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(Received 9 March 2016; accepted 14 December 2016; published online 3 January 2017)

In this work, we consider magnetic reconnection in thin current sheets with both resistive and
electron inertia effects. When the current sheet is produced by a primary instability of the internal
kink type, the analysis of secondary instabilities indicates that reconnection proceeds on a time
scale much shorter than the primary instability characteristic time. In the case of a sawtooth crash,
non-collisional physics becomes important above a value of the Lundquist number, which scales
like S ! ðR=deÞ12=5, in terms of the tokamak major radius R and of the electron skin depth de. This
value is commonly achieved in present day devices. As collisionality is further reduced, the charac-
teristic rate increases, approaching Alfv!enic values when the primary instability approaches the
collisionless regime. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4973328]

I. INTRODUCTION

Current sheets are a common occurrence in laboratory
and space plasmas. They appear as a local two-dimensional
current concentration and they can be either the natural prod-
uct of convective, often turbulent, plasma motion, or the
result of a plasma instability entering its non-linear stage.

In this work, we study the instability of generic current
sheets, addressing the question of whether reconnection can
be fast enough to account for the observed rates of common
events such as the sawtooth crash in a tokamak and possibly
solar flares.

We consider a plasma characterized by a non-uniform
average magnetic field B0, varying on a characteristic scale
length L0. The structure of a current sheet is an almost planar
current concentration of extension L in two spatial dimen-
sions and thickness a$ L. Note that we keep L and L0 dis-
tinct although often in the literature L ! L0 or it is even
assumed that L¼ L0. By definition, the current density in the
sheet would differ appreciably from the ambient current den-
sity. However one can argue, and it will be shown below,
that such current concentration is unstable to fast growing
perturbations. Therefore, the current density in the sheet Jcs

cannot exceed too much the ambient current density J0, and
therefore, one can reasonably assume Jcs ! J0 ! B0=L0.

Moreover, a current sheet would generally evolve in
time. However, when studying its stability, it is convenient
to assume it to be in a quasi-stationary state, if one is inter-
ested in instability growth rates much faster than the underly-
ing evolution rate. As a consequence, a current sheet can be
modeled as a planar system in local force balance. In the fol-
lowing, we further assume that the ambient magnetic field is
almost constant and that the current density in the sheet is
almost aligned to it.

The current in the sheet produces a magnetic field
Bcs ! Jcsa, which lays in the plane and it is transverse to the

main magnetic field. From the previous estimate of Jcs, one
concludes

Bcs ! B0
a

L0
: (1)

This scaling is certainly pertinent when the current sheet
is the result of a large D0 primary instability as in the case of
the sawtooth phenomenon, which is discussed in detail in
Sec. III. In this instance, scaling (1) marks the transition to
the nonlinear phase if a is the linear layer width. Therefore,
in this context, we are assuming that the current sheet
becomes unstable to a secondary instability at an early stage
of the nonlinear evolution of the primary instability, a result
we will find consistent with the estimates derived later in this
work. Our logic will be outlined in a greater detail at the end
of Sec. II.

Note also that, by assuming this scaling of Bcs with the
current sheet thickness, we depart fundamentally from previ-
ous works,1–11 where the scaling Bcs ! B0 is implicitly
assumed. The implications of this different assumption are
discussed more in detail in Sec. IV. Here, we anticipate that
Pucci and Velli6 pointed out that by increasing the current
sheet aspect ratio tearing mode theory predicts an increasing
growth rate, reaching the Alfv!enic limit at a characteristic
aspect ratio that depends on the regime considered.6–11 The
dependence of the growth rate on the aspect ratio is exploited
in an essential way also in the present work, as discussed
later.

Moreover, the presence of a strong guide field B0 allows
one to treat the problem in the framework of reduced MHD.
In this respect, we depart from the work of Ref. 12, where
the guide field is assumed zero.

In the following, we consider the resistive case,
described by the model

1

c2
A

@tr2
?/̂ þ û ' $r2

?/̂
! "

¼ rjjĴ jj; (2)

@tŵ þ û ' $ŵ ¼ (ĝĴ jj; (3)
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written in terms of the normalized stream function
/̂ ) c/=B0, where / is the electrostatic potential, and of the
normalized magnetic flux function ŵ ) w=B0. Here, the cur-
rent is given by Ĵ jj ) (r2

?ŵ, the velocity is û ¼ b0 * $/̂,
and the magnetic field is B̂ ¼ b0 ( b0 * $ŵ, with b0, the
unit vector of the local ambient magnetic field B0. Moreover,
we have introduced the Alfv!en velocity c2

A ) B2
0=ð4pmin0Þ

and the magnetic diffusivity ĝ ) c2g=ð4pÞ. The symbol jj
refers to the parallel component with respect to the total
magnetic field, and ? refers to the components perpendicular
to the local ambient field. Their exact expression depends on
the context and they will be later specified in the case of slab
and cylindrical geometry. Note that in Eqs. (2) and (3),
lengths and times still appear in dimensional units.

In the following, we first derive the scaling of fast recon-
nection in a general large aspect ratio slab (Sec. II). Then,
we apply the result to the sawtooth problem, by evaluating
whether the sawtooth crash can result from the instability of
the current sheet generated by a primary m¼ 1 mode in a
cylindrical tokamak (Sec. III). In particular, we compare our
conclusions with the existing numerical results (Sec. III B),
and we analyze the transition to the non-collisional regime.
We finally point out the difference with other works on fast
reconnection, and we outline possible future work (Sec. IV).
The complementary material is given in the appendixes, with
brief reviews of the notion of “fast” in reconnection literature
(Appendix A), of numerical results and experimental obser-
vation of secondary reconnection (Appendix B), and of the
asymptotic matching technique for stability calculations
(Appendix C).

Before proceeding with Sec. II, we must point out that
all the following calculations and results must be considered
as an asymptotic analysis in terms of dimensionless parame-
ters such as the normalized resistivity or its inverse (the
Lundquist number), which will be considered arbitrary small
(large) and the normalized electron skin depth. All quantities
not depending on these parameters, such as certain geometri-
cal factors like the tokamak aspect ratio, are assumed of
order unity. Quantities of order unity will not be carried
along in the calculations. Moreover, if a certain process
occurs on a longer time scale (in the asymptotic sense) than
another one, it will be considered as stationary for the pur-
pose of computing the dominant behavior of the second one.
Likewise, if a process has a characteristic length which is
much smaller, in the asymptotic sense, than the scale length
of the structure in which it is developed, it is reasonable to
carry out a local analysis within a simplified geometry, much
like what one would do in WKB theory.

Finally, we draw the attention of the reader to the fact
that the secondary reconnecting instability we refer to in this
paper is a standard tearing-type instability whose asymptotic
scaling results to be compatible with experimentally
observed disruptions in tokamaks because of geometrical
rescaling arguments related to the current sheet aspect ratio:
it is thus “fast” enough to possibly account for measurements
but it is not necessarily Alfv!enic, although we will show that
its growth rate can attain the ideal regime as electron-inertia
effects are taken into account. We refer the reader to
Appendixes A and B for a summary on different examples of

fast and nonlinear reconnection models frequently encoun-
tered in the literature.

II. SCALING OF THE MAXIMUM RECONNECTION
RATE

Labeling with “eq” the equilibrium quantities and leav-
ing the perturbations unlabeled, we start by linearizing Eqs.
(2) and (3) around an equilibrium with /̂eq ¼ 0 (no flow)

1

c2
A

@tr2
?/̂ ¼ rkeqĴk þrkĴkeq; (4)

@tŵ þrkeq/̂ ¼ (ĝĴ jj; (5)

where rk ¼ B̂ ' $.
Adopting a local Cartesian coordinate system, we indi-

cate with x the coordinate perpendicular to the sheet, y the
direction of the transverse magnetic field Bcs, and z the direc-
tion of the ambient field B0. Moreover, for the sake of simplic-
ity, one can assume a symmetric current distribution, such that
Bcs¼ 0 at x¼ 0 and two dimensional perturbations such that
@z ¼ 0.

