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Abstract8

We provide a finite set of axioms for identity-free Kleene lattices, which we prove sound and9

complete for the equational theory of their relational models. Our proof builds on the complete-10

ness theorem for Kleene algebra, and on a novel automata construction that makes it possible to11

extract axiomatic proofs using a Kleene-like algorithm.12
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1 Introduction20

Relation algebra is an efficient tool to reason about imperative programs. In this approach,21

the bigstep semantics of a program P is a binary relation [P ] between memory states [20,22

22, 6, 16, 1]. This relation is built from the elementary relations corresponding to the23

atomic instructions of P , which are combined using standard operations on relations, for24

instance composition and transitive closure, that respectively encode sequential composition25

of programs, and iteration (while loops). Abstracting over the concrete behaviour of atomic26

instructions, one can compare two programs P,Q by checking whether the expressions [P ]27

and [Q] are equivalent in the model of binary relations, which we write as Rel |= [P ] = [Q].28

To enable such an approach, one should obtain two properties: decidability of the29

predicate Rel |= e = f , given two expressions e and f as input, and axiomatisability of30

this relation. Decidability makes it possible to automate the verification process, thus31

alleviating the burden for the end-user [17, 14, 9, 25, 28]. Axiomatisation offers a better way32

of understanding the equational theory of relations and provides a certificate for programs33

verification. Indeed, an axiomatic proof of e = f can be seen as a certificate, which can34

be exchanged, proofread, and combined in a modular way. Axiomatisations also make it35

possible to solve hard instances manually, when the existing decision procedures have high36

complexity and/or when considered instances are large [24, 17, 7].37

Depending on the class of programs under consideration, several sets of operations38

on relations can be considered. In this paper we focus on the following set of operations:39

composition (·), transitive closure (_+), union (+), intersection (∩) and the empty relation (0).40

∗ Full version of the extented abstract in Proc. CONCUR 2018 [13].
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18:2 Completeness for Identity-free Kleene Lattices

The expressions generated by this signature are called KL−-expressions. An example of an41

inequality in the corresponding theory is Rel |= (a ∩ c) · (b ∩ d) ≤ (a · b)+ ∩ (c · d): when42

a, b, c, d are interpreted as arbitrary binary relations, we have (a∩ c) · (b∩d) ⊆ (a · b)+∩ (c ·d).43

The operations of composition, union and transitive closure arise naturally when defining the44

bigstep semantics of sequential programs. In contrast, intersection, which is the operation of45

interest in the present paper, is not a standard operation on programs. This operation is46

however useful when it comes to specifications: it allows one to express local conjunctions47

of specifications. For instance, a specification of the shape (a ∩ b)+ expresses the fact that48

execution traces must consist of sequences of smaller traces satisfying both a and b.49

The operations of KL− contain those of identity-free regular expressions, whose equational50

theory inherits the good properties of Kleene algebra (KA).We summarise them below.51

First recall that each regular expression e can be associated with a set of words L(e) called52

its language. Valid inequations between regular expressions inequalities can be characterised53

by language inclusions [29]:54

Rel |= e ≤ f iff L(e) ⊆ L(f) (1)55

Second, we have the celebrated equivalence between regular expressions and non-deterministic56

finite automata (NFA) via a Kleene theorem: for every regular expression e, there is an NFA57

such that L(e) is the language of A, and conversely. Decidability follows (in fact, PSpace-58

completeness). Lastly, although every purely equational axiomatisation of this theory must59

be infinite [30], Kozen has proved that Conway’s finite quasi-equational axiomatisation [12]60

is sound and complete [19]. (There is also an independent proof of this result by Boffa [8],61

based on the extensive work of Krob [26].)62

Those three results nicely restrict to identity-free Kleene algebra (KA−), which form a63

proper fragment of Kleene algebra [21]. It suffices to consider languages of non-empty words:64

Equation (1) remains, Kleene’s theorem still holds, and we have the following characterisation,65

where we write KA− ` e ≤ f when e ≤ f is derivable from the axioms of KA−:66

L(e) ⊆ L(f) iff KA− ` e ≤ f (2)67

There are counterparts to the first two points for KL−-expressions. Each KL−-expression68

e can be associated with a set of graphs G(e) called its graph language, and valid inequations69

of KL−-expressions can be characterised through these languages of graphs. A subtlety here70

is that we have to consider graphs modulo homomorphisms; writing CG for the closure of a71

set of graphs G under graph homomorphisms, we have [10]:72

Rel |= e ≤ f iff CG(e) ⊆ CG(f) (3)73

KL−-expressions are equivalent to a model of automata over graphs called Petri automata [10].74

As for KA−-expressions, a Kleene-like theorem holds [11]: for every KL−-expression e, there is75

a Petri automaton whose language is G(e), and conversely. Decidability (in fact, ExpSpace-76

completeness) of the equational theory follows [10, 11].77

What is missing to this picture is an axiomatisation of the corresponding equational theory.78

In the present paper, we provide such an axiomatisation, which we call KL−, and which79

comprises the axioms for identity-free Kleene algebra (KA−) and the axioms of distributive80

lattices for {+,∩}. Completeness of this axiomatisation is the difficult result we prove here:81

CG (e) ⊆ CG (f) entails KL− ` e ≤ f (4)82

We proceed in two main steps. First we show that G (e) ⊆ G (f) entails KL− ` e ≤ f ,83

using a technique inspired from [23], this is what we call completeness for strict language84
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inclusion.The second step is much more involved. There we exploit the Kleene theorem for85

Petri automata [11]: starting from expressions e, f such that CG (e) ⊆ CG (f), we build two86

Petri automata A ,B respectively recognising G (e) and G (f). Then we design a product87

construction to synchronise A and B, and a Kleene-like algorithm to extract from this88

construction two expressions e′, f ′ such that G (e) = G (e′), KL− ` e′ ≤ f ′, and G (f ′) ⊆ G (f).89

This synchronised Kleene theorem suffices to conclude using the first step.90

To our knowledge, this is the first completeness result for a theory involving Kleene91

iteration and intersection. Identity-free Kleene lattices were studied in depth by Andréka,92

Mikulás and Németi [3]; they have in particular shown that over this syntax, the equational93

theories generated by binary relations and formal languages coincide. But axiomatisability94

remained opened. The restriction to the identity-free fragment is important for several95

reasons. First of all, it makes it possible to rely on the technique used in [10] to compare96

Petri automata, which does not scale in the presence of identity. Second, this is the fragment97

for which the Kleene theorem for Petri automata is proved the most naturally [11]. Third,98

‘strange’ laws appear in the presence of 1 [2], e.g., 1 ∩ (b · a) ≤ a · (1 ∩ (b · a)) · b, and99

axiomatisability is still open even in the finitary case where Kleene iteration is absent—see100

the erratum about [2].101

Proofs of completeness for other extensions of Kleene algebra include Kleene algebra with102

tests (KAT) [20], nominal Kleene algebra [23], and Concurrent Kleene algebra [27, 18]. The103

latter extension is the closest to our work since the parallel operator of concurrent Kleene104

algebra shares some properties of the intersection operation considered in the present work105

(e.g., it is commutative and it satisfies a weak interchange law with sequential composition).106

The paper is organised as follows. In Sect. 2, we recall KL−-expressions, their graph107

language and the corresponding model of Petri automata. In Sect. 3 we give our axiomatisation108

and state the completeness result. Then we show it following the proof scheme presented109

earlier: in Sect. 4 we show completeness for strict language inclusions, we recall in Sect. 5110

the Kleene theorem of KL− expressions, on which we build to show our synchronised Kleene111

theorem in Sect. 6.112

2 Expressions, graph languages and Petri automata113

2.1 Expressions and their relational semantics114

We let a, b . . . range over the letters of a fixed alphabet X. We consider the following syntax115

of KL−-expressions, which we simply call expressions if there is no ambiguity:116

e, f ::= e · f | e+ f | e ∩ f | e+ | 0 | a (a ∈ X)117
118

We denote their set by ExpX and we often write ef for e · f . When we remove intersection119

(∩) from the syntax of KL−-expressions we get KA−-expressions, which are the identity-free120

regular expressions.121

If σ : X → P(S × S) is an interpretation of the letters into some space of relations, we122

write σ̂ for the unique homomorphism extending σ into a function from ExpX to P(S × S).123

An inequation between two expressions e and f is valid, written Rel |= e ≤ f , if for every124

such interpretation σ we have σ̂(e) ⊆ σ̂(f).125

2.2 Terms, graphs, and homomorphisms126

We let u, v . . . range over expressions built using only letters, ∩ and ·, which we call terms.127

(Terms thus form a subset of expressions: they are those expressions not using 0, + and _+.)128



18:4 Completeness for Identity-free Kleene Lattices
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Figure 1 Operations on graphs.
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Figure 2 Graphs associated with some terms.

