 3.6 ([19]

) Let g : R → R be a continuous function such that, for every t ∈ R,

0 ≤ g(t) ≤ α(t) + β 1 t -∞ e -δ 1 (t-s) g(s)ds + ... + β n t -∞ e -δ 1 (t-s) g(s)ds, (25) 
for some locally integrable function α : R → R, and for some constants β 1 , ..., β n ≥ 0, and some constants δ 1 , ..., δ n > β, where β = i=n i=1 β i . We assume that the integrals in the right hand side of (25) are convergent. Let δ = min 1≤i≤n δ i . Then, for every γ ∈]0, δβ] such that 0 -∞ e γs α(s)ds converges, we have, for every t ∈ R,

g(t) ≤ α(t) + β t -∞ e -γ(t-s) α(s)ds.
In particular, if α is constant, we have

g(t) ≤ α δ δ -β . Proposition 3.7 Let f be in W p AP K (R × X, X) (2 ≤ p < ∞)
and satisfying (H1). Let u ∈ CB(R, X). Then, for every ε > 0 there exists l = l(ε) > 0 such that for every

τ ∈ T S p l (ε, f, K), we have 0 -∞ e δ 1 s 1 l s+l s f (t + τ, u(t)) -f (t, u(t)) p dt ds < ε p (26) 
and

0 -∞ e γr r -∞ e -δ 1 (r-s) 1 l s+l s f (t + τ, u(t)) -f (t, u(t)) p dt ds dr < ε p , (27) 
for all δ 1 > 0 and γ > 0.

Proof Let fix δ 1 > 0 and γ > 0. For s ∈ R, ξ ∈ R, l > 0 and τ ∈ R, let

h τ,l (s) = 1 l s+l s f (t + τ, u(t)) -f (t, u(t)) p dt, α τ,l (ξ) = ξ -∞ e -δ 1 (ξ-s) h τ,l (s)ds. 
Inequalities ( 26) and ( 27) become α τ,l (0) < ε p and 0 -∞ e γr α τ,l (r)dr < ε p , respectively. First, we deal with the estimation [START_REF] Rao | On the Stepanov-almost periodic solution of a second-order operator differential equation[END_REF]. Using the boundedness of both u and f in the Weyl sense (f is W p -bounded), we have for every τ ∈ R, l > 0 and for every s ∈] -∞, 0],

h τ,l (s) = 1 l s+l s f (t + τ, u(t)) -f (t, u(t)) p dt ≤2 2p-2 1 l s+l s f (t + τ, u(t)) -f (t + τ, 0) p dt + 1 l s+l s f (t + τ, 0) p dt + 2 2p-2 1 l s+l s f (t, 0) p dt + 1 l s+l s f (t, 0) -f (t, u(t)) p dt ≤2 2p-1 L(.) p W p u(.) p ∞ + f (., 0) p W p < +∞.
The function s → e δ 1 s h τ,l (s) is bounded and continuous on ] -∞, 0], hence

α τ,l (0) = 0 -∞ e δ 1 s h τ,l (s)ds = ∞ n=0 -n -n-1 e δ 1 s h τ,l (s)ds ≤ ∞ n=0 e -δ 1 n max s∈[-n-1,-n]
h τ,l (s) .

(28) Due to the uniform boundedness of the sequence max s∈[-n-1,-n] h τ,l (s) n , the series in ( 28) is uniformly convergent. Thus, for every ε > 0, we can find an integer N 1 = N 1 (ε) ≥ 1 such that for every τ ∈ R, l > 0, and δ 1 > 0, we have

n>N 1 e -δ 1 n max s∈[-n-1,-n] h τ,l (s) < ε p 2 . (29) 
Moreover, we claim that there exists l = l(ε) > 0 such that every τ ∈ T S p l (ε, f, K) satisfies

N 1 n=0 e -δ 1 n max s∈[-n-1,-n] h τ,l (s) < ε p 2 . ( 30 
)
In fact, for the above ε > 0, let l = l(ε) > 0 provided by the condition that T S p l (ε, f, K) is relatively dense. In view of the continuity of the mapping s → h τ,l (s) on the compact set [-n -1, -n], there exists s * n ∈ [-n -1, -n] such that, for every τ ∈ R and