Using (1), in the neighborhood of x¼ 0, the parallel gra-
dient operator takes the form

rjjeq !
B0cs 0ð Þ

B0

# $
kx ! kx

L0

# $
: (6)

The stability analysis of Eqs. (4) and (5) can be carried
out with an asymptotic matching technique. A review of this
known technique is given in Appendix C. In the following,
instead, we directly work out the scaling of the growth rate c
and of the inner reconnecting layer width d in both the tear-
ing (labeled as “T”) and internal kink (labeled as “K”)
regimes. We recall that these regimes are identified by the

conditions D0d < 1 and D0d > 1, respectively, where D0 is
the usual tearing mode stability parameter.13 The scaling can
be obtained, up to numerical constants, without carrying out
the detailed asymptotic matching calculations, by taking
x ! d, so that rjjeq ! ðkd=L0Þ. Moreover, using the fact that

k$ d(1; @x ! d(1 and the estimate /̂
00
! /̂=d2, we obtain

the following heuristic balance relations, respectively, from
Eq. (4) (l.h.s. and first r.h.s. term) and from Eq. (5)

1

c2
A

c

d2
/̂ ! kd

L0
@2

x ŵ; cŵ ! kd
L0

/̂ ! ĝ@2
x ŵ: (7)

These can be now specialized by estimating the per-

turbed current density respectively as @2
x ŵ ! ŵ=d2

K for the

internal-kink (large-D0 regime) and as @2
x ŵ ! ŵD0=dT for the

tearing mode (small-D0, constant-w regime).
Introducing the macroscopic Alfv!en time s0 ) L0=cA

and the Lundquist number referred to the macroscopic scales
S0 ) L0cA=ĝ, the following scalings are obtained:

cTs0 ! S
(3

5

0 kL0ð Þ
2
5 D0L0ð Þ

4
5; (8)

dT

L0
! S

(2
5

0 kL0ð Þ(
2
5 D0L0ð Þ

1
5; (9)
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cKs0 ! S
(1

3

0 kL0ð Þ
2
3; (10)

dK

L0
! S

(1
3

0 kL0ð Þ(
1
3: (11)

Note that these scalings do not depend explicitly on the
current sheet thickness a. However, in the tearing regime,
they do depend implicitly on a via D0, which also brings in
an additional dependence on the wavenumber. If the aspect
ratio L/a is sufficiently large so that many wave-numbers are
excited, a fastest growing mode exists13–16 at the wavenum-
ber kMðS0Þ corresponding to the transition between the tear-
ing and the internal kink regimes. This transition occurs
when D0d ’ 1.

In order to see this, one has to specify the dependence of
D0 on a and k. Here, we adopt the expression obtained for the
Harris17 pinch for small ka, that is, well above the tearing
instability threshold

D0 ! 1

ka2
: (12)

Note that the dependence !1=k of D0 for small k is fairly
common and that, in any case, what follows can be easily
generalized to a different10 power-law dependence.

Using Eq. (12) in Eqs. (9) and (11), we obtain

kML0 ! S
(1

4

0

L0

a

# $3
2

; (13)

cMs0 ! S
(1

2
0

L0

a

# $
; (14)

dM

L0
! S

(1
4

0

L0

a

# $(1
2

: (15)

As indicated in the Introduction, the above results are of
practical interest only if the underlying dynamics occurs at a
rate lower than the estimate (14).

When the current sheet is the result of a large-D0 primary
instability of a quiescent plasma, the time scale of its dynam-
ics can be obtained from (10) by taking k ! L(1

0 . This gives
cIs0 ! S(1=3

0 . The corresponding layer width is an estimate
of the current sheet width, a ! dI ! L0S(1=3

0 . Moreover, as
the system enters the nonlinear phase, the current density in
the sheet is of the order of the equilibrium one and its mag-
netic field can be estimated as in Eq. (1). Henceforth, a full
description of the magnetic structure would require a non-
linear treatment of the type carried out in Refs. 24 and 25.
However, in the following, it is enough to assume that a cur-
rent sheet centered on the (primary) X-point is produced,
without further details on the precise form of the nonlinear
structure. The existence of such a current sheet is indeed
shown in Refs. 24 and 25, and observed in several numerical
studies. In order to analyze the instabilities of such a struc-
ture, we further conjecture that in this early nonlinear phase
the current sheet width still scales like the linear layer width
of the primary instability. Any other hypothesis would
require additional explanation. Finally, we assume that the
(primary) nonlinear structure produced at the end of the

primary instability phase evolves sufficiently slowly that it
can be considered as stationary for the purpose of evaluating
the secondary instability growth rate, a condition that can be
verified a posteriori. As a reference evolution rate of this pri-
mary nonlinear structure, we can assume the linear growth
rate of the primary instability. If anything, the evolution rate
of the nonlinear structure issued from a resistive instability is
usually found slower.

Using this information, one can estimate the maximum
growth rate of the secondary instability from (14)

cMs0 ! S
(1

6

0 ; (16)

which is clearly higher than the primary instability growth
rate. One concludes that the current sheet produced when a
high D0 primary instability enters the nonlinear phase
becomes quickly unstable, as soon as the primary current
sheet becomes sufficiently thin. An application of this mech-
anism to the sawtooth crash will be given in Sec. III.

More generally, current sheets occur as magnetic flux
tubes are stretched and twisted by plasma advection. In an
ideal plasma, this mechanism produces thinner and thinner
current sheets. In a turbulent plasma with comparable kinetic
and magnetic energy, the characteristic time is the Alfv!en
time s0. Therefore, a current sheet will break up when its
instability rate exceeds s(1

0 . From (14), one then deduces
that the current sheet thickness must be of the order of

a

L0
! S

(1
2

0 : (17)

Note that for L0 ! L this scaling is the same as the com-
monly quoted Sweet-Parker thickness. However, the analogy
appears only superficial. This thickness has been obtained
here as the necessary condition for the break-up of a sheet
formed by Alfv!enic motion rather than as the result of a
steady reconnection process. Eq. (17) also represents the
modified threshold aspect ratio for the trigger to the resistive
“ideal” tearing mode in the quasi-ideal limit, as it is meant
in Refs. 6 and 10, once the Alfv!en time referred to the cur-
rent sheet, scs, is rescaled to the macroscopic one according
to scs ¼ ðaB0Þ=ðL0BcsÞs0, while assuming (1).

III. SECONDARY FAST RECONNECTION AT THE
TOKAMAK n5m51 RESONANT SURFACE

We now apply the above results to the m ¼ n ¼ 1 internal
kink (IK) instability in a large aspect ratio tokamak. The IK
instability is considered an element of the sawtooth cycle,18 an
almost periodic oscillation of plasma temperature character-
ized by a slow growth and a fast collapse. In the framework of
resistive MHD, the IK instability is generally considered too
slow to account for the observed fast sawtooth collapse, espe-
cially in weakly collisional plasmas,19 so that noncollisional
effects are called in to explain observations.20–22

Here, we take a different approach. We consider a suffi-
ciently resistive plasma, so that the IK can be treated with
Eqs. (4) and (5), and we explore whether a secondary insta-
bility, possibly in the collisionless regime, can be fast
enough to explain observations.
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A. Primary internal-kink resistive mode

For the sake of clarity, in this subsection, we review the
key elements of the internal kink theory.