We will use 2-pointed labelled directed graphs, simply called graphs in the sequel. Those are129

tuples 〈V,E, s, t, l, ι, o〉 with V (resp. E) a finite set of vertices (resp. edges), s, t : E → V the130

source and target functions, l : E → X the labelling function, and ι, o ∈ V two distinguished131

vertices, respectively called input and output.132

As depicted in Fig. 1, graphs can be composed in series or in parallel, and a letter can be133

seen as a graph with a single edge labelled by that letter. One can thus recursively associate134

to every term u a graph G (u) called the graph of u. Two examples are given in Fig. 2; graphs135

of terms are series-parallel [31].136

I Definition 1 (Graph homomorphism). A homomorphism from G = 〈V,E, s, t, l, ι, o〉 to137

G′ = 〈V ′, E′, s′, t′, l′, ι′, o′〉 is a pair h = 〈f, g〉 of functions f : V → V ′ and g : E → E′ that138

respect the various components: s′ ◦ g = f ◦ s, t′ ◦ g = f ◦ t, l = l′ ◦ g, ι′ = f(ι), and o′ = f(o).139

We write G′ CG if there exists a graph homomorphism from G to G′.140

Such a homomorphism is depicted in Fig. 3. A pleasant way to think about graph homomor-141

phisms is the following: we have GCH if G is obtained from H by merging (or identifying)142

some nodes, and by adding some extra nodes and edges. For instance, the graph G in Fig. 3143

is obtained from H by merging the nodes 1, 2 and by adding an edge between the input and144

the output labelled by d.145

The starting point of the present work is the following characterisation:146

I Theorem 2 ([5, Thm. 1], [15, p. 208]). For all terms u, v, Rel |= u ≤ v iff G (u) C G (v).147

2.3 Graph language of an expression148

To generalise the previous characterisation to KL−-expressions, one interprets expressions by149

sets (languages) of graphs: graphs play the role of words for KA-expressions.150

I Definition 3 (Term and graph languages of expressions). The term language of an expression151

e, written JeK, is the set of terms defined recursively as follows:152

Je · fK , {u · v | u ∈ JeK and v ∈ JfK} J0K , ∅153

Je ∩ fK , {u ∩ v | u ∈ JeK and v ∈ JfK} JaK , {a}154

Je+ fK , JeK ∪ JfK
q
e+y

,
⋃
n>0 {u1 · · · · · un | ∀i, ui ∈ JeK}155

156

The graph language of e is the set of graphs G(e) , {G(u) | u ∈ JeK}.157

Note that for every term u, JuK = {u}, so that the graph language of u thus contains just the158

graph of u. This justifies the overloaded notation G (u). Given a set S of graphs, we write159
CS for its downward closure w.r.t. C: CS , {G | GCG′, G′ ∈ S}. We obtain:160

I Theorem 4 ([10, Thm. 6]). For all expressions e, f , Rel |= e ≤ f iff CG (e) ⊆ CG (f).161
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Figure 6 Graph of a run.

2.4 Petri automata162

We recall the notion of Petri automata [10, 11], an automata model that recognises precisely163

the graph languages of our expressions.164

I Definition 5 (Petri Automaton). A Petri automaton (PA) over the alphabet X is a tuple165

A = 〈P, T , ι〉 where:166

P is a finite set of places,167

T ⊆ P (P )× P (X × P ) is a set of transitions,168

ι ∈ P is the initial place of the automaton.169

For each transition t = 〈◃t, t▹〉 ∈ T , ◃t is assumed to be non-empty; ◃t ⊆ P is the input of t;170

and t▹ ⊆ X × P is the output of t. We write π2 (t▹) , {p | ∃a, 〈a, p〉 ∈ t▹} for the set of the171

output places of t. Transitions with empty outputs are called final.172

A PA is depicted in Fig. 4: places are represented by circles and transitions by squares.173

Let us now recall the operational semantics of PA. Fix a PA A = 〈P, T , ι〉 for the174

remainder of this section. A state of this automaton is a set of places. In a given state S ⊆ P ,175

a transition t = 〈◃t, t▹〉 is enabled if ◃t ⊆ S. In that case, we may fire t, leading to a new176

state S′ = (S \ ◃t) ∪ π2 (t▹). We write S t→A S′ in this case.177

I Definition 6 (Run of a PA). A run is a sequence 〈S1, t1, S2, . . . , tn−1, Sn〉, where Si are178

states, ti are transitions such that Si
ti→A Si+1 for every i ∈ [1, n− 1], S1 = {ι} and Sn = ∅.179

A run of the PA from Fig. 4 is depicted in Fig. 5; this run gives rise to a graph, depicted in180

Fig. 6; see [11, Def. 3] for a formal definition in the general case.181

I Definition 7 (Graph language of a PA). The graph language of a PA A , written G (A ),182

consists of the graphs of its runs.183

PA are assumed to be safe (in standard Petri net terminology, places contain at most one184

token at any time—whence the definition of states as sets rather than multisets) and to185

accept only series-parallel graphs. These two conditions are decidable [11]. Here we moreover186

assume that all PA have the same set of places P .187

PA and KL−-expressions denote the same class of graph languages:188
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e ∩ (f ∩ g) = (e ∩ f) ∩ g e ∩ f = f ∩ e e ∩ e = e

e ∩ (f + g) = (e ∩ f) + (e ∩ g) e ∩ (e+ f) = e e+ (e ∩ f) = e

e+ (f + g) = (e+ f) + g e+ f = f + e e+ e = e

e·(f ·g) = (e·f)·g e·(f+g) = e·f+e·g (e+f)·g = e·g+f ·g e+0 = e e·0 = 0 = 0·e

e+ e·e+ = e+ = e+ e+·e e·f + f = f ⇒ e+·f + f = f f ·e+ f = f ⇒ f ·e+ + f = f

Figure 7 KL−: the first three lines correspond to distributive lattices, the last three to KA−.

I Theorem 8 (Kleene theorem [11, Thm. 18]).189

(i) For every expression e, there is a Petri automaton A such that G (e) = G (A ).190

(ii) Conversely, for every Petri automaton A , there is an expression e such that G (e) =191

G (A ).192

3 Axiomatisation and structure of completeness proof193

Let us introduce now our axiomatisation.194

I Definition 9. The axioms of KL− are the union of195

the axioms of identity-free Kleene algebra (KA−) [21], and196

the axioms of a distributive lattice for {+,∩}.197

It is easy to check that those axioms are valid for binary relations, whence soundness of KL−:198

I Theorem 10 (Soundness). If KL− ` e ≤ f then Rel |= e ≤ f .199

The rest the paper is devoted the converse implication, which thanks to Thm. 4 amounts to:200

I Theorem 11 (Completeness). If CG(e) ⊆ CG(f) then KL− ` e ≤ f .201

The following very weak form of Thm. 11 is easy to obtain from the results in the literature:202

I Proposition 1. For all terms u, v, G (u) C G (v) entails KL− ` u ≤ v.203

Proof. Follows from Thm. 4, completeness of semilattice-ordered semigroups [4] for relational204

models, and the fact the the axioms of KL− entail those of semilattice-ordered semigroups. J205

As explained in the introduction, our first step consists in proving KL− completeness w.r.t.206

strict graph language inclusions, i.e., not modulo homomorphisms:207

I Theorem 12 (Completeness for strict language inclusions). If G(e) ⊆ G(f) then KL− ` e ≤ f .208

The proof is given in Sect. 4. Our second step is to get the following theorem (Sect. 6):209

I Theorem 13 (Synchronised Kleene Theorem). If A ,B are PA such that CG(A ) ⊆ CG(B),210

then there are expressions e, f such that:211

G (A ) = G (e) , KL− ` e ≤ f , and G (f) ⊆ G (B) .212
213
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The key observation for the proof is that the state-removal procedure used to transform a214

PA into a KL− expression is highly non-deterministic. When considering two PA at a time,215

one can use this flexibility in order to synchronise the computation of the two expressions, so216

that they become easier to compare axiomatically. The concrete proof is quite technical and217

requires us to first recall many concepts from the proof [11] of Thm. 8(ii) (Sect. 5); it heavily218

relies on both Thm. 12 and Prop. 1.219

Completeness of KL− follows using Thm. 8(i) and Thm. 12 as explained in the introduction.220

4 Completeness for strict language inclusion221

Recall that the graph language of an expression e, G(e), is defined as the set of graphs of the222

term language of e, JeK. We first prove that KL− is complete for term language inclusions:223