δ 1 > 0, max s∈[-n-1,-n] h τ,l (s) = h τ,l (s * n ). Put s * = s * ε := arg max n∈{0,••• ,N 1 } h τ,l (s * n ). We have then N 1 n=0 e -δ 1 n max s∈[-n-1,-n] h τ,l (s) ≤ N 1 n=0 e -δ 1 n h τ,l (s * ).
Now, since u is continuous, we have that K * = u ([s * , s * + l]) is a compact set that depends only on ε. Hence, there exist

u 1 , • • • , u k ∈ K 1 such that K * ⊂ i=k i=1 B u i , ε 2 p √ 6 L W p . It follows that, for each t ∈ [s * , s * + l], there exists i(t) ∈ {1, 2, • • • , k} such that u(t) -u i(t) < ε 2 p √ 6 L W p . (31) 
On the other hand, since

f ∈ W p AP K (R × X, X), every τ ∈ T S p l (ε, f, K) is such that 1 l s * +l s * f (t + τ, u i(t) ) -f (t, u i(t) ) p dt < ε p 2 p+1 3k . ( 32 
)
To combine the previous arguments, we use the triangle inequality:

h τ,l (s * ) ≤2 p 1 l s * +l s * f (t + τ, u(t)) -f (t + τ, u i(t) ) p dt + 2 p 1 l s * +l s * f (t + τ, u i(t) ) -f (t, u i(t) ) p dt + 2 p 1 l s * +l s * f (t, u i(t) ) -f (t, u(t)) p dt =:2 p (A 1 + A 2 + A 3 ) . ( 33 
)
Let us estimate A 1 . By (H2) and (31), we have

A 1 = 1 l s * +l s * f (t + τ, u(t)) -f (t + τ, u i(t) ) p dt ≤ 1 l s * +l s * L(t + τ ) p u(t) -u i(t) p dt ≤ ε 2 p √ 6 L W p p L p W p < ε p 2 p+1 3 . (34) 
We follow the same steps as for A 1 , we obtain

A 3 ≤ ε 2 p √ 6 L W p p L p W p < ε p 2 p+1 3 . ( 35 
)
Now, we estimate A 2 . By (32), we have

A 2 ≤ k j=1 1 l s * +l s * f (t + τ, u j ) -f (t, u j ) p dt ≤ ε p 2 p+1 3 . ( 36 
)
Taking into account (33)-(36), we obtain that

h τ,l (s * ) ≤ ε p 2 , for every τ ∈ T S p l (ε, f, K). (37) 
This implies that

N 1 n=0 e -δ 1 n max s∈[-n-1,-n] h τ,l (s) ≤ (1 -e -δ 1 ) ε p 2 ≤ ε p 2 .
Having disposed the previous preliminaries steps, we now return to estimation [START_REF] Weyl | Integralgleichungen und fastperiodische Funktionen[END_REF], we get in view of ( 29) and (30) that for every ε > 0, there is l = l(ε) > 0 (provided by the condition f ∈ S p l AP K (R × X, X)) such that any τ ∈ T S p l (ε, f, K) verifies

α τ,l (0) = 0 -∞ e pδ 4 s 1 l s+l s f (t + τ, u(t)) -f (t, u(t)) p dt ds ≤ ε p . (38) 
Next, let us consider 0 -∞ e γr α τ,l (r)dr. The arguments we use are in part the same as those mentioned above. The function r → α τ,l (r) is continuous and uniformly bounded with respect to both τ and l, thus the series n≥0 e -γn α τ,l (r * n ) is uniformly convergent, where r * n = arg max

r∈[-n-1,-n] α τ,l (r). Therefore, 0 -∞ e γr α τ,l (r)dr ≤ n≥0 e -γn α τ,l (r * n ). (39) 
Now, let ε > 0. We can find an integer