We consider a large aspect ratio tokamak in the periodic
cylindrical approximation for which the poloidal equilibrium
magnetic field B0

h is much smaller than the toroidal one,
herewith identified by B0. We adopt a set of cylindrical coor-
dinates (r; h;u) for the radial, poloidal, and axial directions,
respectively, with periodicity in h and u. We also recall the
expression of the safety factor

q rð Þ )
rB0

RB0
h rð Þ

; (18)

where R is the major radius, the cylinder length being 2pR.
Note that by allowing q(r) to have both positive and negative
signs, one can account for both a parallel and an anti-parallel
equilibrium current. Looking for perturbations of the form

ŵ; Ĵ ! cosðnuþ mhÞ, and /̂ ! sinðnuþ mhÞ, where m and
n can have both signs, replacing the time derivative @t with
the growth rate c, and using the corresponding cylindrical
expression for the parallel gradient operator rk ¼ ð1=RÞ
ð@=@uÞ þ û * $ŵ ' $, we can write the outer equations of
the boundary layer problem as

0 ¼ nþ m

q rð Þ

# $
m2

r2
ŵ ( 1

r

@

@r
r
@

@r
ŵ

# $% &

þm

r
ŵ
@

@r

1

r

@

@r

r2

q rð Þ

 !" #

(19)

and

cŵ þ 1

R
nþ m

q rð Þ

# $
/̂ ¼ 0: (20)

One can see that, for values of m such that m2 ¼ 1, and
assuming that a rational surface exists in the plasma at a
position r1 such that jqðr1Þj ¼ j1=nj for some n, an exact
solution of the above equations with vanishing boundary
conditions exists. For both m ¼ 61, and up to an amplitude,
this solution can be written as

ŵ ¼ r nþ m

q rð Þ

% &
; /̂ ¼ (crR (21)

inside the r¼ r1 surface, and ŵ ¼ 0; /̂ ¼ 0 outside the r¼ r1

surface. The discontinuity at r¼ r1 together with the fact that ŵ
is zero at that position implies that D0 ¼1 for these modes.

The case jnj ¼ 1 is of interest for the sawtooth problem
in a tokamak.

In the neighborhood of the point r1, which is contained in
the inner reconnecting layer of width d, we can approximate

rjjeq ’ m
ŝ1

Rq1

r1 ( r

r1
! d

Lsr1
; Ls )

''''
q1R

ŝ1

''''; (22)

where Ls is the shear length in tokamak geometry, and ŝ1

¼ r1q0ðr1Þ=q1 is the magnetic shear at r¼ r1, henceforth
assumed as positive.

By carrying out the same balance as in the slab, large-D0

case, one obtains

cIs0 ! S
(1

3
R

r1

Rŝ1

# $(2
3

;
dI

R
! S

(1
3

R

r1

Rŝ1

# $(1
3

; (23)

where in this instance the Alfv!en time and the Lundquist num-
ber are defined using R as a normalization length. The above
results are identical to the slab case by taking L0 ¼ R=ŝ1 ;
k ¼ r(1

1 and accounting for the change in the normalization
length.

B. Secondary instability and the sawtooth crash time
scale

As discussed in Sec. III A, at the end of the linear phase,
and entering the nonlinear regime, a current sheet develops
around the X-point, having the form of a helical ribbon of
helicity (1, 1) and radius r1. As a first approximation, we
treat the problem as a planar sheet of width dI, given by the
inner layer width of the primary mode m ¼ n ¼ 1. The
neglect of the ribbon curvature, which is of the order of 1=r1,
is justified as in leading order WKB theory when the wave-
length of interest is much smaller than the ribbon extension,
a fact that can be verified a posteriori. Since at the end of the
linear phase the perturbed current density is comparable to
the equilibrium one,22,23 the magnitude of the transverse
magnetic field in the current sheet, BI

cs;h, can be estimated as

BI
cs;h

B0
’ x

R
; for x + dI: (24)

As the IK instability enters the nonlinear phase, the
extension of the sheet, L, would grow from a few times dI, to
a fraction of the circumference of radius r1 (e.g., Waelbroeck
estimates25 it to be !2pr1=3), so we assume dI < L < r1. As
the extension grows, higher and higher wave-numbers are
progressively destabilized, with the smallest unstable wave-
vector given by kmin ) 2p=L.

We now adapt the results of Sec. II to the present con-
text. In the following, we call dII the layer width of the sec-
ondary instability and cII the corresponding growth rate. For
the regime tearing of the secondary mode, we obtain

c Tð Þ
II s0 ! S

(3
5

R kRð Þ
2
5 D0Rð Þ

4
5; (25)

d Tð Þ
II

R
! S

(2
5

R kRð Þ(
2
5 D0Rð Þ

1
5: (26)

By estimating D0 as in (12), with a replaced by the IK
layer width dI, one obtains

c Tð Þ
II s0 ! S

( 1
15

R kRð Þ(
2
5

r1

ŝ1R

# $( 8
15

; (27)

d Tð Þ
II

R
! S

( 4
15

R kRð Þ(
3
5

r1

ŝ1R

# $( 2
15

: (28)

The fastest growing mode has a wavenumber
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k IIð Þ
M R ! S

1
4
R

r1

ŝ1R

# $(1
2

; (29)

which belongs to the available range as L becomes compara-
ble to r1.

The corresponding maximum growth rate is

c Mð Þ
II s0 ! S

(1
6

R

r1

ŝ1R

# $(1
3

: (30)

By integrating the reduced-MHD (RMHD) equations
in cylindrical geometry, Yu et al.26 have found that the cur-
rent layer generated by the nonlinear growth of a primary
m=n ¼ 1=1 magnetic island becomes strongly unstable to
secondary tearing modes.

According to our calculation (30), in the secondary
island regime, a weak positive dependence of the reconnec-
tion time on SR, !S1=6

R , is expected. This appears consistent
with the dependence shown in Fig. 5 of Yu et al.26 (black
bullets).

In many middle-size tokamaks, the rate given by Eq.
(30) is probably fast enough to account for the observed evo-
lution of the sawtooth crash. To assess the validity of the
resistive model, one has to compare the predicted rate with
the electron collision rate !e. Using the fact that ĝ ! !ed2

e ,
where de is the electron skin depth, and ignoring geometrical
factors, one can consider two cases.

For the validity of Eq. (23) (primary instability), one
requires cI < !e, which can be recast as

s0!e >
de

R
: (31)

On the other hand, for the validity of Eq. (30) (second-
ary instability), one requires cII < !e, which gives the more
restrictive condition

s0!e >
de

R

# $2
5

: (32)

In the intermediate regime

de

R
< s0!e <

de

R

# $2
5

; (33)

the primary instability can be treated with resistive MHD,
while a non-collisional model is required to treat the second-
ary instability correctly.

Finally, when condition (31) is also violated, the growth
rate of the primary instability also depends on non-
collisional physics.21–23

The three collisionality regimes are summarized in
Fig. 1. Here, the green line indicates the normalised collision
frequency as a function of the Lundquist number. The red
lines represent the growth rates in the resistive regime. When
they are below the green line, the growth rate is smaller than
the collision frequency and the resistive theory holds. One
can see from the figure that for S < ðL0=deÞ12=5 both the pri-
mary and the secondary instability can be treated with

resistive MHD. On the other hand, when S > ðL0=deÞ3, none
of the growth rates is less than the collision frequency, and
noncollisional effects must be taken into account. Finally, in
the intermediate regime ðL0=deÞ12=5 < S < ðL0=deÞ3, the pri-
mary instability is resistive, but noncollisional effects are
necessary to treat the secondary instability, whose growth
rate is given by the mauve line.

The effect of non-collisional physics can be evaluated
by considering the model with electron inertia22 and adapt-
ing the estimates of Sec. II (cf. Eqs. (C10)–(C13) in
Appendix C). Then, by using again D0 ! 1=ka2, and R ! L0,
Eqs. (8)–(11) are replaced by

cTs0 !
d3

e L0

a4

# $
kL0ð Þ(1; (34)

dT

L0
! d2

e

a2

# $
kL0ð Þ(1; (35)

cKs0 !
de

L0

# $
kL0ð Þ; (36)

dK

L0
! de

L0
: (37)

The growth rate and the layer width as a function of the
wavenumber are sketched in the log-log plot in Fig. 2 for the
collisional (Eqs. (8)–(11) with D0 given by (12)) and non-
collisional regime (Eqs. (34)–(37)).

In the intermediate regime, the situation with the two
(collisional and non-collisional) estimates is summarized in
Fig. 3.