I Proposition 2. If JeK ⊆ JfK then KL− ` e ≤ f .224

Proof. We follow a technique similar to the one recently used in [23]. We consider the225

maximal KA−-subexpressions, and we compute the atoms of the Boolean algebra of word226

languages generated by those expressions. By KA− completeness [19, 21], we get KA− (and227

thus KL−) proofs that those are equal to appropriate sums of atoms. We distribute the228

surrounding intersections over those sums and replace the resulting intersections of atoms by229

fresh letters. This allows us to proceed recursively (on the intersection-depth of the terms),230

using substitutivity to recover a KL− proof of the starting inequality. J231

The difference between the term language and the graph language is that intersection232

is interpreted as an associative and commutative operation in the latter. We bury this233

difference by defining a ‘saturation’ function s on KL−-expressions such that for all e,234

(†) KL− ` s(e) = e, and (‡) Js(e)K = {u | G(u) ∈ G(e)} .235
236

Intuitively, this function uses distributivity and idempotency of sum to replace all intersections237

appearing in the expression by the sum of all their equivalent presentations modulo associativ-238

ity and commutativity. For instance, s(a∩ (b∩c)) is a sum of twelve terms (six choices for the239

ordering times two choices for the parenthesing). Technically, one should be careful to expand240

the expression first by maximally distributing sums, in order to make all potential n-ary241

intersections apparent. For instance, ((a∩ b) + d)∩ c expands to ((a∩ b)∩ c) + (d∩ c) so that242

its saturation is a sum of twelve plus two terms. For the same reason, all iterations should be243

unfolded once: we unfold and expand (a ∩ b)+ ∩ c into ((a ∩ b) ∩ c) + ((a ∩ b) · (a ∩ b)+ ∩ c)244

before saturating it. We finally obtain Thm. 12 using (‡), Prop. 2, and (†):245

G(e) ⊆ G(f) ⇒ Js(e)K ⊆ Js(f)K ⇒ KL− ` s(e) ≤ s(f) ⇒ KL− ` e ≤ f246
247

5 Kleene theorem for Petri automata248

To prove the synchronised Kleene theorem (Thm. 13), we cannot use the Kleene theorem for249

PA (Thm. 8) as a black box: we use in a fine way the algorithm underlying the proof of the250

second item. We thus explain how it works [11] in details.251

Recall that to transform an NFA A to a regular expression e, one rewrites it using the252

rules of Fig. 8 until one reaches an automaton where there is a unique transition from the253

initial state to the final one, labelled by an expression e. While doing so, one goes through254

generalised NFA, whose transitions are labelled by regular expressions instead of letters.255



18:8 Completeness for Identity-free Kleene Lattices

σ τ

B

ρ
A C

σ ρ
A ·B∗ · C7→ σ ρ

A

B

σ ρ
A ∪B7→

Figure 8 Rewriting rules for state-removal procedure.

We use the same technique for PA: we start by converting the PA into a NFA over a256

richer alphabet, which we call a Template Automaton (TA), then we reduce this automaton257

using the rules of Fig. 8 until we get a single transition labelled by the desired expression.258

To get some intuitions about the way we convert a PA into an NFA, consider the run in259

Fig. 5 and its graph in Fig. 6. One can decompose the run and the graph as follows:260

{A} {B,C,D} {B,C,D} {E,D} ∅

b

c

d

A

B

C

D

b

c

D D

B

C

B

C

a

D D

B

C
EE

D

261

The graph can thus be seen as a word over an alphabet of ‘boxes’, and the run as a path in an262

NFA whose states are sets of places of the PA. The letters of the alphabet, the above boxes,263

can be seen as ‘slices of graphs’; they arise naturally from the transitions of the starting PA264

(Fig. 4 in this example).265

5.1 Template automata266

In order to make everything work, we need to refine both this notion of states and this notion267

of boxes to define template automata:268

states (sets of places) are refined into types. We let σ, τ range over types. A type is a269

tree whose leaves are labelled by places. When we forget the tree structure of a type τ ,270

we get a a state τ . See [11, Def. 10] for a formal definition of types, which is not needed271

here. We call singleton types those types whose associated state is a singleton.272

letters will be templates: finite sets of boxes like depicted above but with edges labelled273

with arbitrary KL−-expressions; we define those formally below.274

Given a directed acyclic graph (DAG) G, we write minG (resp. maxG) for the set of its275

sources (resp. sinks). A DAG is non-trivial when it contains at least one edge.276

I Definition 14 (Boxes). Let σ, τ be types. A box from σ to τ is a triple
〈−→
p , G,←−p

〉
where277

G is a non-trivial DAG with edges labelled in ExpX , −→p is a map from σ, the input ports, to278

the vertices of G, and ←−p is a bijective map from τ , the output ports, to maxG, and where279

an additional condition relative to types holds [11, Def. 11]. (This condition can be kept280

abstract here.) A basic box is a box labelled with letters rather than arbitrary expressions.281

A 1-1 box is a box between singleton types.282

We let α, β range over boxes and we write β : σ → τ when β is a box from σ to τ .283

We represent boxes graphically as in Fig. 15. Inside the rectangle is the DAG, with the284

input ports on the left-hand side and the output ports on the right-hand side. The maps −→p285

and ←−p are represented by the arrows going from the ports to vertices inside the rectangle.286
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Figure 9 Two boxes and their composition.
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Figure 10 An atomic box.

Note that unlike ←−p , the map −→p may reach inner nodes of the DAG. 1-1 boxes are those with287

exactly one input port and one output port.288

Boxes compose like in a category: if α : σ → τ and β : τ → ρ then we get a box289

α · β : σ → ρ by putting the graph of α to the left of the graph of β, and for every port p ∈ τ ,290

we identify the node ←−p1 (p) with the node −→p2 (p). For instance the third box in Fig. 15 is291

obtained by composing the first two.292

The key property enforced by the condition on types (kept abstract here) is the following:293

I Lemma 15. A 1-1 box is just a series-parallel 2-pointed graph labelled in ExpX .294

Accordingly, one can extract a KL−-expression from any 1-1 box β, which we write e (β) and295

call its expression.296

I Definition 16 (Templates). A template Γ : σ → τ is a finite set of boxes from σ to τ . A297

1-1 template is a template of 1-1 boxes. The expression of a 1-1 template, written e (Γ), is298

the sum of the expressions of its boxes.299

Templates can be composed like boxes, by computing all pairwise box compositions.300

I Definition 17 (Box language of a template). A basic box is generated by a box β if it can301

be obtained by replacing each edge x e−−→ y of its DAG by a graph G′ ∈ G (e) with input302

vertex x and output vertex y. The box language of a template Γ, written B(Γ), is the set of303

basic boxes generated by its boxes.304

As expected, the box language of a template Γ : σ → τ only contains boxes from σ to τ .305

Thanks to Lem. 15, when Γ is a 1-1 template, its box language can actually be seen as a set306

of graphs, and we have:307

I Proposition 3. For every 1-1 template Γ, we have B(Γ) = G (e (Γ)).308

We can finally define template automata:309

I Definition 18 (Template automaton (TA)). A template automaton is an NFA whose states310

are types, whose alphabet is the set of templates, whose transitions are of the form 〈σ,Γ, τ〉311

where Γ : σ → τ , and with a single initial state and a single accepting state which are312

singleton types. A basic TA is a TA whose all transitions are labelled by basic boxes.313

By definition, a word accepted by a TA is a sequence of templates that can be composed314

into a single 1-1 template Γ, and thus gives rise to a set of graphs B(Γ). The graph language315

of a TA E , written G (E ), is the union of all those sets of graphs.316

An important result of [11] is that we can translate every PA into a TA:317

I Proposition 4. For every PA A , there exists a basic TA E such that G (A ) = G (E ).318
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TA were defined so that they can be reduced using the state-removal procedure from Fig. 8.319

Templates can be composed sequentially and are closed under unions, so that now we only320

miss an operation _∗ on templates to implement the first rule. Since we work in an identity-321

free (and thus star-free) setting, it suffices to define a strict iteration operation _+; and to322

rely on the following shorthands ∆ · Γ∗ = ∆ ∪∆ · Γ+ and Γ∗ ·∆ = ∆ ∪ Γ+ ·∆.323

Such an operation is provided in [11]:324

I Proposition 5. There exists a function _+ on templates such that if the TA obtained from325

a PA A through Prop. 4 reduces to a TA E by the rules in Fig. 8, then G (A ) = G (E ). 1
326

One finally obtains the Kleene theorem for PA by reducing the TA until it consists of a single327

transition labelled by a 1-1 template Γ: at this point, e (Γ) is the desired KL−-expression.328

5.2 Computing the iteration of a template329

We need to know how the above template iteration can be defined to obtain our synchronised330

