
HAL Id: hal-01780844
https://hal.science/hal-01780844v2

Submitted on 12 Sep 2018 (v2), last revised 12 Sep 2018 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Treewidth-Two Graphs as a Free Algebra
Christian Doczkal, Damien Pous

To cite this version:
Christian Doczkal, Damien Pous. Treewidth-Two Graphs as a Free Algebra. Mathematical Founda-
tions of Computer Science, Aug 2018, Liverpool, United Kingdom. �10.4230/LIPIcs.MFCS.2018.60�.
�hal-01780844v2�

https://hal.science/hal-01780844v2
https://hal.archives-ouvertes.fr

Treewidth-Two Graphs as a Free Algebra∗

Christian Doczkal
Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, France
christian.doczkal@ens-lyon.fr

Damien Pous
Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, France
damien.pous@ens-lyon.fr

Abstract
We give a new and elementary proof that the graphs of treewidth at most two can be seen as a
free algebra. This result was originally established through an elaborate analysis of the structure
of K4-free graphs, ultimately reproving the well-known fact that the graphs of treewidth at
most two are precisely those excluding K4 as a minor. Our new proof is based on a confluent
and terminating rewriting system for term-labeled graphs and does not involve graph minors
anymore. The new strategy is simpler and robust in the sense that it can be adapted to subclasses
of treewidth-two graphs, e.g., graphs without self-loops.

2012 ACM Subject Classification Mathematics of computing→ Graph theory · Theory of com-
putation→ Rewrite systems · Computing methodologies→ Symbolic and algebraic manipulation

Keywords and phrases Treewidth, Universal Algebra, Rewriting

Supplement Material https://www.ens-lyon.fr/damien.pous/covece/tw2rw

Funding This work has been funded by the European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 programme (CoVeCe, grant agreement No 678157). This work
was supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within
the program "Investissements d’Avenir" (ANR-11-IDEX-0007) operated by the French National
Research Agency (ANR).

1 Introduction

The notion of treewidth [9] is a cornerstone of algorithmic graph theory and parameterised
complexity: treewidth measures how close a graph is to a forest, and many problems that
can be solved in polynomial time on forests but are NP-complete on arbitrary graphs remain
polynomial on classes of graphs of bounded treewidth. This is the case for instance for the
graph homomorphism problem (and thus k-coloring) [13, 5, 14].

Similar to trees, graphs of bounded treewidth can be described by a variety of syn-
taxes [8]. Among the open problems, there is the question, for graphs of a given treewidth,
of finding a syntax making it possible to get a finite and equational axiomatisation of graph
isomorphism [8, page 118]. This question was recently answered positively for directed
multigraphs of treewidth at most two [7].

The syntax used in [7] is comprised of two binary operations: series and parallel compo-
sition [12], their neutral elements, and a unary converse operation. In this syntax, several
terms may denote the same graph (up-to isomorphism); the key result of [7] is that the corre-

∗ Extended version of the paper that appeared in Proc. MFCS 2018 [11], with additional proofs.

mailto:christian.doczkal@ens-lyon.fr
mailto:damien.pous@ens-lyon.fr
https://www.ens-lyon.fr/damien.pous/covece/tw2rw

60:2 Treewidth-Two Graphs as a Free Algebra

sponding equational theory is characterized by twelve equational axioms, defining so-called
2p-algebras.

To get this result, the authors define a function t from graphs to terms and establish
that t is a isomorphism of 2p-algebras. The function t is defined using an elaborate anal-
ysis of the structure of treewidth-two graphs, which requires complicated graph-theoretical
arguments that are not directly related to the proposed axiom system. For instance they
ultimately reprove the well-known fact that the graphs of treewidth at most two are pre-
cisely those graphs excluding K4 (the complete graph with four vertices) as a minor [12].
The authors also make t as canonical as possible in order to facilitate the proof that on
isomorphic graphs, t returns terms that are congruent modulo the axioms. This comes at
the price of complicating the proofs that t is a homomorphism of 2p-algebras.

In the present paper, we reprove the result from [7] using a completely different approach
inspired by [3]: instead of using an elaborate top-down analysis, we design a graph rewriting
system on term-labeled graphs and use it to reduce graphs, in a bottom-up fashion, to a
shape where a term can be read off. This process is highly nondeterministic but can be
shown confluent modulo the axioms. This results in big simplifications: tree decompositions
are only used to show that all treewidth-two graphs can be reduced to the point where a
term can be read off, and minors are not used at all in this new approach.