One can see that, apart from a range at the largest wave-
numbers, the growth rate of the secondary instability is
determined by non-collisional physics. In particular, the
peak growth rate, occurring at the transition between (34)
and (36), scales like

cMs0 !
d2

e

a2
: (38)

FIG. 1. Sketch in log-log scale of the maximum growth rate of the second-
ary instability as a function of the Lundquist number in the collisional (red)
and in the non-collisional (mauve) regime. Also shown are the growth rate
of the primary instability (also red) and the collision frequency (green).
Here, L0 ! L has been specified.
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As one approaches the right boundary of the intermediate
regime, the thickness of the primary layer decreases, we

recall, as !L0S(1=3. Thus, the maximum growth rate of the

secondary instability grows again as !S2=3. This behavior is
also shown in Fig. 1 (mauve line ðcIIs0Þde

). At the right

boundary of this regime, S! ðL0=deÞ3 and a! de. Then, the
current sheet produced by the primary instability approaches
the electron skin depth, while the maximum growth rate of the
secondary instability approaches Alfv!enic values.

The growth rate (38) is fast enough to account for the
observed sawtooth crash time in a machine like JET.19 These
observations call for a non-collisional theory since the
observed rates are faster than the collision frequency. In this
respect, referring again to Fig. 1, we notice that our approach
brings the boundary, beyond which the collisionless effects
matter, down to S ! ðR=deÞ12=5. This value of the Lundquist
number is much more easily achieved in large tokamaks than
S ! ðR=deÞ3 at which the primary instability enters the colli-
sionless regime (upper boundary of the intermediate regime).
One can also remark that the reconnection rate has a mini-
mum that scales like !ðde=L0Þ2=5, in Alfv!en units, in all col-
lisionality regimes.

IV. DISCUSSION AND CONCLUSIONS

The results of Yu et al.26 have also been interpreted27 in
terms of the plasmoid instability.3 However, it appears that
the literature on the plasmoid instability does not take into
account the rescaling of the current sheet magnetic field with
respect to its macroscopic, reference value (Eq. (1)) and,
under these hypotheses, the assumption that the current layer
aspect ratio scales "a-la Sweet-Parker, which is at the basis of
the plasmoid instability scaling,3,6,10,34 becomes question-
able.6 We recall that the rescaling (1) is necessary to estimate
correctly the size of the current sheet magnetic field at the
end of the linear phase of a primary instability such as the
m ¼ n ¼ 1 mode in the sawtooth phenomenon.

By ignoring such rescaling, the secondary instability is
faster, such that the maximum growth rate given in Eq. (14)
would be replaced by6

cMs0 ! S
(1

2

0

L0

a

# $3
2

: (39)

By assuming that the width of the current sheet resulting
from the primary instability scales like !S(1=3

R , as in this
work, together with estimate (39), one would conclude that
the maximum growth rate scales like the ideal tearing
growth rate cIIs0 ! Oð1Þ, independent of resistivity.

These assumptions are at the root of the work of Pucci
and Velli as a criterion for an ideal tearing reconnection rate
in a purely resistive model.6,8,9

If on the other hand one assumed a narrower current
layer scaling "a-la Sweet-Parker, a ! L0S(1=2

0 , and at the
same time one ignored the rescaling (Eq. (1)), thereby using
again estimate (39), one would end up with a faster-than
Alfv!enic estimate of the maximum growth rate !S1=4

0 , which
gives, for L0 ¼ L, the plasmoid instability scaling.28

Therefore, in the scenario where the current sheet is pro-
duced by a primary instability, as in the sawtooth case, we
consider the results based on the plasmoid instability unlikely,
since we have shown that the current sheet becomes sufficiently

FIG. 2. Growth rate, layer width, and D0 as a function of the wavenumber
for the collisional (a) and the non-collisional (b) theory. L0 ! L has been
specified.

FIG. 3. The scalings of the resistive (label “res”) and of the purely inertia-
driven (label “de”) regimes at L¼L0 and for ðL=deÞ12=5 < S < ðL=deÞ3 are,
respectively, given by (10) and (36) for the primary growth rates (cIs0) and by
(8) and (34) for the growth rates of the secondary tearing modes (cTs0).
Similarly, (11), (37) and (9), (35) respectively give the inner layer widths dI=L
and dT=L of the secondary reconnecting modes. L0 ! L has been specified.
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unstable to secondary sub-Alfv!enic modes at an earlier
stage in its development and it would therefore likely break
up before becoming sharper, in current concentration, or
thinner, in width, than the estimates of Eqs. (1) and (11),
respectively.

In summary, in this work, we have shown that a current
sheet generated by a primary instability, such as the internal
kink mode, becomes sufficiently unstable at an early stage in
its nonlinear development.

When applied to the context of the sawtooth phenome-
non, the analysis of the secondary instability reveals that the
sawtooth crash due to reconnection proceeds at a faster rate
than previous estimates based on the primary m ¼ n ¼ 1
internal kink mode.22 In the case of a purely resistive model,
the reconnection rate depends weakly on the Lundquist num-
ber, !S(1=6, and it appears in agreement with the results of
numerical simulations at a large Lundquist number.26 Also,
the value of the Lundquist number at which collisionless
effects become important is found to be substantially lower
than the estimate based on the primary instability only. This
broadens the range of tokamaks to which collisionless effects
should be taken into account in the analysis of the sawtooth
phenomenon. Finally, near-Alfv!enic reconnection rates can
be achieved by secondary instabilities when collisionless
effects become important also for the primary instability.

The scope of this work is to outline a possible scenario
for fast reconnection, and in this respect, scaling estimates
are useful, and sufficient for a first investigation.

Detailed stability analysis of current sheets, taking into
account the actual geometry, such as the m¼ 1 ribbon, is a
possibility to obtain more precise predictions about the maxi-
mum growth rate, the associated wavenumber, and the insta-
bility threshold. This might lead to an explanation of the
Lundquist number threshold observed in numerical simula-
tions26 and of the number of observed secondary islands.

The effect of flows also merits an investigation. In this
respect, one notes that flows are small near the primary instabil-
ity X-point, which is a stagnation point, but may be significant
far from it, potentially leading to stabilizing effects on the tear-
ing mode9,29–31 and/or to additional instabilities such as Kelvin-
Helmholtz’s.32–34 In particular, according to Bulanov et al.30

and Syrovatskii,31 flow stabilization would occur if its deriva-
tive along the reconnection line would roughly exceed the insta-
bility growth rate. Our estimates indicate that the former scales
like S(1=3

0 at the end of the linear phase of the primary instabil-
ity, whereas the latter scales, as we have seen, at least as S(1=6

0 .
Thus, the criterion is not met and the flow can be neglected.

Finally, the stability analysis carried out in this work is
based on a magnetic configuration with the current aligned
to a main magnetic field. Relaxing this hypothesis and allow-
ing for pressure gradients would open further possibilities.
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APPENDIX A: NOTIONS OF FAST RECONNECTION

For the sake of clarity, let us briefly review the use of
the adjective “fast” in the context of the reconnection litera-
ture, since its meaning has been changing over the years and
in different contexts.

Until about the 1990s, especially in tokamak-related litera-
ture, “fast” refers to a reconnection rate that is faster than what
is expected by the resistive tearing mode13 and Sweet-
Parker35,36 scalings, which are too slow to account for experi-
mental evidence.19 From the theoretical viewpoint, “fast” refers
to effects beyond resistive MHD, such as electron inertia,20–22

that allow a finite reconnection rate even when the resistivity is
negligibly small. This is the meaning adopted in this work. We
also note that the word “collisionless” has been frequently used
for this latter purpose, too, but while in origin it meant a recon-
nection triggered by (electron) inertia effects replacing resistiv-
ity (see, e.g., Refs. 21, 22, 37, and 58), it has later been used to
generically underline the role of collisionless effects, in particu-
lar, the Hall-term, in enhancing resistivity-driven reconnection
rates (see, e.g., Refs. 39–41). This change of terminology
relates to that for the notion of fast reconnection.