Kleene theorem, so that we explain it in this section. This section is required only to331

understand how we define a synchronised iteration operation in Sect. 6.332

First notice that templates on which we need to compute _+ are of type σ → σ. We first333

define this operation for a restricted class of templates, which we call atomic.334

I Definition 19 (Atomic boxes and templates, Support). A box β =
〈−→
p , G,←−p

〉
: σ → σ is335

atomic if its graph has a single non-trivial connected component C, and if for every vertex v336

outside C, there is a unique port p ∈ σ such that −→p (p) =←−p (p) = v. An atomic template is337

a template composed of atomic boxes.338

The support of a box β : σ → σ is the set supp (β) ,
{
p
∣∣ −→p (p) 6=←−p (p)

}
. The support339

of a template is the union of the supports of its boxes.340

The following property of atomic boxes, makes it possible to compute their iteration:341

I Lemma 20 ([11, Lem. 7.18]). The non-trivial connected component of an atomic box342

β : σ → σ always contains a vertex c, s.t. for every port p mapped inside that component, all343

paths from −→p (p) to a maximal vertex visit c. We call such a vertex a bowtie for β.344

Notice that the bowtie of a box is not unique. For instance, the atomic box in Fig. 10345

contains two bowties: the blue and the red nodes.346

We compute the iteration of an atomic box as follows. First choose a bowtie for this box,347

then split it at the level of this node into the product α = β · γ. The box γ · β is 1-1, we can348

thus extract from it a term e (γ · β). We set α+ to be the template consisting of α and the349

box obtained from α by replacing the bowtie by an edge labelled e (γ · β)+. For the sake of350

conciseness, we denote this two-box template as on the right below, with an edge labelled351

with a starred expression.352

α = β γ α+ = β γ
e (γ · β)∗

353

1 This statement is not simpler because, unfortunately, there is no function _+ on templates such that
B(Γ+) = B(Γ)+).
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Data: Atomic template Γ
Result: A template Γ+ s.t. B(Γ+) = B(Γ)+

if Γ = ∅ then
Return ∅

else
Write Γ = ∆ ∪ {α} ∪ Σ such that
supp (∆) ⊆ supp (α) and
supp (Σ) ∩ supp (α) = ∅;
Choose a bowtie for α;
Split α into β · γ at the level of this bowtie;
Return
(∆+ · Σ∗) ∪ (∆∗ · Σ+) ∪ (∆∗ · δ ·∆∗ · Σ∗),
where δ is the two-box template depicted
on the right.

end

β γ
e (γ ·∆∗ · β)∗

Figure 11 Iteration of an atomic template.

It is not difficult to see that B(α+) = B(α)+. Depending on the bowtie we have chosen, the354

box α+ will be different. This is why we will write α+
./ to say that the bowtie ./ has been355

selected for the computation of the iteration.356

Now we need to generalise this construction to compute the iteration of an atomic357

template. For this, we need the following property, saying that the supports of atomic boxes358

of the same type are either disjoint or comparable:359

I Lemma 21. For all atomic boxes β, γ : σ → σ, we have either 1) supp (β) ⊆ supp (γ), or360

2) supp (γ) ⊆ supp (β), or 3) supp (β) ∩ supp (γ) = ∅.361

We can compute the iteration of an atomic template by the algorithm in Fig. 11; intuitively,362

atomic boxes with disjoint support can be iterated in any order: they cannot interfere; in363

contrast, atomic boxes with small support must be computed before atomic boxes with364

strictly larger support: the iteration of the latter depends on that of the former. (Also365

note that since supp (∆) ⊆ supp (α) we have also supp (∆+) ⊆ supp (α) thus the template366

γ ·∆∗ · β is 1-1 and it gives rise to an expression e (γ ·∆∗ · β).)367

We finally compute the iteration of an arbitrary template Γ : σ → σ as follows: from each368

connected component of the graph of each box in Γ stems an atomic box; let At(Γ) be the369

set of all these atomic boxes; we set Γ+ = At(Γ)+.370

The overall algorithm contains two sources of non-determinism. First, one can partially371

choose in which order to process the atomic boxes. This is reflected by the choice of the box α,372

which we will call the pivot. For instance if Γ = {α1, α2, β} such that supp (α1) = supp (α2)373

and supp (β) ∩ supp (α1) = ∅, then we can choose either α1 or α2 as the pivot, and the374

computation will respectively start with the computation of α+
2 or that of α+

1 , yielding two375

distinct expressions. (In contrast, choices about boxes with disjoint support do not change376

the final result.) Second, every box of the template is eventually processed, and one must377

thus choose a bowtie for all of them. We write Γ+
./,≤ to make explicit the choice of the378

bowties and the computation order.379
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6 Synchronised Kleene theorem for PA380

We can now prove Thm. 13. To synchronise the computation of two expressions e, f for two381

PA A ,B respectively, we construct a synchronised product automaton E ×F between a TA382

E for A and a TA F for B.383

The states of this automaton are triples 〈σ, η, τ〉 where σ and τ are types, i.e., states384

from the TA E and F , and η : τ → σ is a function used to enforce coherence conditions.385

Its transitions have the form 〈〈σ, η, τ〉 , 〈Γ,∆〉 , 〈σ′, η′, τ ′〉〉 where 〈σ,Γ, σ′〉 is a transition of386

E , 〈τ,∆, τ ′〉 is a transition of F , and Γ and ∆ satisfy a certain condition which we call387

refinement, written Γ ≤ ∆.388

The overall strategy is as follows. We reduce E ×F using the rules of Fig. 8, where the389

operations · and ∪ are computed pairwise. The operation _∗ is also computed pairwise,390

but in a careful way, exploiting the non-determinism of this operation to ensure that we391

maintain the refinement relation. We eventually get a single transition labelled by a pair of392

1-1 templates Γ and ∆ such that B(Γ) = G (A ), B(∆) = G (B), and Γ ≤ ∆. To conclude, it393

suffices to deduce KL− ` e (Γ) ≤ e (∆) from the latter property. To sum-up, what we need394

to do now is:395

Refinement: define the refinement relation ≤ on templates;396

Initialisation: define E ×F so that refinement holds;397

Stability: show that the refinement relation is maintained during the rewriting process;398

Finalisation: show that refinement between 1-1 templates entails KL− provability.399

6.1 Refinement relation400

We first generalise graph homomorphisms to templates; this involves dealing with multiple401

ports, with finite sets, and with edge labels which are now arbitrary KL−-expressions. For402

the latter, we do not require strict equality but KL−-derivable inequalities.403

I Definition 22 (Box and template homomorphisms). Let σ, τ, σ′, τ ′ be four types with two404

functions η : σ → τ and η′ : σ′ → τ ′. Let β =
〈−→
p β , 〈Vβ , Eβ , sβ , tβ , lβ〉 ,←−p β

〉
be a box405

of type τ → τ ′ and let α =
〈−→
p α, 〈Vα, Eα, sα, tα, lα〉 ,←−p α

〉
be a box of type σ → σ′. A406

homomorphism from α to β is a pair 〈f, g〉 of functions f : Vα → Vβ and g : Eα → Eβ s.t.:407

sβ ◦ g = f ◦ sα, tβ ◦ g = f ◦ tα,408

∀e ∈ Eα, KL− ` lβ ◦ g(e) ≤ lα(e),409

If {v} ⊆ Vα is a trivial connected component, so is f(v).410

−→
p β ◦ η = f ◦ −→p α and ←−p β ◦ η′ = f ◦←−p α. (We call this condition (η, η′)-compatibility.)411

We write β Cη,η′ α when there exists such a homomorphism. For two templates Γ : τ → τ ′412

and ∆ : σ → σ′, we write Γ Cη,η′ ∆ if for all β ∈ Γ, there exists α ∈ ∆ such that β Cη,η′ α.413

We abbreviate Γ Cη,η′ ∆ as Γ C ∆ when Γ,∆ are 1-1 templates, or when σ = τ , σ′ = τ ′ and414

η, η′ are the identity function id. A box homomorphism is depicted in Fig. 12.415

The above relation on templates is not enough for our needs; we have to extend it so that416

it is preserved during the rewriting process. We first write Γ v ∆ when B(Γ) ⊆ B(∆), for417

two templates Γ,∆ of the same type. Refinement is defined as follows:418

I Definition 23 (Refinement). We call refinement the relation on templates defined by419

≤η,η′ , Cη,η′ · (Cid,id ∪ v)∗, where _∗ is reflexive transitive closure.420

The following proposition shows that refinement implies provability of the expressions421

extracted from 1-1 templates. This gives us the finalisation step.422
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Figure 12 A box homomorphism.
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Figure 13 Bowtie compatible boxes.
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Figure 14 Case of bowtie incompatible boxes.