N 2 = N 2 (ε) > 1 such that n>N 2 e -γn α τ,l (r * n ) < ε p 2 . (40) 
Furthermore, by putting r * = arg max n∈{0,...,N 2 } α τ,l (r * n ), we have

N 2 n=0 e -γn α τ,l (r * n ) ≤ (1 -e -γ ) -1 α τ,l (r * ). (41) 
Repeating the same argument as for α τ,l (0) enables us to write that for the positive number l = l(ε) provided by the condition f ∈ S p l AP K (R × X, X) and for every τ belonging to the relatively dense set ∈ T S p l (ε, f, K) we have

α τ,l (r * ) ≤ (1 -e -γ ) ε p 2 . ( 42 
)
Consequently, combining (39), ( 40) and (42), we obtain for the above l and τ the desired estimation:

0 -∞ e γr α τ (r)dr ≤ ε p .
Which achieves the proof of Proposition 3.7.

Proof of Theorem 3.5 We can break down the demonstration into two part. In the first part, we that, assuming [START_REF] Kufner | Function spaces[END_REF], equation ( 1) has a unique mild solution belonging to CB(R, X), and given by [START_REF] Kovanko | Sur la compacité des systèmes de fonctions presque périodiques généralisées de H. Weyl[END_REF]. In the second, using the technique by Kaminski et al. [START_REF] Kamenskii | Weak averaging of semilinear stochastic differential equations with almost periodic coefficients[END_REF], we show that solution [START_REF] Kovanko | Sur la compacité des systèmes de fonctions presque périodiques généralisées de H. Weyl[END_REF] is Weyl almost periodic.

First part

Clearly, following the same steps as in the proof of Theorem 3.4, u is solution to

u(t) = t -∞ T (t -s)f (s, u(s))ds
if, and only if,

u(t) = T (t -a)u(a) + t a T (t -s)f (s, u(s))ds,
for all t ≥ a for each a ∈ R, which means that u is a mild solution to [START_REF] Ait Dads | Behavior of bounded solutions for some almost periodic neutral partial functional differential equations[END_REF].

We introduce an operator Γ by

Γu(t) = t -∞ T (t -s)f (s, u(s))ds.
Let us show that, assuming [START_REF] Kufner | Function spaces[END_REF], the operator Γ maps CB(R, X) into CB(R, X) and has a unique fixed point. First step. Let us show that Γu is bounded, for any u ∈ CB(R, X). From the hypotheses (H1), Hölder's inequality ( 1p , 1 q ) and the triangular inequality, we have

sup t∈R Γu(t) ≤M sup t∈R t -∞ e -δ(t-s) f (s, u(s)) ds ≤M sup t∈R ∞ k=1 t-k+1 t-k e -qδ(t-s) ds 1 q t-k+1 t-k f (s, u(s)) -f (s, 0) p ds 1 p + M sup t∈R ∞ k=1 t-k+1 t-k e -qδ(t-s) ds 1 q t-k+1 t-k f (s, 0) p ds 1 p .
Since the singleton {0} is compact, f (., 0) is bounded with respect to Stepanov's norm. By (H2) and Hölder's inequality, we have

sup t∈R Γu(t) ≤M sup t∈R ∞ k=1 t-k+1 t-k e -qδ(t-s) ds 1 q   t-k+1 t-k L(s) p u(s) p ds 1 p + f (., 0) S p   ≤M e δ e δ -1 sup t∈R   t-k+1 t-k L(s) p ds 1 p u(.) ∞ + f (., 0) S p   ≤M e δ e δ -1 L(.) S p u(.) ∞ + f (., 0) S p < ∞.
Thus Γu is bounded.