In more recent literature, the word “fast” seems to have
taken the more restrictive meaning of reconnection at ideal
time scales (Alfv!enic or even super-Alfv!enic), essentially
after the whistler-mediated (or Hall-mediated) reconnection
model,38,39 displaying a reconnection rate weakly dependent
on the non-ideal parameters, has been recognized as the par-
adigm for magnetospheric reconnection.40–42

We recall however that the Hall-term is negligible in the
strong guide field, slab geometry approximation pertinent to
tokamaks and considered here, where it is related at most to
ion-sound Larmor radius effects (see, e.g., Refs. 10 and
43–45), well known to increase the “cold” resistive recon-
nection rate21 but without allowing the transition to the
whistler-mediated regime.

Starting from the 2000s, different models for this more
recent meaning of “fast” reconnection have been then consid-
ered as relevant to secondary reconnection events: the plas-
moid-induced, fractal reconnection model,1 which the more
recent plasmoid instability3 is reminiscent of, and then the
“ideal” tearing model.6 As discussed in the recent review 11,
however, all of them essentially consist of tearing-type insta-
bilities that generate “plasmoids,” i.e., magnetic islands, with
different growth rate scalings that depend on the scalings of
the current sheet aspect ratio. In this regard, it is in Ref. 6 that
a distinction was first made between reconnecting modes clas-
sified as “slow” (i.e., ideally stable), “fast” (i.e., (quasi-)ide-
ally unstable), and “violently unstable” (i.e., with diverging
growth rates while approaching the ideal limit).

APPENDIX B: BRIEF REVIEW OF NUMERICAL
RESULTS AND EXPERIMENTAL OBSERVATIONS
OF SECONDARY RECONNECTING INSTABILITIES

As the notion of secondary reconnection requires the
primary reconnection event to be treated as relatively
“stationary” with respect to the secondary growth rate
(s(1

rec;I $ cII), it is natural that such an occurrence has been
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first evidenced as generation of “plasmoids” on almost sta-
tionary current-sheets that were reconnecting "a la Sweet-
Parker48,49 or developing between two coalescing magnetic
islands50 (see also Ref. 14). For long time, secondary recon-
nection has been thus refereed to primary Sweet-Parker-like
reconnection rates. It is in this sense, for example, that radio
pulsations measured in solar flares have been related to the
dynamics of magnetic islands secondarily generated on a
quasi-stationary reconnecting current sheet.51

On the other hand, it was known from the theoretical
works by Syrovatskii52 (see also Ref. 31 and references
therein) that current sheets could form from the collapse of
an X-point into the so-called two-Y-point configuration.
Besides the coalescence instability problem,46,47 where the
collapse of the X-point in-between two coalescing flux ropes
is driven by the mutual attraction of the two current patches,
the double-Y-point configuration could naturally evolve from
X-points generated by primary tearing modes. Evidence of
this was provided, for example, in the numerical studies of
the nonlinear tearing mode22,23,58 (see, in particular, Fig. 13
of Ref. 23), whose dynamics had been already shown by
analysis to imply the formation of a current sheet,24 or in
studies dedicated to the investigation of the X-point col-
lapse.53 The computational resources available a few years
later allowed us to evidence the occurrence of secondary
instabilities: fluid-type instabilities were shown to affect the
current sheet evolution in a primary collisionless internal
kink mode32 or in large wave-length EMHD reconnection,54

in agreement33 with the importance of the electron Kelvin-
Helmholtz mode for the instability of thin current layers in
collisionless regimes.55 Then, in resistive regimes, also sec-
ondary reconnecting instabilities were shown to occur: it is
essentially after Refs. 2, 56, and 57, which showed an
increase of the reconnection rate due to the formation of
plasmoids in the current sheet generated by the collapse of
magnetic island X-points, that the secondary reconnection
rate started being compared to primary tearing-type modes,
too. It is also worth noticing that, looking retrospectively,
Aydemir’s early numerical investigation of the internal kink
in cylindrical geometry58 contains elements of secondary
instabilities in a collision-less regime, although at the time
different interpretations were sought for the observed recon-
nection rate increase.

While this seems to summarize the main stream of
plasma literature on secondary reconnection until about the
first half decade of the 2000s, we note that more specifically
astrophysic-oriented works had already evidenced1,59 how
fast, secondary tearing modes could develop on the current
sheet generated during the nonlinear evolution of a primary
tearing (in turn induced, in the case studied in Ref. 59, by a
shock-wave trespassing a current sheet). Some specific
words are due, in particular, to the pioneering works by
Shibata and Tanuma, who, between the end of 1990s and
begin of 2000s, devised the plasmoid-induced reconnec-
tion1,60 and the fractal reconnection1 models to account for
nonlinear fast reconnection processes: the former highlights
the role of plasmoids, generated by primary reconnection
events and ejected along the current sheet, in enhancing the
inflow and thus the reconnection rate at X-points because of

mass conservation between the inflow and outflow. The latter
considers how this may contribute to a cascade, fractal-like pro-
cess, in which a sequence of increasingly faster tearing modes
develop each on the shoulder of the previous one, after a suffi-
ciently large aspect ratio current sheet has formed from the X-
point collapse of each tearing. A re-scaling argument analogous
to the one discussed here and the assumption of a Sweet-Parker
scaling for each current sheet aspect ratio are two ingredients
of this model, in which the growth rate of a secondary tearing
was probably first compared to a previous one.

The interpretation of the current sheet generated by the
X-point collapse as a Sweet-Parker state, also assumed in
Refs. 2 and 53, led a few years later to the formalization of
the plasmoid instability,3 which thereafter became indicative
of a specific positive scaling of c with S in the strong guide
field, slab geometry approximation (for a brief review of the
previous usage of the term “plasmoid” in reconnection, espe-
cially in astrophysics, see, e.g., Ref. 62). As Tajima and
Shibata earlier pointed out,28 however, cs0 ! S1=4

0 and
kML ! S3=8

0 are the scalings of the most unstable tearing
mode in a Sweet-Parker current sheet when L0 ¼ L, fact
which highlights the tearing nature of the plasmoid instabil-
ity. After Ref. 3, many numerical results, starting from Refs.
16 and 61, have been interpreted in terms of the plasmoid
instability scaling, including27 the recent results by Yu and
co-workers26 on the nonlinear evolution of an internal kink
mode during the sawtooth cycle in a purely resistive regime.

Alternative interpretations have been nevertheless pro-
vided for the almost ideal reconnection rate s(1

recs0 ! Sa
0 with

a ’ 0, often numerically measured in correspondence of the
generation of secondary islands (see, e.g., Refs. 8–11, 27,
and 63–70), which are based on 3D effects, on reconnection
mechanisms of kinetic nature and/or on two-fluid effects, or
on the linear or quasi-linear analysis of secondary reconnect-
ing modes. Some of the latter have been sought following
the recent criticism to the Sweet-Parker scaling assump-
tion—see in this regard the “ideal”-tearing based mod-
els,6–11 which first have raised it in evidencing a threshold
aspect ratio of the current sheet to ideal reconnection rates
that is smaller than L=a ! S1=2, and Refs. 69 and 70.

In particular, numerical evidence of two “ideal” tearing
modes, developing in sequence, one secondary to the other,
has been first provided in Ref. 8. In Ref. 9, this mechanism
has been shown to iterate in a cascade process akin to the frac-
tal reconnection model (see also Ref. 11 for a comparison of
the two), in which the stabilizing role of flows becomes pro-
gressively more important. The assumption Bcs ! B0, which
implies Jcs , J0 when L0=a, 1, seems to be verified9,11 in
these models, of which it is a key ingredient. As we have
already pointed out, this is not the case for the current sheet
generated by primary “non-ideal” resistive tearing modes, for
which Jcs is disrupted by secondary instabilities before it over-
takes too much the macroscopic current sheet J0. Therefore,
the estimation provided in Ref. 10 to account for the possible
onset of a secondary “ideal” regime by starting from a pri-
mary “non-ideal” tearing mode or for the secondary reconnec-
tion rate increase, sometimes evidenced in simulations as the
explosive reconnection regime,64,66 should be corrected in the
light of Eqs. (8)–(11), (C10)–(C13).
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Regardless of the assumptions implying different scaling
estimations, the reconnecting instabilities leading to second-
ary magnetic island formation can be essentially treated as
tearing-type modes (see, e.g., Ref. 11), as long as a WKB-
type approach makes it possible to apply a linear instability
analysis on a relatively slowly evolving current sheet.