Another important feature of this new proof is that it makes it possible to discover the
required axioms almost automatically, mainly during the confluence proof. It is also more
robust: it allows us to solve two problems left open in [7], characterizing connected graphs
as a free-algebra, and characterizing self-loop free graphs as a free-algebra, in both cases for
graphs of treewidth at most two.

The first problem was solved recently [16] using a purely model-theoretic argument: 2p-
algebras form a conservative extension of 2pdom-algebras, the counterpart of 2p-algebras for
connected graphs. Our strategy makes it possible to proceed the other way around: we
prove the main result for connected graphs and 2pdom-algebras (Sections 3 to 5), before
extending it to potentially disconnected graphs and 2p-algebras using a simple and mainly
algebraic argument (Section 6).

The second problem was still open. We solve it using a slight variation of the presented
proof, which actually leads us to the discovery of the required axioms (Section 7).

2 Preliminaries: 2p- and 2pdom-algebras

We recall the definitions of 2p- and 2pdom-algebras [7, 16]. We let a, b . . . range over the
letters of a fixed alphabet A. We consider labeled directed graphs with two designated
vertices. We just call them graphs in the sequel.

I Definition 1. A graph is a tuple G = 〈V,E, s, t, l, ι, o〉, where V is a finite set of vertices,
E is a finite set of edges, s, t : E → V are maps indicating the source and target of each
edge, l : E → A is a map indicating the label of each edge, and ι, o ∈ V are the designated
vertices, respectively called input and output.

Note that we allow multiple edges between two vertices, as well as self-loops.

I Definition 2. A homomorphism from G = 〈V,E, s, t, l, ι, o〉 to G′ = 〈V ′, E′, s′, t′, l′, ι′, o′〉
is a pair h = 〈f, g〉 of functions f : V → V ′ and g : E → E′ that respect the various
components: s′ ◦ g = f ◦ s, t′ ◦ g = f ◦ t, l = l′ ◦ g, ι′ = f(ι), and o′ = f(o).

A (graph) isomorphism is a homomorphism whose two components are bijective func-
tions. We write G ' G′ when there exists an isomorphism between graphs G and G′.

C. Doczkal and D. Pous 60:3

1 , G ·H , G H G◦ , G

> , G ‖H ,
G

H
dom(G) , G

a ,
a

Figure 1 Graph operations

u ‖ (v ‖w) = (u ‖ v) ‖w (A1)
u ‖ v = v ‖u (A2)

u·(v·w) = (u·v)·w (A4)
u·1 = u (A5)
u◦◦ = u (A6)

(u ‖ v)◦ = u◦ ‖ v◦ (A7)
(u·v)◦ = v◦·u◦ (A8)

1 ‖ 1 = 1 (A9)
dom(u ‖ v) = 1 ‖u·v◦ (A10)

u ‖> = u (A3)
u·> = dom(u)·> (A11)

(1 ‖u)·v = (1 ‖u)·> ‖ v (A12)

dom(u·v) = dom(u·dom(v)) (A13)
dom(u)·(v ‖w) = dom(u)·v ‖w (A14)

Figure 2 Axioms of 2p-algebras (A1-A12) and 2pdom-algebras (A1,A2,A4-A10,A13,A14)

We consider the following signatures for terms and algebras:

Σ = {·2, ‖ 2,_
◦
1, 10} Σ> = Σ ∪ {>0} Σdom = Σ ∪ {dom1}

We usually omit the · symbol and we assign priorities so that the term (a · (b◦)) ‖ c can
be written just as ab◦ ‖ c.

Graphs form algebras for those signatures by considering the operations depicted in
Figure 1, where input and outputs are represented by unlabelled ingoing and outgoing
arrows. The binary operations (·) and (‖) respectively correspond to series and parallel
composition, converse (_◦) just exchanges input and output, and domain (dom(_)) relocates
the output to the input.

A graph is called a test if its input and output coincide. The parallel composition of
a graph with a test merges the input and output of the former graph. For instance, the
graph a ‖ 1 consists of a single vertex with a self-loop labeled with a. Also note that the
graph dom(G) is isomorphic to the graph G·> ‖ 1. For Σ>-terms, we will therefore consider
dom(u) to be an abbreviation for u>‖ 1.