Second step Let us show that the mapping t → Γu is continuous on R, for every u ∈ CB(R, X). For, let fix u ∈ CB(R, X). We have

Γu(t) = t -∞ T (t -s)f (s, u(s))ds = ∞ n=0 t-n t-n-1 T (t -s)f (s, u(s))ds. Let us set, for n ∈ N, Γ n u(t) = t-n t-n-1 T (t -s)f (s, u(s))ds, t ∈ R.
Let us check that Γ n (u) ∈ CB(R, X). To this end, let t 0 ∈ R. Put g(s) =: f (s, u(s)). Clearly g ∈ L p loc (R, X). Hence, in view of [ 

Γ n u(t 0 + h) -Γ n u(t 0 ) ≤ lim h→0 M t 0 -n t 0 -n-1 e -δ(t 0 -s) g(s + h) -g(s) ds ≤M t 0 -n t 0 -n-1 e -qδ(t 0 -s) ds 1 q lim h→0 t 0 -n t 0 -n-1 g(s + h) -g(s) p ds 1 p
.

The continuity of Γ n u is then a straightforward consequence of (43). The boundedness of Γ n u is a simple consequence of the following estimation

Γ n u ∞ ≤ sup t∈R t-n t-n-1 e -qδ(t-s) ds 1 q L(.) S p u(.) ∞ + f (., 0) S p ≤e -nδ L(.) S p u(.) ∞ + f (., 0) S p ,
from which we deduce in addition that the series ∞ n=0 Γ n u(t) is uniformly convergent. The continuity of Γu is provided by the continuity of Γ n u for each n and the uniform convergence of the series ∞ n≥0 Γ n u(t) . Thus Γ maps CB(R, X) into CB(R, X). Third step Let us show that, assuming [START_REF] Kufner | Function spaces[END_REF], Γ has a fixed point in CB(R, X). For every t ∈ R, we have from (H1)

Γu(t) -Γv(t) ≤ M t -∞ e -δ(t-s) f (s, u(s)) -f (s, v(s))ds ≤ M +∞ k=1 t-k+1 t-k e -δ(t-s) f (s, u(s)) -f (s, v(s)) ds.
Using Hölder's inequality and (H2), we get for every t ∈ R,

Γu(t) -Γv(t) ≤M +∞ k=1 t-k+1 t-k e -δq(t-s) ds 1 q t-k+1 t-k L(s) p u(s) -v(s) p ds 1 p ≤ M +∞ k=1 t-k+1 t-k e -δq(t-s) ds 1 q t-k+1 t-k L(s) p ds 1 p u -v ∞ ≤ M q δq 1 q e δ e δ -1 L S p u -v ∞ .
Hence, it follows that, for each t ∈ R,

Γu -Γv ∞ ≤ k u -v ∞ .
Since k < 1, we conclude that Γ is a contraction operator. We conclude that there exists a unique mild solution to (1) in CB(R, X).

Second part

In this part, we show that, under ( 22) and ( 23), the solution u ∈ CB(R, X) to ( 1 (44) For the second term, using again a change of variables and Fubini's theorem, we have, for all τ ∈ R, ξ ∈ R and l > 0, 1 l 

( 18 )

 18 The solution x is clearly uniformly continuous. Moreover, by[START_REF] Radová | Theorems of Bohr-Neugebauer-type for almost-periodic differential equations[END_REF] Proposition 4], x is Weyl almost periodic. Now, we can get more, namely that the solution x is purely Weyl almost periodic. Indeed, for every ε > 0, the following inequality ( exp(1) -1) exp(-t) < ε holds for all t ≥ln
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 121 4 (t-s) f (s + τ, u(s))f (s, u(s)) p ds 1 p . Thus, for all τ ∈ R, ξ ∈ R and l > 0, we have1 l ξ+l ξ u(t + τ )u(t) p dt ≤M p 2p -(t) + I 2 (t) p dt ≤M p 2 p-1 2p -(t) p dt .Let us estimate the first term of the last inequality. We have, for every τ ∈ R, ξ ∈ R and l 4 (t-s) u(s + τ )u(s) p ds 4 (t-s) u(s + τ )u(s) p ds dt.By a change of variables and Fubini's theorem, it follows that 1 l ξ+l ξ (t) p dt ≤ L p + τ )u(t) p dt ds.