Secondary magnetic islands generated next to X-points
of primary reconnecting modes have been observed also in
numerical simulations of turbulent reconnection71 and have
been evidenced by in situ satellite measurements in the mag-
netosphere.72,73 The formation of secondary islands, due to
the nonlinear reconnection of magnetic lines on different
rational surfaces, has also been pointed out in early numeri-
cal studies of the double-tearing mode in the collision-less
regime,74 and, more recently, the reconnection rate has been
observed to abruptly increase during the nonlinear stage of a
primary double-tearing mode up to almost ideal scalings75–77

In Ref. 77, in particular, a geometrical threshold to the onset
of secondary linear modes, growing almost independent of S,
has been identified in terms of the 2D structure that the pri-
mary magnetic islands achieve during the nonlinear evolu-
tion of the initial double-tearing.

A cascade of reconnecting instabilities from an initial
reconnecting mode at macroscopic scales down to reconnection
below the ion-skin depth scale has been evidenced by Moser
and Bellan in laboratory experiments of a magnetized current
carrying plasma jet.81 More recently, plasmoid generation due
to a secondary resistive tearing on a current sheet generated by
driven, quasi-steady reconnection, has been measured in experi-
ments with the MRX device.78 Thanks to the recent improve-
ments of the diagnostic systems, and, in particular, of the soft
X-ray and electron cyclotron emission imaging, also the growth
of secondary reconnecting instabilities during the sawtooth phe-
nomenon in tokamaks (itself known since the first observations
reported in Ref. 18) has been experimentally measured.
Examples are provided by Ref. 79 for the HT-7 device and by
Ref. 80 for the ASDEX-Upgrade tokamak.

APPENDIX C: SOME ELEMENTS OF THE STABILITY
ANALYSIS

In this appendix, we review the stability analysis of Eqs.
(4) and (5) with the asymptotic matching technique. We give
only the key elements as the procedure is already known. In
the region around the boundary layer at x¼ 0, such that
x$ L0, called the inner region, we can approximate the par-
allel derivative operator as in Eq. (6)

rjjeq -
B0cs 0ð Þ

B0

# $
x@y ¼

x

L0

# $
@y; (C1)

where the shear length Ls ) B0=B0csð0Þ can be identified with
the generic macroscopic scale length L0 for our purposes.

Consider then perturbations of the form ŵ ! ect cosðkyÞ
and /̂ ! ectsinðkyÞ. Assume also a strong radial variation
across the boundary layer, such that in the inner region one
can take @x , k, and keep only the leading terms. Then,
Eqs. (4) and (5) become

1

c2
A

c/̂
00
¼ k

x

L0

# $
ŵ
00
; (C2)

c ŵ ( d2
e ŵ
00

! "
þ k

x

L0

# $
/̂ ¼ ĝŵ

00
: (C3)

Here, the electron inertia term proportional to the square of
the electron skin depth de has been introduced as a first step
to include noncollisional effects.

By first defining a length de such that d2
e ) d2

e þ ĝ=c,
and then by introducing the parameter Q ) cL0=ðkCAdeÞ,
and the length dL ) Q1=2de, one can recast Eqs. (C2) and
(C3) in the form

/̂R
00 ¼ 1

Q
xRŵR

00; (C4)

ŵR þ xR/̂R ¼
1

Q
ŵR
00; (C5)

where xR ¼ x=dL; /RðxRÞ ¼ kdL/ðdLxRÞ=ðL0cÞ, and wRðxRÞ
¼ wðdLxRÞ. The parameter Q can be considered as an eigen-
value, while dL is an effective layer width, itself implicitly
dependent on the eigenvalue. In general, one can assume
dL $ L0. Thus, there exists an overlapping region dL $ x
$ L0 where both Eqs. (C2) and (C3) and the ideal MHD
equations (outer equations) are valid. Matching the expres-
sions of the solutions of these two sets of equations in the
overlapping region fixes the eigenvalue and the layer width.

The solution of Eqs. (C4) and (C5) was obtained in a
closed form, by means of an integral representation, by
Coppi et al.,82 while a detailed calculation is given in the
appendix of Ref. 83. An alternative method,84 which turns
out useful to treat more general models,21,23,85,86 is based on
Fourier transforms in the variable xR.

In the overlapping region, the leading asymptotic expan-
sions of the two functions take the form

ŵR ! w1 1þ D0

2
x

# $
(C6)

/̂R ! /1 1( 2kH

p
1

x

# $
; (C7)

where the quantity kH is a normalised version of the potential
energy variation dW arising in the energy principle.

The above relations are those pertinent to this work,
which is unstable tearing modes (D0 > 0), but stable ideal
modes (kH < 0).

By inspecting Ohm’s law (C5) in the overlapping region
xR , 1, one can see that the following relation holds:

1 ¼ (D0
kH

p
: (C8)

The eigenvalue condition of Ref. 82 rewritten in terms
of23 Q and D0 can be conveniently recast in the form

D0dL ¼ (
p
8

Q
C Q( 1ð Þ=4
( )

C Qþ 5ð Þ=4
( ) : (C9)
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From this equation, the scaling of the different D0

regimes can be immediately recovered. In particular, for
D0dL ! 0, where dL ! dT , one has to take Q! 0. In the
resistive regime, one takes de¼ 0 so that d2

e ¼ ĝ=c. One then
recovers the scaling (8) for the growth rate and the scaling
(9) for the layer width. In the opposite limit, when D0dL !1
and dL ! dK , one has to take Q! 1, to approach the pole of
the C function. The result is then the scaling (10) for the
growth rate and the scaling (11) for the layer width. Similarly,
in the collisionless regime, one takes ĝ ¼ 0; de ¼ de, and one
recovers the collisionless scaling used in the last part of this
work.

Finally, we draw the attention to the fact that the scaling
of Q can also be estimated directly from Eqs. (C4) and (C5)
without carrying out a detailed matching calculation, by tak-
ing the constant-w scaling w00R ! D0dLwR for small D0 and the
natural scaling w00R ! wR in the large D0 limit. Then, the con-
dition that all the terms of Eqs. (C4) and (C5) are balanced
requires assuming Q ! D0dL and Q ! 1 in the two respective
regimes. In this way, one makes direct contact with the colli-
sional estimates given in Sec. II.

The corresponding scaling in the collisionless regime is

cTs0 ! ðkdeÞðD0deÞ2; (C10)

dT

L0
! de

L0

# $2

D0L0ð Þ; (C11)

cKs0 ! kde; (C12)

dK

L0
! de

L0
: (C13)

This latter scaling has been used to derive the estimates
in Eqs. (34)–(37).

1K. Shibata and S. Tanuma, Earth Planets Space 53, 473 (2001).
2N. F. Loureiro, S. C. Cowley, W. D. Dorland, M. G. Haines, and A. A.
Scheckochihin, Phys. Rev. Lett. 95, 235003 (2005).

3N. F. Loureiro, A. A. Scheckochihin, and S. C. Cowley, Phys. Plasmas 14,
100703 (2007).

4W. Daughton, V. Roytershteyn, B. J. Albright, H. Karimabadi, L. Yin, and
K. J. Bowers, Phys. Rev. Lett. 103, 065004 (2009).

5D. Uzdensky, N. F. Loureiro, and A. A. Scheckochihin, Phys. Rev. Lett.
105, 235002 (2010).

6F. Pucci and M. Velli, Astrophys. J. Lett. 780, L19 (2014).
7A. Tenerani, A. F. Rappazzo, M. Velli, and F. Pucci, Astrophys. J. 801,
145 (2015).

8S. Landi, L. Del Zanna, E. Papini, F. Pucci, and M. Velli, Astrophys. J.
806, 131 (2015).

9A. Tenerani, M. Velli, A. F. Rappazzo, and F. Pucci, Astrophys. J. Lett.
813, L32 (2015).