I Definition 3. A 2p-algebra is a Σ>-algebra satisfying axioms A1-A12 from Figure 2. A
2pdom-algebra is a Σdom-algebra satisfying axioms A1,A2,A4-A10,A13,A14 from Figure 2.

I Lemma 4. Every 2p-algebra is a 2pdom-algebra (with dom(u) , u>‖ 1).

Proof. This easy result is implicitly proved in [16]; Coq proofs scripts are available [10]. J

I Proposition 5. Graphs (up to isomorphism) form a 2p-algebra.

I Proposition 6. Connected graphs form a subalgebra of the Σdom-algebra of graphs.

60:4 Treewidth-Two Graphs as a Free Algebra

Given Σ>-terms u, v with variables in A, we write 2p ` u = v when the equation is
derivable from the axioms of 2p-algebra (equivalently, when the equation universally holds
in all 2p-algebras). Similarly for Σdom-terms and 2pdom-algebras.

By interpreting a letter a ∈ A as the graph a in Figure 1, we can associate a graph g(u) to
every term over the considered signatures. By Proposition 5, 2p ` u = v entails g(u) ' g(v)
for all Σ>-terms u, v and similarly for Σdom-terms and 2pdom-algebras (using Lemma 4).

I Definition 7. A Σ>-term u is called a test if 2p ` u ‖ 1 = u. A Σdom-term u is called a
test if 2pdom ` u ‖ 1 = u. We write T for the set of tests and N for the set of non-tests. We
let α, β, and γ range over terms that are tests.

Thanks to converse being an involution, there is a notion of duality in 2p-algebras: a valid law
remains so when swapping the arguments of products and replacing dom(u) with dom(u◦).

I Lemma 8. The following laws hold in all 2pdom-algebras.
1. dom(u) ‖ 1 = dom(u) (dom(u) is a test)
2. α◦ = α

3. αβ = α ‖β = βα

4. (u ‖ v)α = u ‖ vα

Proof. As is standard for involutive monoids, we have 1◦ = 1 and, therefore, dom(α) = α

by (A10). We then reason as follows:
1. dom(u) = dom(u)(1 ‖ 1) = dom(u)1 ‖ 1 = dom(u) ‖ 1
2. α◦ = (α ‖ 1)◦ = 1 ‖ 1α◦ = dom(1 ‖α) = dom(α) = α

3. By commutativity of ‖ , it suffices to prove the first equation (using Claim (4)):
αβ = (α ‖ 1)β = α ‖ 1β = α ‖β

4. We show the dual: α(u ‖ v) = dom(α)(u ‖ v) = dom(α)u ‖ v = αu ‖ v J

I Remark. Lemma 8 is implicitly proved in [16], and Coq proofs scripts are available [10]. We
nevertheless provide a proof here for the sake of completeness. Also note that similar facts
were already proven for 2p-algebra in [7] but that we need proofs in 2pdom-algebras here.

I Lemma 9 ([7, Proposition 1]). The following laws hold in all 2p-algebras
1. u>v ‖>w> = u>w>v
2. uv ‖>w> = (u ‖>w>)v

3. >u◦> = >u>
4. α>β ‖u = αuβ

I Lemma 10. A Σdom- or Σ>-term u is a test iff g(u) is a test.

Proof. The direction from left to right follows with Proposition 5. The converse direction
follows by induction on u using the lemmas above. We show the case for uv. If g(uv) is test,
then both g(u) and g(v) must be tests and we have 2pdom ` u ‖ 1 and 2pdom ` v ‖ 1 = v.
Thus 2pdom ` uv ‖ 1 = (u ‖ 1)(v ‖ 1) ‖ 1 = (u ‖ 1) ‖ (v ‖ 1) ‖ 1 = (u ‖ 1) ‖ (v ‖ 1) = uv J

One useful consequence of the lemma above is that uv is a test iff both u and v are tests
and u ‖ v is test if either u or v is a test. Further, A ⊆ N , i.e., letters are non-tests.

We conclude this preliminary section by defining the subalgebra of treewidth-two graphs.

I Definition 11. A simple graph is a pair 〈V,R〉 consisting of a finite set V of vertices and
an irreflexive and symmetric binary relation R on V . The skeleton of a graph G is the simple
graph obtained from G by forgetting input, output, labeling, self loops, and edge directions
and multiplicities. The strong skeleton of a graph is the skeleton of G with an additional
edge connecting ι and o.