I Proposition 6. If ∆,Γ are 1-1 templates such that ∆ ≤ Γ, then KL− ` e (∆) ≤ e (Γ).423

Proof. When ∆ ⊆ Γ, it follows from Prop. 3 and Thm. 12; when ∆ C Γ, it follows from424

Prop. 1. We conclude by transitivity. J425

6.2 Synchronised product automaton (initialisation)426

I Definition 24 (2-Template automata (2-TA)). A 2-template automaton is an NFA whose427

states are tuples of the form 〈τ, η, σ〉 where τ, σ are types and η : σ → τ , whose alphabet is428

the set of pairs of templates, whose transitions are of the form 〈〈σ, η, τ〉 , 〈Γ,∆〉 , 〈σ′, η′, τ ′〉〉429

where Γ : σ → σ′, ∆ : τ → τ ′, and Γ ≤η,η′ ∆, and with a single initial state and a single430

accepting state which consist of singleton types.431

If T is a 2-TA, we denote by π1(T ) (resp. π2(T )) the automaton obtained by projecting the432

alphabet, the states and the transitions of T on the first (resp. last) component. Note that433

π1(T ) and π2(T ) are TA.434

I Definition 25 (Synchronised product of TA). Let E ,F be two TA. The synchronised product435

of E and F , written E ×F is the 2-TA where 〈〈τ, η, σ〉 , 〈Γ,∆〉 , 〈τ ′, η′, σ′〉〉 is a transition of436

E ×F iff 〈τ,Γ, τ ′〉 is a transition of E , 〈σ,∆, σ′〉 is a transition of F and Γ ≤η,η′ ∆. (And437

with initial and accepting states defined from those of of E and F .)438

Note that we enforce refinement in the definition of this product, so that π1(E ×F ) is439

a sub-automaton of E and π2(E ×F ) is a sub-automaton of F . Thus G (π1(E ×F )) ⊆440

G (E ) and G (π2(E ×F )) ⊆ G (F ). When E ,F are TA coming from PA A ,B such that441
CG (A ) ⊆ CG (B), we can use the results from [11] about simulations to strengthen the first442

inclusion into an equality:443

I Theorem 26. Let A ,B be two PA, E ,F be basic TA such that G (A ) = L(E ) and444

G (B) = L(F ) (given by Prop. 4). If CG (A1) ⊆ CG (A2) then:445

G (π1(E ×F )) = G (A );446

G (π2(E ×F )) ⊆ G (B).447
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Proof. The second point follows from the observation above. The first one comes from the sim-448

ulation result ([11, Prop. 9.10]) for PA. Indeed, if CG (A ) ⊆ CG (B), then there is a simulation449

([11, Def. 9.2]) between A and B. This implies that for every run 〈τ1,Γ1, τ2, . . . ,Γn−1, τn〉 of450

E , there is a run 〈σ1,∆1, σ2, . . . ,∆n−1, σn〉 of F and a set of mapping ηi : σi → τi, i ∈ [1, n]451

such that Γi Cηi,ηi+1 ∆i for every i ∈ [1, n− 1]. J452

6.3 Maintaining refinement during reductions453

Let us finally show that refinement is stable by composition, union, and iteration.454

I Theorem 27 (Stability of refinement by · and ∪).455

If Γ1 ≤η,η′ Γ2 and ∆1 ≤η′,η” ∆2 then Γ1 ·∆1 ≤η,η” Γ2 ·∆2.456

If Γ1 ≤η,η′ Γ2 and ∆1 ≤η,η′ ∆2 then Γ1 ∪∆1 ≤η,η′ Γ2 ∪∆2.457

Proof. To show the first property it suffices to show the following results:

If Γ1 Cη,η′ Γ2 and ∆1 Cη′,η′′ Γ2 then Γ1 ·∆1 Cη′,η′′ Γ2 ·∆2. (L1)

If Γ1 v Γ2 and ∆1 v ∆2 then Γ1 ·∆1 v Γ2 ·∆2. (L2)

If Γ1 C Γ2 and ∆1 v ∆2 then Γ1 ·∆1 (C· v)∗ Γ2 ∪∆2. (L3)

To show (L1), consider a box α1 ∈ Γ1 and β1 ∈ ∆1. By hypothesis, there is a box α2 ∈ Γ2458

and an (η, η′)-compatible homomorphism h = 〈f, g〉 from α2 to α1 and a box β2 ∈ ∆2 and459

an (η′, η′′)-compatible homomorphism h′ = 〈f ′, g′〉 from β2 to β1. Let h′′ = 〈f ′′, g′′〉, where460

f ′′ equals f in dom (f) and f ′ in dom (f ′), and g” equals g in dom (g) and g′ in dom (g′).461

Using (η, η′)-compatibility of h and (η′, η′′)-compatibility of h′, it is easy to show that h′′ is462

an (η, η′′)-compatible homomorphism from α2 · β2 to α1 · β1, which concludes the proof of463

(L1). (L2) follows easily from the definition of v. For (L3), note that ∆1 C ∆1 (we choose464

the identity homomorphism), thus by (L1), we have that Γ1 ·∆1 C Γ2 ·∆1. By (L2), we have465

that Γ2 ·∆1 v Γ2 ·∆2, which concludes the proof.466

To show the first property, we proceed by induction on the length of the sequences467

justifying that Γ1 ≤η,η′ Γ2 and ∆1 ≤η′,η” ∆2, using (L1), (L2) and (L3) for the base cases.468

To show the second property, we follow the same proof schema, showing results similar469

to (L1)− (L3) where · is replaced by ∪. J470

I Remark. Thm. 27 justifies our definition of ≤η,η′ . Indeed, a more permissive definition471

would seem natural, but the first property of Thm 27 would fail. For instance, if Γ1 v Γ2472

and ∆1 Cη,η′ ∆2, we do not have in general that Γ1 ·∆1 ≤η,η′ Γ2 ·∆2.473

The main theorem of this section is Thm 28, stating that the refinement relation is stable474

under iteration.475

I Theorem 28 (Stability of refinement by _+). If Γ ≤η,η ∆ then there are bowtie choices476

./, ./′ and computation orders �,�′, for Γ and ∆ respectively, such that: Γ+
./,� ≤η,η ∆+

./′,�′ .477

Proof. To prove Thm. 28, it is enough to show the following properties.478

If Γ v ∆ then, for every bowtie choices ./, ./′, and every computation orders �,�′ for Γ479

and ∆ respectively, we have that Γ+
./,� v ∆+

./′,�′ .480

If Γ Cη,η ∆ then there are two bowtie choices ./, ./′ and two computation orders �,�′,481

for Γ and ∆ respectively, such that Γ+
./,� ≤η,η ∆+

./′,�′ .482
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The first property follows from B(Γ+
./,�) = B(Γ)+ for every bowtie choice ./ and order �.483

For the sake of clarity, we give here the proof of the second proposition in the case where484

Γ and ∆ are singletons of atomic boxes {α} and {β} respectively. The general case is treated485

in App. B. Let ./, ./′ be bowtie choices for α and β respectively, and let h = 〈f, g〉 be a486

homomorphism from β to α.487

Let us first treat the case where f−1(./) = {./′} (we say that α, β are bowtie compatible).488

This is illustrated by the boxes α, β of Fig. 13, where the bowties are the red nodes. If we489

decompose α and β at the level of their bowties, we get α = α1 · α2 and β = β1 · β2, where490

α2 · α1 and β2 · β1 are 1-1 boxes. We write e = e (α2 · α1) and f = e (β2 · β1). The boxes α+
./491

and β+
./′ are depicted in Fig. 13. Let us show that there is a homomorphism from β+

./′ to α+
./.492

The homomorphism h induces a homomorphism h1 from β1 to α1 and a homomorphism h2493

from β2 to α2 (Lem. 42 in App. B). Combining h1 and h1, we get almost a homomorphism494

from β+
./′ to α+

./ (See Fig. 13), we need only to show that KL− ` e ≤ f . But this follows from495

Prop. 6: indeed, we can combine h1 and h2 to get a homomorphism from β2 · β1 to α2 · α1.496

We have thus that α+
./ Cη,η β

+
./′ ((η, η)-compatibility is easy).497

Let us now treat the case where N := f−1(./) is not necessarily {./′} (N is illustrated498

by the red node of β in Fig. 14). Let γ be the box obtained from β by merging the nodes499

N (see Fig. 14). There are two bowtie choices for γ: a bowtie ./b inherited from β (blue in500

Fig. 14) and a bowtie ./r coming from the nodes of N (red in Fig. 14).501

Let h′ be the homomorphism from β to γ that maps each node (and each edge) to itself,502

except for the nodes of N which are mapped to ./r. If we consider the bowtie ./b for γ, then503