10D. Del Sarto, F. Pucci, A. Tenerani, and M. Velli, J. Geophys. Res. 121,
1857, doi:10.1002/2015JA021975 (2016).

11A. Tenerani, M. Velli, F. Pucci, S. Landi, and A. F. Rappazzo, J. Plasma
Phys. 82, 535820501 (2016).

12P. A. Cassak and J. F. Drake, Astrophys. J. 707, L158 (2009).
13H. Furth, J. Killeen, and M. N. Rosenbluth, Phys. Fluids 6, 459 (1963).
14E. R. Priest, Rep. Prog. Phys. 48, 955 (1985).
15M. Velli and A. W. Hood, Solar Phys. 119, 107 (1989).
16A. Battacharjee, Y.-M. Huang, H. Yang, and B. N. Rogers, Phys. Plasmas

16, 112102 (2009).
17E. G. Harris, Il Nuovo Cimento 23, 115 (1962).
18S. Von Goeler, W. Stodiek, and N. Sauthoff, Phys. Rev. Lett. 33, 1201

(1974).

19A. W. Edwards, D. J. Campbell, W. W. Engelhardt, H.-U. Fahrbach, R. D.
Gill, R. S. Granetz, S. Tsuji, B. J. D. Tubbing, A. Weller, J. Wesson, and
D. Zasche, Phys. Rev. Lett. 57, 210 (1986).

20J. Wesson, Nucl. Fusion 30, 2545 (1990).
21F. Porcelli, Phys. Rev. Lett. 66, 425 (1991).
22M. Ottaviani and F. Porcelli, Phys. Rev. Lett. 71, 3802 (1993).
23M. Ottaviani and F. Porcelli, Phys. Plasmas 2, 4104 (1995).
24F. L. Waelbroeck, Phys. Fluids B 1, 2372 (1989).
25F. L. Waelbroeck, Phys. Rev. Lett. 70, 3259 (1993).
26Q. Yu, S. G€unter, and K. Lackner, Nucl. Fusion 54, 072005 (2014).
27S. G€unter, Q. Yu, K. Lackner, A. Bhattacharjee, and Y. M. Huang, Plasma

Phys. Controlled Fusion 57, 014017 (2015).
28T. Tajima and K. Shibata, Plasma Astrophysics (Addison-Wesley, 1997),

p. 229.
29D. Biskamp, Magnetic Reconnection in Plasmas (Cambridge University

Press, 2000).
30S. V. Bulanov, J. Sakai, and S. I. Syrovatskii, Sov. J. Plasma Phys. 5, 157

(1979).
31S. I. Syrovatskii, Rev. Astron. Astrophys. 19, 163 (1981).
32D. Del Sarto, F. Califano, and F. Pegoraro, Phys. Rev. Lett. 91, 235001

(2003).
33D. Del Sarto, F. Califano, and F. Pegoraro, Mod. Phys. Lett. B 20, 931

(2006).
34N. F. Loureiro, A. A. Schekochihin, and D. A. Uzdensky, Phys. Rev. E 87,

013102 (2013).
35P. A. Sweet, in Electromagnetic Phenomena in Cosmical Physics, edited

by B. Lehnert (IAU Symposium, 1958) Vol. 6, p. 123.
36E. N. Parker, J. Geophys. Res. 62, 509–520, doi:10.1029/

JZ062i004p00509 (1957).
37J. F. Drake and R. G. Kleva, Phys. Rev. Lett. 66, 1458 (1991).
38M. E. Mandt, R. E. Denton, and J. F. Drake, Geophys. Res. Lett. 21, L73,

doi:10.1029/93GL03382 (1994).
39D. Biskamp, E. Schwarz, and J. F. Drake, Phys. Rev. Lett. 75, 3850

(1995).
40M. A. Shay, J. F. Drake, B. N. Rogers, and R. E. Denton, J. Geophys.

Res.-Space 106, 3759 (2001).
41M. Hesse, J. Birn, and M. Kuznetsova, J. Geophys. Res. 106, 3721,

doi:10.1029/1999JA001002 (2001).
42J. Birn, J. F. Drake, A. Shay, B. N. Rogers, R. E. Denton, M. Hesse, M.

Kuznetsova, Z. W. Ma, A. Battacharjee, A. Otto, and L. Pritchett,
J. Geophys. Res. 106, 3715, doi:10.1029/1999JA900449 (2001).

43X. Wang and A. Battacharjee, Phys. Rev. Lett. 70, 1627 (1993).
44R. G. Kleva, J. F. Drake, and F. L. Waelbroeck, Phys. Plasmas 2, 23

(1995).
45R. Fitzpatrick and F. Porcelli, Phys. Plasmas 11, 4713 (2004); 14, 049902

(2007).
46J. M. Finn and P. K. Kaw, Phys. Fluids 20, 72 (1977).
47P. L. Pritchett and C. C. Wu, Phys. Fluids 22, 2140 (1979).
48B. U. O. Sonnerup and J.-I. Sakai, EOS Trans. Am. Geophys. Union 62,

353 (1981).
49D. Biskamp, Z. Naturforsch. 37a, 840 (1982).
50D. Biskamp, Phys. Lett. 87 A, 357 (1982).
51B. Kliem, M. Karlick!y, and A. O. Benz, Astron. Astrophys. 360, 715

(2000), available at http://aa.springer.de/papers/0360002/2300715/small.
htm.

52S. I. Syrovatskii, Sov. Phys. JETP 33, 933 (1971), available at http://jetp.
ac.ru/cgi-bin/dn/e_033_05_0933.pdf.

53B. D. Jemella, M. A. Shay, J. F. Drake, and B. N. Rogers, Phys. Rev. Lett.
91, 125002 (2003).

54D. Del Sarto, F. Califano, and F. Pegoraro, Phys. Plasmas 12, 012317
(2005).

55J. F. Drake, R. G. Kleva, and M. E. Mandt, Phys. Rev. Lett. 73, 1251
(1994).

56J. F. Drake, M. Swisdak, K. M. Schoeffler, B. N. Rogers, and S.
Kobayashi, Geophys. Res. Lett. 33, L13105, doi:10.1029/2006GL025957
(2006).

57W. Daughton, J. Scudder, and H. Karimabadi, Phys. Plasmas 13, 072101
(2006).

58A. Y. Aydemir, Phys. Fluids B 4, 3469 (1992).
59S. Tanuma, T. Yokoyama, T. Kudoh, and K. Shibata, Astrophys. J. 551,

312 (2001).
60K. Shibata, Adv. Space Res. 17, 9 (1996).
61R. Samtaney, N. F. Loureiro, D. A. Uzdensky, A. A. Schekochihin, and S.

C. Cowley, Phys. Rev. Lett. 103, 105004 (2009).

012102-10 D. Del Sarto and M. Ottaviani Phys. Plasmas 24, 012102 (2017)