I Definition 12 ([9]). Let G be a simple graph. A tree decomposition of G is a tree T where
each node t ∈ T is labeled with a set of vertices Bt such that:

C. Doczkal and D. Pous 60:5

1. For every vertex x of G, the set of nodes t such that x ∈ Bt is nonempty and connected
in T (i.e., forms a subtree)

2. For every xy-edge, there exists some t such that {x, y} ⊆ Bt.
The width of a tree decomposition is the size of its largest set Bt minus one, and the treewidth
of a graph is the minimal width of a tree decomposition for this graph. The simple graphs
of treewidth at most one are the forests. We write TW2 for the collection of graphs whose
strong skeleton has treewidth at most two.

I Proposition 13 ([7]). TW2 forms a subalgebra of the Σ>-algebra of graphs.

I Corollary 14. For every term u, g(u) ∈ TW2.

The main results about 2p- and 2pdom-algebras, which we reprove in this paper, are
that TW2 (up to isomorphism) forms the free 2p-algebra (over A) [7] and that the connected
graphs in TW2 form the free 2pdom-algebra [16]. As explained in the introduction, we start
with the connected case, which we then extend to deal with disconnected graphs.

3 A Confluent Rewriting System for Term-labeled Graphs

The rewriting system we define to extract terms from graphs works on a generalised form
of graphs, whose edges are labeled by terms rather than just letters, and whose vertices are
labeled by tests.

We work exclusively with Σdom-terms and connected graphs in Sections 3 to 5; for these
sections we thus abbreviate 2pdom ` u = v as u ≡ v.

I Definition 15. A term-labeled graph is a tuple G = 〈V,E, s, t, l, ι, o〉 that is a graph except
that l is a function from V] E to Σdom-terms (we assume V and E to always be disjoint)
such that l(x) ∈ T for vertices x and l(e) ∈ N for edges e. We write exp(G) for the expansion
of G obtained by replacing every edge e with g(l(e)) and every vertex x with g(l(x)).

Restricting edge labels to non-tests ensures that replacing edges by the graphs described by
their labels does not collapse source and target of the edge. Similarly, replacing vertices by
graphs is only meaningful if the replacement is a test.

I Example 16. A term-labeled graph and its expansion:

exp

 a b

cc◦

1
ef ‖ 1

d ‖ 1
 =

a b

c c

d

e
f

We will compare term-labeled graphs using a notion of isomorphism where labels are
compared modulo 2pdom-axioms. A subtlety here is that we should consider as equivalent
two graphs where one is obtained from the other by reversing a u-labeled edge and labeling
it with u◦ (this operation preserves the expansion). The following predicate, which we use
in the definitions below, captures this idea in a formal way: L(x, y, e, u) means that e can
be seen as a u-labeled xy-edge, up to ≡.

L(x, y, e, u) , (s(e) = x ∧ t(e) = y ∧ l(e) ≡ u) ∨ (s(e) = y ∧ t(e) = x ∧ l(e) ≡ u◦)

I Definition 17. Two term-labeled graphs G = 〈V,E, s, t, l, ι, o〉 andH = 〈V ′, E′, s′, t′, l′, ι′, o′〉
are weakly isomorphic, written G ∼= H, if there is a pair of bijective functions 〈f, g〉 satisfying
1. f(ι) = ι′ and f(o) = o′.

60:6 Treewidth-Two Graphs as a Free Algebra

(1) u vα
7→ uαv

(2) uα β
7→

α·dom(u·β)

(3)
u

v
7→

u ‖ v

(4)
u

α
7→

α(u ‖ 1)

Figure 3 Rewriting system for term-labeled graphs. The square vertices may have additional
incident edges. The circular vertices (i.e., those that are removed) must be distinct from input and
output and may not have other incident edges.

2. For all vertices x ∈ V , l(x) ≡ l′(f(x)).
3. For all edges e ∈ E and e′ ∈ E′ such that g(e) = e′, L(s′(e′), t′(e′), e′, l(e)).

I Example 18. Weakly isomorphic graphs always have isomorphic expansions. However,
the converse is not true: all three graphs below have isomorphic expansions, but only the
first two are weakly isomorphic.

a b◦

c

1 1
1 ‖ d

∼=
a b

c

1 1
d ‖ 1

6∼=

a(d ‖ 1)b

c

1 1

We now define the rewriting system on term-labeled graphs, as depicted in Figure 3.