f

  4 (t-s) f (s + τ, u(s))f (s, u(s)) p ds (t + τ, u(t))f (t, u(t)) p dt ds 4 (ξ-s) h τ,l (s)ds, whereh τ,l (s) := 1 l s+l s f (t + τ, u(t))f (t, u(t)) p dt.Summing up, for all ξ, τ ∈ R and l > 0, we obtain0 ≤ g τ,l (ξ) := 1 l ξ+l ξ u(t + τ )u(t) p dt ≤ Cα τ,l (ξ) + β ξ -∞ e -δ 1 (ξ-s) g τ,l(s)ds, with 4 (ξ-s) h τ,l (s)ds, δ 1 := pδ 4 , and β := M p 2 p-1 L p S p

  is notStepanov almost periodic. Indeed, if F is Stepanov almost periodic, thanks to its uniform continuity, we get would have that F was Bohr almost periodic (Bochner's Theorem, see. Let the scalar differential equation x ′ = -x + f (t), t ∈ R, with f given by

	e.g [4], [10, p.82], [23, Lemme.4 p.34] and [11, Th 6.16]). A contradiction. Hence F is not
	Stepanov almost periodic.
	Example 3.3

  ) is Weyl almost periodic.By (H1), we obtain that, for any τ ∈ R and any t ∈ R,u(t + τ )u(t) ≤

									t
									-∞	T (t -s) f (s + τ, u(s + τ )) -f (s, u(s)) ds
										t
								≤ M	-∞
	By Hölder's inequality ( 2 p , p-2 p ) and triangular inequality, we obtain
	u(t + τ ) -u(t) ≤M	2p -4 pδ	p-2 p	-∞ t	2 ds p	2 p
					+ M	2p -4 pδ	p-2 p	-∞ t	2 ds p	2 p
				=:M	pδ 2p -4	p-2 p
	For I 1 (t), by (H2) and Hölder's inequality ( 1 2 , 1 2 ), we have
										2
	I 1 (t) =									2 ds p	p
	≤	k=0 +∞	e -pδ 4 k		t-k-1 t-k	L(s + τ ) p ds	1 p	-∞ t	1 p
	≤	e	e pδ 4 -1 pδ 4	1 p	L S p		t -∞	e -pδ 4 (t-s) u(s + τ ) -u(s) p ds	1 p	.
	Next, let us consider I 2 (t). By Hölder's inequality ( 1 2 , 1 2 ), we have
	I 2 (t) =		t -∞	e -pδ 4 (t-s) f (s + τ, u(s)) -f (s, u(s))	2 ds p	2 p
		≤		t -∞	e -pδ 4 (t-s) ds	1 p	t -∞

e -δ(t-s) f (s + τ, u(s

+ τ ))f (s, u(s)) ds. e -pδ 4 (t-s) f (s + τ, u(s + τ ))f (s + τ, u(s)) e -pδ 4 (t-s) f (s + τ, u(s))f (s, u(t)) I 1 (t) + I 2 (t) . t -∞ e -pδ 4 (t-s) f (s + τ, u(s + τ ))f (s + τ, u

(s))

e -pδ 4 (t-s) u(s + τ )u(s) p ds e -pδ 4 (t-s) f (s + τ, u(s))f (s, u(s)) p ds 1 p

p

It should be noted that the hypothesis [START_REF] Levitan | Almost periodic functions and differential equations[END_REF] is equivalent δ 1 > β. We conclude by Lemma 3.6 that, for all γ ∈]0, δ 1β] such that 0 -∞ e γr α τ,l (r)dr converge, we have, for every ξ ∈ R,

e -γ(ξ-r) α τ,l (r)dr.

We use Theorem 2.4 to get the Weyl almost periodicity of u. We take ξ = 0, then for all τ ∈ R and l > 0, we have

e γr α τ,l (r)dr.

Therefore, in view of Proposition 3.7, for all ε > 0, there exist l = l(ε) > 0 and a relatively dense set

Weyl almost periodicity of u is then proved thanks to the inclusion

For p = 2, the proof is similar to that for p > 2. The details are omitted.

Remark 3.8

The results obtained here can also be applied to the more general case p ≥ 1 provided that L(.) in (H1) is independent of t.