β and γ are bowtie compatible w.r.t. to h′, thus γ+
./b

C β+
./′ using the previous case.504

Let h′′ be the homomorphism from γ to α, which is exactly h except that it maps the505

node ./r to the bowtie ./ of α. If we consider the bowtie ./r for γ, then γ and α are bowtie506

compatible w.r.t. h′′, thus α+
./ Cη,η γ

+
./r

using the previous case again.507

Notice finally that γ+
./r
v γ+

./b
. To sum up, we have: α+

./ Cη,η γ
+
./r
v γ+

./b
C β+

./′ . J508

The last case in this proof explains the need to work with refinement (≤) rather than just509

homomorphisms (C): when starting from templates that are related by homomorphism and510

iterating them, the templates we obtain are not necessarily related by a single homomorphism,511

only by a sequence of homomorphisms and inclusions.512

7 Future work513

We have proven that KL− axioms are sound and complete w.r.t. the relational models of514

identity-free Kleene lattices, and thus also w.r.t. their language theoretic models, by the515

results from [3].516

Whether one can obtain a finite axiomatisation in presence of identity remains open.517

This question is important since handling the identity relation is the very first step towards518

handling tests, which are crucial in order to model the control flow of sequential programs519

precisely (e.g., as in Kleene algebra with tests [20]).520

An intermediate problem, which is still open to the best of our knowledge, consists in521

finding an axiomatisation for the fragment with composition, intersection and identity (not522

including transitive closure) [2, see errata available online].523
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Figure 15 Example of a box.
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Figure 16 Atomic boxes stemming from the
box of Fig. 15.

A Iteration of a template591

In this section, we address in detail the definitions relative to the construction of the iteration592

of a template.593

We have seen that there are two sources of non-determinism when computing the iteration594

of a template (Algorithm 11). The first is the bowtie choice and the second is the computation595

order. Let us introduce them more precisely.596

A.1 Bowtie choice for a template597

We have seen in Sec. 5.2 that the non-trivial connected component of an atomic box can be598

associated with a specific node called its bowtie (Lem.20). We do the same for non atomic599

boxes.600

I Definition 29 (Connected component of a box). If β =
〈−→
p , G,←−p

〉
is a box, we denote601

by C(β) the set of non-trivial connected components of G, which we call simply connected602

component of β.603

I Lemma 30 (Bowtie lemma [11, Lem. 7.1]). Let B =
〈−→
p , G,←−p

〉
be a box of type τ → τ .604

For every C ∈ C(β) there is a vertex c such that for every port p where −→p (p) ∈ C, all paths605

from −→p (p) to a maximal vertex of C visit c. We call such a vertex a bowtie for C.606

I Definition 31 (Bowtie choice for a template). A bowtie choice for a box is a function607

mapping a bowtie to every connected component.608

A bowtie choice for a template is a function mapping a bowtie to every connected609

component of every box.610

I Remark. When β is atomic, it has only one connected component, so we may identify the611

bowtie choice that maps this component to a node, with the node itself.612

I Example 32. Consider the box of Figure 15. It has two connected components. The first613

has two bowtie choices: the red and the green node. The second has only one bowtie choice,614

the blue node.615

I Notation 1. If α is an atomic box and ./ is a bowtie choice for α, then we can decompose616

α at the level of this bowtie to get two boxes such that α = α1 · α2. We write α ./= α1 · α2 for617

this decomposition. In Fig. 17, the box α can be decomposed at the level of its bowtie (the618

blue node) into α1 and α2.619



A. Doumane and D. Pous 18:19

α =

a

b b

b
a

A

B

C

D

E

A

B

C

D

E

α1 =

a

b

A

B

C

D

E

D

E

P

α2 = b

b
a

A

B

C

D

E

P

D

E

Figure 17 Decomposition of an atomic box.

A.2 Computation order620

Let us analyse computation order of algorithm 11 in the simple case where Γ = {α, β}. If621

supp (α) ( β then the algorithm starts necessarily by processing α. If supp (α)∩supp (β) = ∅,622

then the order in which the computation proceeds does not matter, and we will get the623

same result no matter if we start with processing α or β. The only case where we have a624

freedom to choose the computation order, and in which this order may affect the result is625

when supp (α) = supp (β). In general, to specify the computation order, it is enough to order626

the elements of Γ having the same support.627

I Definition 33 (Computation order). A computation order for an atomic template Γ is a628

partial order � on its elements such that if α � β then supp (α) = supp (β).629

A.3 Atomic template of a template630

To compute the iteration of a template, we start by decomposing its boxes into atomic ones.631

I Definition 34 (At(Γ)). Let β : σ → σ be a box. From each C ∈ C(β) stems an atomic box632

of the same type having C as a connected component. We set At(β) to be the set of atomic633

boxes stemming from its connected components.634

If Γ : σ → σ is a template we write At(Γ) for the set of boxes stemming from the635

connected components of the boxes of Γ.636

For instance, the boxes of Figure 16 are the boxes stemming from the connected compo-637

nents of the box of Figure 15.638

I Remark. Note that every bowtie choice for Γ induces a bowtie choice for At(Γ).639

I Definition 35. A computation order for a template Γ is a computation order for At(Γ).640

A.4 The iteration algorithm641

Fig. 18 shows the algorithm computing the iteration of an atomic template, parameterised642

by a bowtie choice and a computation order.643

If ./ is a bowtie choice and � is a computation order for Γ, we set Γ+
./,� := At(Γ)+

./,�.644

B Stability of ≤ under iteration645

In the whole section, we will work under the following proviso:646

I Proviso 1. We suppose that all templates are of type τ → τ and that all the box and647

template homomorphisms are (η, η)-compatible, where τ is a fixed type and η : τ → τ a fixed648

mapping. We will not write explicitly Cη,η for (η, η)-compatible homomorphisms but simply649
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Data: Atomic template Γ, a bowtie choice ./
and a computation order � for Γ

Result: A template Γ+
./,� such that

B(Γ+
./,�) = B(Γ)+

if Γ = ∅ then
Return ∅

else
Write Γ = ∆ ∪ {α} ∪ Σ such that
supp (∆) ⊆ supp (α), ∀α′ ∈ ∆ if
supp (α)′ = supp (α) then α′ � α, and
supp (Σ) ∩ supp (α) = ∅;
Set ./′:=./ (C), where C(α) = {C}.
Split α into α ./′= β · γ;
Return
(∆+ · Σ∗) ∪ (∆∗ · Σ+) ∪ (∆∗ · δ ·∆∗ · Σ∗),
where δ is the two-box template depicted
on the right.

end

β γ
(e (γ ·∆∗ · β))∗

Figure 18 Algorithm computing the iteration of an atomic template

C. All the theorems, propositions, lemmas of this section hold under this proviso, which will650

not be mentioned explicitly in their statements.651

In this section, we will show the following theorem:652

I Theorem 36. If ∆ C Γ then there are two bowtie choices ./, ./′ for ∆ and Γ respectively,653

and two computation orders �,�′ for ∆ and Γ respectively such that: ∆+
./,� ≤ Γ+

./′,�′ .654

To prove theorem 36, we will show that template homomorphisms can be decomposed into655

simpler template homomorphisms C1 and C2 (Def. 37, Def. 39, Prop. 7). It is thus enough656

to show Thm. 36 in the case where ∆ C1 Γ and ∆ C2 Γ, these results are precisely Prop. 8657

and Prop. 9.658

B.1 Decomposing C into C1 and C2659

Let us first define the template homomorphisms C1 and C2.660

I Definition 37 (C1). Let α, β be two boxes. We set α C1 β if there are bowtie choices661

./, ./′ for α and β respectively, and a box homomorphism h from β to α such that:662

If C ∈ C(β) then h(C) ∈ C(α).663

If C,D ∈ C(β) and C 6= D then h(C) 6= h(D).664

If C ∈ C(β) then h(./′ (C)) =./ (h(C)).665

If Γ,∆ are templates, we set Γ C1 ∆ if for every α ∈ Γ, there is β ∈ ∆ such that αC1 β.666

Figure 19 shows two boxes α, β such that α C1 β. Indeed, the blue connected component667

of β and its bowtie are mapped to the blue connected component of α and its bowtie. The668

same holds for the red connected component.669

To define the homomorphism C2, we need to define formally the operation of "merging"670

(or "identifying") nodes in a graph.671
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α =

β =

Figure 19 Boxes α, β such that αC1 β.

α =

β =

Figure 20 Boxes α, β such that αC2 β.