http://dx.doi.org/10.1186/BF03353258
http://dx.doi.org/10.1103/PhysRevLett.95.235003
http://dx.doi.org/10.1063/1.2783986
http://dx.doi.org/10.1103/PhysRevLett.103.065004
http://dx.doi.org/10.1103/PhysRevLett.105.235002
http://dx.doi.org/10.1088/2041-8205/780/2/L19
http://dx.doi.org/10.1088/0004-637X/801/2/145
http://dx.doi.org/10.1088/0004-637X/806/1/131
http://dx.doi.org/10.1088/2041-8205/813/2/L32
http://dx.doi.org/10.1002/2015JA021975
http://dx.doi.org/10.1017/S002237781600088X
http://dx.doi.org/10.1017/S002237781600088X
http://dx.doi.org/10.1088/0004-637X/707/2/L158
http://dx.doi.org/10.1063/1.1706761
http://dx.doi.org/10.1088/0034-4885/48/7/002
http://dx.doi.org/10.1007/BF00146216
http://dx.doi.org/10.1063/1.3264103
http://dx.doi.org/10.1007/BF02733547
http://dx.doi.org/10.1103/PhysRevLett.33.1201
http://dx.doi.org/10.1103/PhysRevLett.57.210
http://dx.doi.org/10.1088/0029-5515/30/12/008
http://dx.doi.org/10.1103/PhysRevLett.66.425
http://dx.doi.org/10.1103/PhysRevLett.71.3802
http://dx.doi.org/10.1063/1.871033
http://dx.doi.org/10.1063/1.859172
http://dx.doi.org/10.1103/PhysRevLett.70.3259
http://dx.doi.org/10.1088/0029-5515/54/7/072005
http://dx.doi.org/10.1088/0741-3335/57/1/014017
http://dx.doi.org/10.1088/0741-3335/57/1/014017
http://dx.doi.org/10.1146/annurev.aa.19.090181.001115
http://dx.doi.org/10.1103/PhysRevLett.91.235001
http://dx.doi.org/10.1142/S0217984906011621
http://dx.doi.org/10.1103/PhysRevE.87.013102
http://dx.doi.org/10.1029/JZ062i004p00509
http://dx.doi.org/10.1103/PhysRevLett.66.1458
http://dx.doi.org/10.1029/93GL03382
http://dx.doi.org/10.1103/PhysRevLett.75.3850
http://dx.doi.org/10.1029/1999JA001007
http://dx.doi.org/10.1029/1999JA001007
http://dx.doi.org/10.1029/1999JA001002
http://dx.doi.org/10.1029/1999JA900449
http://dx.doi.org/10.1103/PhysRevLett.70.1627
http://dx.doi.org/10.1063/1.871095
http://dx.doi.org/10.1063/1.1791640
http://dx.doi.org/10.1063/1.2715576
http://dx.doi.org/10.1063/1.861709
http://dx.doi.org/10.1063/1.862507
http://dx.doi.org/10.1016/0375-9601(82)90844-1
http://aa.springer.de/papers/0360002/2300715/small.htm
http://aa.springer.de/papers/0360002/2300715/small.htm
http://jetp.ac.ru/cgi-bin/dn/e_033_05_0933.pdf
http://jetp.ac.ru/cgi-bin/dn/e_033_05_0933.pdf
http://dx.doi.org/10.1103/PhysRevLett.91.125002
http://dx.doi.org/10.1063/1.1829064
http://dx.doi.org/10.1103/PhysRevLett.73.1251
http://dx.doi.org/10.1029/2006GL025957
http://dx.doi.org/10.1063/1.2218817
http://dx.doi.org/10.1063/1.860355
http://dx.doi.org/10.1086/320058
http://dx.doi.org/10.1016/0273-1177(95)00534-L
http://dx.doi.org/10.1103/PhysRevLett.103.105004


62J. Lin, S. R. Cranmer, and C. J. Farrugia, J. Geophys. Res. 113, A11107,
doi:10.1029/2008JA013409 (2008).

63G. Lapenta, Phys. Rev. Lett. 100, 235001 (2008).
64A. Biancalani and B. D. Scott, Europhys. Lett. 97, 15005 (2012).
65L. Comisso, D. Grasso, F. L. Waelbroeck, and D. Borgogno, Phys.

Plasmas 20, 092118 (2013).
66A. Ali, J. Li, and Y. Kishimoto, Phys. Plasmas 21, 052312 (2014).
67P. A. Cassak, R. N. Taylor, R. L. Fermo, M. T. Beidler, M. A. Shay, M.

Swidsak, J. F. Drake, and H. Karimabadi, Phys. Plasmas 22, 020705
(2015).

68M. Hirota, Y. Hattori, and P. J. Morrison, Phys. Plasmas 22, 052114
(2015).

69D. A. Uzdensky and N. F. Loureiro, Phys. Rev. Lett. 116, 105003 (2016).
70L. Comisso, M. Lingham, Y. M. Huang, and A. Battacharjee, Phys.

Plasmas 23, 100702 (2016).
71M. Wan, A. F. Rappazzo, W. H. Matthaeus, S. Servidio, and S. Oughton,

Astrophys. J. 797, 63 (2014).
72J. P. Eastwood, T.-D. Phan, F. S. Mozer, M. A. Shay, M. Fujimoto, A.

Retin"o, M. Hesse, A. Balogh, E. A. Lucek, and I. Dandouras, J. Geophys.
Res. 112, A6235, doi:10.1029/2006JA012158 (2007).

73R. Wang, Q. Ly, A. Du, and S. Wang, Phys. Res. Lett. 104, 175003
(2010).

74A. T. Lin, Phys. Fluids 21, 1026 (1978).

75Y. Ishi, M. Azumi, and Y. Kishimoto, Phys. Rev. Lett. 89, 205002
(2002).

76Z. X. Wang, X. G. Wang, J. Q. Dong, Y. A. Lei, Y. X. Long, Z. Z. Mou,
and W. X. Qu, Phys. Rev. Lett. 99, 185004 (2007).

77M. Janvier, Y. Kishimoto, and J. Q. Li, Phys. Rev. Lett. 107, 195001
(2011).

78J. Jara-Almonte, H. Ji, M. Yamada, J. Yoo, and W. Fox, Phys. Rev. Lett.
117, 095001 (2016).

79X. Xu, J. Wang, Y. Wen, Y. Yu. A. Liu, T. Lan, C. Yu, B. Wan, X. Gao,
Y. Sun, N. C. Luhmann, Jr., C. W. Domier, Z. G. Xia, and Z. Shen,
Plasma Phys. Controlled Fusion 52, 015008 (2010).

80V. Igochine, J. Boom, I. Classen, O. Dumbrajs, S. G€unter, K. Lackner, G.
Pereverzev, H. Zohm, and ASDEX Upgrade Team, Phys. Plasmas 17,
122506 (2010).

81A. L. Moser and P. M. Bellan, Nature 482, 379 (2012).
82B. Coppi, R. Galv~ao, R. Pellat, M. Rosenbluth, and P. Rutherford, Fiz.

Plazmy 2, 961 (1976).
83G. Ara, B. Basu, and B. Coppi, Ann. Phys. 112, 443 (1978).
84F. Pegoraro and T. J. Schep, Plasma Phys. Controlled Fusion 4, 667

(1986).
85F. Pegoraro, F. Porcelli, and T. J. Schep, Phys. Fluids B 1, 364 (1989).
86S. V. Bulanov, F. Pegoraro, and A. S. Sakharov, Phys. Fluids B 28, 647

(1992).

012102-11 D. Del Sarto and M. Ottaviani Phys. Plasmas 24, 012102 (2017)

http://dx.doi.org/10.1029/2008JA013409
http://dx.doi.org/10.1103/PhysRevLett.100.235001
http://dx.doi.org/10.1209/0295-5075/97/15005
http://dx.doi.org/10.1063/1.4821840
http://dx.doi.org/10.1063/1.4821840
http://dx.doi.org/10.1063/1.4881464
http://dx.doi.org/10.1063/1.4908545
http://dx.doi.org/10.1063/1.4921329
http://dx.doi.org/10.1103/PhysRevLett.116.105003
http://dx.doi.org/10.1063/1.4964481
http://dx.doi.org/10.1063/1.4964481
http://dx.doi.org/10.1088/0004-637X/797/1/63
http://dx.doi.org/10.1029/2006JA012158
http://dx.doi.org/10.1029/2006JA012158
http://dx.doi.org/10.1103/PhysRevLett.104.175003
http://dx.doi.org/10.1063/1.862322
http://dx.doi.org/10.1103/PhysRevLett.89.205002
http://dx.doi.org/10.1103/PhysRevLett.99.185004
http://dx.doi.org/10.1103/PhysRevLett.107.195001
http://dx.doi.org/10.1103/PhysRevLett.117.095001
http://dx.doi.org/10.1088/0741-3335/52/1/015008
http://dx.doi.org/10.1063/1.3529363
http://dx.doi.org/10.1038/nature10827
http://dx.doi.org/10.1016/S0003-4916(78)80007-4
http://dx.doi.org/10.1063/1.859149
http://dx.doi.org/10.1088/0741-3335/28/4/003