I Definition 19. Let G = 〈V,E, s, t, l, ι, o〉 be a term-labeled graph. We write G 7→ G′ if G′
can be obtained from G by applying one of the following rules.
1. If l(x) = α, L(x1, x, e1, u) and L(x, x2, e2, v) where x /∈ {ι, o, x1, x2} and e1 and e2 are

the only incident edges of x, then replace e1 and e2 with an uαv-labeled edge from x1
to x2 and remove x.

2. If l(x) = α, l(y) = β and L(x, y, e, u) where y /∈ {ι, o} and e is the only edge incident to
y, then change the label of x to α·dom(u·β) and remove y and e.

3. If L(x, y, e1, u) and L(x, y, e2, v) then replace e1 and e2 with a (u ‖ v)-labeled xy-edge.
4. If s(e) = t(e) = x, l(x) = α and l(e) = u, then assign label α(u ‖ 1) to x and remove e.
It is straightforward to verify that 7→ preserves the requirements on edge and vertex labels
from Definition 15. We write for the reflexive transitive closure of 7→ up to ∼= (i.e., G H

iff either G ∼= H or there exists a sequence G ∼= G1 7→ G2 ∼= G3 7→ . . . 7→ Gn ∼= H).

I Lemma 20. The relation 7→ is terminating.

I Lemma 21. If G 7→ G′, then exp(G) ' exp(G′).

I Lemma 22. If G ∼= H and G 7→ G′, then there exists H ′ such that H 7→ H ′ and G′ ∼= H ′.

We now show that the relation 7→ is locally confluent up to weak isomorphism. The proof
is fundamental: while closing the various critical pairs, we rediscover most of the axioms of
2pdom-algebras. Note that for rules (1) and (3) we do not assume that the square vertices
are distinct. This introduces some critical pairs (e.g, between rules 3 and 4), but ensures
that reductions are preserved in contexts that collapse input and output (Lemma 30 below).

I Lemma 23 (Local Confluence). If G1 ←[G 7→ G2, then there exist G′1 and G′2 such that
G1 7→ G′1, G2 7→ G′2 and G′1 ∼= G′2.

Proof. If the redexes do not overlap, we can reduce G1 and G2 to the same graph in one
step. It remains to analyze the critical pairs. The nontrivial interactions are as follows:

C. Doczkal and D. Pous 60:7

uα β uα β α

Figure 4 Atomic Graphs

Rules 1 and 2 can interact as follows:

uαvγ β
← [u vγ α β

7→ uγ αdom(vβ)

After applying rule 2 on both sides, it suffices to show dom(uαvβ) ≡ dom(uαdom(vβ)),
which is an instance of (A13).
Rules 1 and 3 can interact as follows: uαv◦

γ
← [

u

v

γ α
7→

u ‖ vγ α

After applying rule 4 on the left and rule 2 on the right, it suffices to show that we
have uαv◦ ‖ 1 ≡ dom((u ‖ v)α). We prove it as follows using Lemma 8(4) and (A10):
dom((u ‖ v)α) ≡ dom(u ‖ vα) ≡ 1 ‖u(vα)◦ ≡ uαv◦ ‖ 1.
Rules 3 and 4 can interact as follows:

u ‖ v

γ
← [

u v

γ
7→

v

γ(u ‖ 1)
After applying rule 4 on both sides, it suffices to show u ‖ v ‖ 1 ≡ (u ‖ 1)(v ‖ 1). Since
v ‖ 1 is a test, this follows with Lemma 8(4) and (A5).

There are a number of other critical pairs that can easily be resolved using (A1)-(A8) (e.g.,
two overlapping instances of rule 1 that differ in the direction the edges are matched, or
overlapping instances of rule 3). Similarly, overlapping instances of rules 2 and 4 remain
instances after the first rule has been applied and the resulting graphs only differ in the
order of the tests being generated; thus they are weakly isomorphic by Lemma 8(3). J

I Proposition 24 (Confluence). If G1 G G2, then there exists H such that G1 H G2.