I Definition 38 (Identification of nodes in a graph). Let G = 〈V,E〉 be a graph and672

N1, . . . , Nk ⊆ V be pairwise disjoint sets of nodes. Let ≡ be the smallest equivalence relation673

on V containing all the pairs 〈n,m〉, such that ∃i ∈ [1, k], n,m ∈ Ni. We write G|≡{N1,...,Nk}674

for the graph 〈{[n] | n ∈ V } , E′〉 where [n] = {m | m ≡ n} and 〈[n], x, [m]〉 ∈ E′ if and only675

if 〈n, x,m〉 ∈ E.676

Let β =
〈−→
p , G,←−p

〉
is a box, and N1, . . . , Nk be pairwise disjoint sets of the nodes of G.677

We write β|≡{N1,...,Nk} for the box
〈−→
p ′, G|≡{N1,...,Nk},

←−
p ′
〉
where −→p ′ and ←−p ′ are defined by:678

−→
p ′(x) = [n] if −→p (x) = n and ←−p ′(x) = [n] if ←−p (x) = n.679

I Definition 39 (C2). Let α, β be two boxes. We set αC2 β if there is a bowtie choice ./680

for β and C,D ∈ C(β) such that when we set N = {./ (C), ./ (D)} we have α = β|≡{N}.681

If Γ,∆ are templates, we set Γ C2 ∆ if Γ = Σ ∪ {α} and ∆ = Σ ∪ {β} such that αC2 β.682

In other words, αC2β if α is obtained by "merging" the bowties of two connected components683

of β. Figure 20 show two boxes α, β such that αC2 β.684

To show that C can be decomposed into C1 and C2 (Prop. 7), we need the following685

lemma, which says that the converse image of a connected component by a homomorphism686

is a collection of connected components.687

I Lemma 40. Let α, β be two boxes and h be a box homomorphism from β to α. For every688

C ∈ C(α), there is a set {C1, . . . , Cn} ⊆ C(β) such that h−1(C) = C1 ∪ · · · ∪ Cn.689

Proof. Let C ∈ C(α). By contradiction suppose that there is a connected component690

C ′ ∈ C(β) and two nodes x, y ∈ C ′ such that 〈x, a, y〉 is a vertex of the graph of α, h(x) ∈ C691

and h(y) /∈ C. Since h is a homomorphism, we have that there is a vertex in the graph of β692

between h(x) and h(y), thus h(y) ∈ C. This gives us a contradiction. J693

Let us show now that we can indeed decompose C into C1 and C2.694

I Proposition 7. We have that C ⊆ (C1 ∪C2)+, where the operation _+ is the transitive695

closure on relations.696
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Figure 21 Decomposing αC β into αC1 γ, γ C+
2 δ and δ C1 β.

Proof. Let us show that if Γ C ∆ then there is Σ1, . . . ,Σn such that Σ1 = Γ, Σn = ∆ and697

for every i ∈ [1, n− 1] either Σi C1 Σi+1 or Σi C2 Σi+1. For that, we proceed by induction698

on the size of Γ.699

Let α ∈ Γ and set Σ = Γ \ {α}. Since Γ C ∆, there is a box β ∈ ∆ such that α C β.700

Let h be a homomorphism from β to α and let ./, ./′ be two bowtie choices for α and β701

respectively.702

Let us show first that there are two boxes γ and δ such that αC1 γ, γC+
2 δ and δC1β. We703

will illustrate the construction of γ and δ by Figure 21. In this figure, α has two connected704

components C and D, and β has three connected components C1, C2 and D1 such that705

h(C1 ∪C2) = C and h(D1) = D. The bowtie choices for α and β are illustrated by the nodes706

in the middle of each connected component.707

Let us construct δ. By Lem. 40, we know that for every connected component C of α,
h−1(C) = C1 ∪ · · · ∪ Cn where Ci ∈ C(β). We set C−1 = {C1, . . . , Cn}. For every C ′ ∈ C−1

we set:
b(C,C ′) = h−1(./ (C)) ∩ C ′

Let δ = β|≡{b(C,C′) | C∈C(α),C′∈C−1}. As illustrated by Figure 21, δ is obtained from β by708

merging in every connected component the nodes that are mapped to a bowtie of α by h.709

The box δ has two possible bowtie choices: one inherited from the bowtie ./′ of β (the710

black bowties of δ in Figure 21) and another coming from the nodes b(C,C ′) that have being711

merged (the red and the blue bowties for δ in Figure 21). We call the former ./1 and the712

later ./2.713

If we take ./1 as a bowtie choice for δ, then we have easily that δ C1 β.714



A. Doumane and D. Pous 18:23

Let us construct γ now. We set ./−1 (C) = h−1(./ (C)). Note that we have ./−1 (C) =⋃
C′∈C−1 b(C,C ′). We let

γ = β|≡{./−1(C) | C∈C(α)}

In other words, if we denote by [C] the connected component of δ coming from the connected715

component C of β, then γ is obtained by identifying every two nodes ./2 ([C1]) and ./2 ([C2]),716

where C1, C2 ∈ C−1 and C ∈ C(α). If we call γ1, . . . , γk these intermediate boxes where we717

merged only two nodes, we have that γ C2 δ1 C2 . . . C2 δk C2 δ. Figure 21 illustrates the718

construction of γ.719

If we consider the bowtie choice ./ of α and the bowtie choice ./3 of γ induced by merging720

the nodes ./−1 (C) of β (The red node of γ in Figure 21), it is easy to see that αC1 γ.721

Let us make a final observation before showing the general result. Notice that if B,B′722

are two boxes, and Θ is a template, then B C1 B
′ entails B ∪ Θ C1 B

′ ∪ Θ and B C2 B
′

723

entails B ∪Θ C2 B
′ ∪Θ. Thus if B(C1 ∪C2)+B′ then (B ∪Θ)(C1 ∪C2)+(B′ ∪Θ).724

Let us go back to the proof of our result. Recall that Γ = Σ ] {α}, that β ∈ ∆, and that725

α(C1 ∪C2)+β. By the remark above, we have that Γ(C1 ∪C2)+({β} ∪ Σ). Since Γ C ∆ we726

have also that Σ C ∆, thus by induction hypothesis we have Σ(C1 ∪C2)+∆, and again by727

the remark above, we have that (Σ ∪ {β})(C1 ∪C2)+∆, which concludes the proof. J728

B.2 C1 is stable under iteration729

Let us show now that C1 is stable under iteration:730

I Proposition 8. If ΓC1 ∆ then there are two bowtie choices ./, ./′ and two template orders731

�,�′ for Γ and ∆ respectively such that: Γ+
./,� ≤ ∆+

./′,�′ .732

To show Prop. 8, we need the following lemma.733

I Lemma 41. If α1, β1, α2, β2 are atomic boxes such that α1 C β1 and α2 C β2 then:734

supp (α1) ⊆ supp (α2)⇒ supp (β1) ⊆ supp (β2).735

supp (α1) ∩ supp (α2) = ∅ ⇒ supp (β1) ∩ supp (β2) = ∅.736

Proof. To show this result, let us make first the following observation. If α, β are atomic
boxes such that αC β then:

p ∈ supp (β) if and only if η(p) ∈ supp (α) .

Let us see why this observation holds. We set α =
〈−→
p α, G,

←−
p α
〉
and β =

〈−→
p β , H,

←−
p β
〉
, and737

let h be a homomorphism from β to α.738

Suppose by contradiction that there is p ∈ supp (β) such that η(p) /∈ supp (α). We739

set v = −→p β(p) and w = −→p α(η(p)). By (η, η)-compatibility, we have h(v) = w. Since740

p ∈ supp (β), −→p β(p) is a node of a non-trivial component of G, thus there is an edge 〈v, a, u〉741

in G. Since h is a homomorphism from β to α we should have an edge 〈w, b, h(u)〉 in H. But742

since η(p) /∈ supp (α), we have that w is an isolated node of H, this gives us a contradiction.743

Conversely, if p /∈ supp (β) then v := −→p α(p) is an isolated node of β, thus h(v) is an744

isolated node by definition of a box homomorphism. By (η − η)-compatibility, we have that745
−→
p α(η(p)) = h(v), thus η(p) /∈ supp (α).746

Let us go back to the proof of our lemma. Suppose that supp (α1) ⊆ supp (α2) and let747

p ∈ supp (β1). By the observation above, we have that η(p) ∈ supp (α1) thus η(p) ∈ supp (α2).748

By the above observation again, we have η(p) ∈ supp (α2).749
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Suppose that p ∈ supp (β1) ∩ supp (β2). By the above observation, we have that η(p) ∈750

supp (α1) ∩ supp (α2). J751

I Lemma 42. Let α, β be two atomic boxes and h be a homomorphism from β to α. Let752

./, ./′ be bowtie choices for α, β, and let α ./= α1 · α2 and β ./′= β1 · β2. If h(./′) =./ then753

α1 C β1 and α2 C β2.754

Proof. We show that the homomorphism h induces a homomorphism from βi to αi, for755

i = 1, 2. For that we only need to show that h maps the graph of β1 to the graph of α1 and756

maps the graph of β2 to the graph of α2. In other words, for i = 1, 2:757

n is a node of βi if and only if h(n) is a node of αi758

Suppose (by symmetry) that there is a node n of β1 such that h(n) ∈ α2. There is a path759

from n to ./ in the graph of β. This path can be mapped by h to a path from h(n) to ./′ in760

the graph of α. This is not possible by well-typedness of the α. J761

Let us show now Prop. 8.762

Proof of Prop. 8. It is not difficult to see that if Γ C1 ∆ then At(Γ) C1 At(∆), thus we763

suppose w.l.o.g. that Γ and ∆ are atomic.764

Let ./, ./′ be the bowtie choices for Γ and ∆ respectively, witnessing that ΓC1 ∆. We set765

Γ = {α1, . . . , αn}. Since Γ C ∆, we have that for every i ∈ [1, n], there is βi ∈ ∆ such that766

αi C1 βi. We set Σ = {β1, . . . , βn}. Since Σ ⊆ ∆, it is enough to show that there are �,�′767

such that Γ+
./,� ≤ Σ+

./′,�′ .768

Let � be a template order for Γ. Let us define a template order �′ for Σ. Note that if
supp (βi) = supp (βj), by Lem. 41 we cannot have supp (αi)∩supp (αj) = ∅, thus by Lem. 21,
either supp (αi) ⊆ supp (αj) or supp (αj) ⊆ supp (αi). We set define �′ as follows:

βi �′ βj iff supp (αi) ( supp (αj) or supp (αi) = supp (αj) and αi � αj

Let us show now, by induction on Γ, that Γ+
./,� ≤ Σ+

./′,�′ . We decompose Γ into Γ1∪{αm}∪Γ2769

such that:770

1. ∀α ∈ Γ1, supp (α) ⊆ supp (αi).771

2. If α � αm then α ∈ Γ1.772

3. ∀α ∈ Γ2, supp (α) ∩ supp (αm) = ∅.773

We set Γ1 = {αk}k∈I , Γ2 = {αk}k∈J and Σ1 = {βk}k∈I , Σ2 = {βk}k∈J . We have that774

Σ = Σ1∪{βm}∪Σ2. Let us show that this decomposition of Σ is relevant for the computation775

of its iteration, in particular that βm can be chosen as a pivot.776

∀β ∈ Σ1, supp (β) ⊆ supp (βm). (By item 1 above and Prop. 41)777

If β �′ βm then β ∈ Σ1. (Indeed, by definition of �′, if βj �′ βm then supp (αj) ⊆778

supp (αm) thus αj ∈ Γ1 and then βj ∈ Σ1.)779

∀β ∈ Σ2, supp (β) ∩ supp (βi) = ∅. (By item 3 above and Prop. 41).780

To compute the iteration of Γ and Σ, we decompose the pivots αm and βm at the level of781

their bowtie choices: αm
./= σ1 · σ2 and βm

./′= δ1 · δ2.782

αm = σ1 σ2 βm = δ1 δ2

783
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α = δC σC

δD σD

β =
δC σC

δD σD

Figure 22 Boxes α, β in the proof of
Prop. 9

α+
C·D =

δC σC

δD σD

β+
C · β

+
D =

δC σC

δD σD

(σC·D · Γ∗
C·D · δC·D)∗

(σC · Γ∗
C · δC)∗

(σD · Γ∗
D · δD)∗

Figure 23 Boxes α+
C·D and β+

C ·β
+
D of the proof of Prop. 9

If we set Γ+
i = (Γi)+

./,� and Σ+
i = (Σi)+

./′,�′ , for i = 1, 2 then we have:

Γ+
./,� = (Γ+

1 · Γ∗2) ∪ (Γ∗1 · Γ+
2 ) ∪ (Γ∗1 · αm+ · Γ∗1 · Γ∗2)

Σ+
./′,� = (Σ+

1 · Σ∗2) ∪ (Σ∗1 · Σ+
2 ) ∪ (Σ∗1 · βm

+ · Σ∗1 · Σ∗2)

Where αm+ are and βm+ are the following boxes.

α+
m = σ1 σ2

(e (σ2 · Γ∗
1 · σ1))∗

β+
m = δ1 δ2

(e (δ2 · Σ∗
1.δ1))∗

By induction hypothesis, we have that Γ+
1 ≤ Σ+

1 and Γ+
2 ≤ Σ+

2 . Since ≤ is stable by set784

union and composition, it is enough to show that α+
m ≤ β+

m to conclude. More precisely, we785

will show that α+
m C β+

m.786

Since αm C1 βm, we know by Lem. 42 that σ1 C δ1 and σ2 C δ2. To show that α+
m C β+

m,787

it is enough to show that KL− ` (e (σ2 · Γ∗1 · σ2))+ ≤ (e (δ2 · Σ∗1 · δ1))+ or simply that788

KL− ` e (σ2 · Γ∗1 · σ1) ≤ e (δ2 · Σ∗1 · δ1). For that observe that σ2 ·Γ∗1 ·σ1 ≤ δ2.Σ∗1 · δ1 (because789

σ2 C δ2, Γ∗1 ≤ Σ∗1 and σ1 C δ1). We can thus conclude by Prop. 6. J790

B.3 C2 is stable under iteration791

I Proposition 9. If Γ C2 ∆ then there are two bowtie choices ./, ./′ and two computation792

orders �,�′ for Γ and ∆ respectively such that: Γ+
./,� ≤ ∆+

./′,�′ .793

Proof. Since Γ C2 ∆, we can write Γ = Σ ∪ {α} and ∆ = Σ ∪ {β} such that αC2 β. This794

means that there is a bowtie choice ./′ for β, and two connected components C and D of the795

graph of β, such that α is obtained by merging ./ (C) and ./ (D). We denote by C ·D the796

connected component of α obtained by merging C and D at the level of ./ (C) and ./ (D).797

(see Figure 22)798

Let us define a bowtie choice ./ for α. For the connected component C · D, we set799

./ (C · D) to be the node resulting from the merge of ./′ (C) and ./′ (D). For the other800
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connected components, ./ and ./′ coincide. We extend ./ and ./′ to bowtie choices for Γ and801

∆.802

Let βC , βD and αC·D be the atomic boxes stemming respectively from the connected803

component C,D and C ·D. Observe that we can write At(Γ) and At(∆) as At(Γ) = Θ∪{αC·D}804

and At(∆) = Θ ∪ {βC , βD}.805

Let � be a template order on At(Γ) for which αC·D is minimal. Let �′ be a template806

order on At(∆) for which βC and βD are maximal elements.807

We set ΓC = {δ | δ ∈ Θ, supp (δ) ⊆ supp (αC)} and ΓD = {δ | δ ∈ Θ, supp (δ) ⊆ supp (αD)}.
The computation of At(Γ)+

./,� starts with the computation of (ΓC∪ΓD∪{αC·D})+
./,� and that

of At(∆)+
./′,�′ starts with the computation of (ΓC ∪ ΓD ∪ {βC , βD})+

./′,�′ . Both carry on in
exactly the same way, using respectively (ΓC∪ΓD∪{αC·D})+

./,� and (ΓC∪ΓD∪{βC , βD})+
./′,�′

as black-boxes. It is thus enough to show that:

(ΓC ∪ ΓD ∪ {αC·D})+
./,� ≤ (ΓC ∪ ΓD ∪ {βC , βD})+

./′,�′

We decompose βC , βD and αC·D as follows (See Figure 22):

βC
./′= δC · σC

βD
./′= δD · σD

αC·D
./= δC·D · σC·D

Since � and �′ (resp. ./ and ./′) coincide on the elements of Θ, we will write Γ+
C (resp. Γ+

D)808

for the iteration of ΓC (resp. ΓD) under the bowtie choice ./ and the template order � or809

under the bowtie choice ./′ and the template order �′.810

Since supp (ΓC)∩ supp (ΓD) = ∅, we have that Γ+
C ·Γ

+
D = Γ+

D ·Γ
+
C , we denote this product

simply by Γ+
C·D. We have also that:

(ΓC ∪ ΓD ∪ {αC·D})+
./,� = Γ+

C·D ∪ (Γ∗C·D · α
+
C·D · Γ∗C·D)

(ΓC ∪ ΓD ∪ {βC , βD})+
./,� ⊇ Γ+

C·D ∪ (Γ∗C·D · β
+
C · β

+
D · Γ∗C·D)

Where α+
C·D and β+

C · β
+
D are the boxes depicted in Figure 23. It is not difficult to see that811

α+
C·D C β+

C · β
+
D, whence the result. J812