I Definition 25. We call a term-labeled graph atomic if it consists of either a single vertex
and no edges or two vertices connected by a single edge as depicted in Figure 4. If A is
atomic, we write A for the term that can extracted from A, i.e., αuβ, αu◦β, or α for the
atoms in Figure 4, from left to right.

I Lemma 26. If A G B for some atomic graphs A,B, then A ≡ B.

Proof. We have A ∼= B by Proposition 24, since atomic graphs are irreducible. The claim
then follows by case analysis on A and B. J

4 Reducibility of Term-Graphs

We now show that the rewriting system from the previous section can be used to reduce
graphs of the shape g(u) to atomic graphs. As a consequence, we obtain that u ≡ v iff
g(u) ' g(v) and, hence, that equivalence of Σdom-terms is decidable.

To show that g(u) reduces to an atomic graph, we define a function computing for every
u an equivalent term that can be obtained as A for some atomic graph A. In particular, if
u is not a test, it computes “maximal” tests α and β and a non-test v such that u ≡ αvβ.

I Definition 27. We define a function f from Σdom-terms to T ∪ T ×N ×T as depicted in
Figure 5, as well as functions d_e and b_c interpreting elements of T ∪ T ×N ×T as atomic

60:8 Treewidth-Two Graphs as a Free Algebra

f(u◦) = match f(u) with f(1) = (1)
(αu, u′, βu)⇒ (βu, u′

◦
, αu)

(γ)⇒ (γ)
f(u ‖ v) = match f(u), f(v) with f(a) = (1, a, 1)

(αu, u′, βu), (αv, v′, βv)⇒ (αuαv, u′ ‖ v′, βuβv)
(αu, u′, βu), (γ)⇒ (αuu′βu ‖ γ)
(γ), (αv, v′, βv)⇒ (γ ‖αvv′βv)
(γ1), (γ2)⇒ (γ1γ2)

f(u·v) = match f(u), f(v) with f(dom(u)) = (dom(u))
(αu, u′, βu), (αv, v′, βv)⇒ (αu, u′βuαvv′, βv)
(αu, u′, βu), (γ)⇒ (αu, u′, βuγ)
(γ), (αv, v′, βv)⇒ (γαv, v′, βv)
(γ1), (γ2)⇒ (γ1γ2)

Figure 5 Test analysis for Σdom-terms

T ∪ T ×N × T

Σdom-terms graphs

term-labeled graphs

g

fb_c
d_e

exp(_)

Figure 6 Summary of functions between terms and graphs

graphs and terms, respectively: d(α, u, β)e is the graph on the left in Figure 4 and d(α)e is
the graph on the right, b(α, u, β)c , αuβ, and b(γ)c , γ. Note that d(α, u, β)e = b(α, u, β)c.

A summary of the functions defined so far is given in Figure 6.

I Lemma 28. u ≡ bf(u)c.

Proof. By induction on u. The cases for a, 1, and dom(u) are trivial. The case for u◦
follows with Lemma 8(2). We show the case for f(u ‖ v) where f(u) = (αu, u′, βu) and
f(v) = (αv, v′, βv).

bf(u ‖ v)c = αuαv(u′ ‖ v′)βuβv
≡ (αuu′βu) ‖ (αvv′βv) Lemma 8(4) and commutativity of ‖
≡ bf(u)c ‖ bf(v)c
≡ u ‖ v induction hypothesis

The remaining cases are straightforward. J

We now show that g(u) (seen as a term-labeled graph) reduces to df(u)e. To do so, we first
extend the graph operations to term-labeled graphs and prove the context lemma below.

I Definition 29. If a graph G occurs as a term-labeled graph, it is to be read as the graph
where every vertex is labeled with 1 (and every edge is labeled with a single letter as before).

C. Doczkal and D. Pous 60:9

We extend the operations ·, ‖ and dom(_) to term-labeled graphs. If two vertices x and y
are identified by an operation, we label the resulting vertex with l(x)·l(y).

I Lemma 30 (Context Lemma). If G G′, then G ‖H G′ ‖H, G·H G′·H, H·G
H·G′, and dom(G) dom(G′).

Proof. By induction on G G′. First, all operations preserve weak isomorphisms. Second,
a redex in G is still a redex in G·H, H·G, and dom(G) since G remains unchanged except
that one of its nodes may cease to be input or output. Similarly, a redex in G is also a redex
in G ‖H (even if H is a test: we do not require the square vertices in rules 1 and 3 to be
distinct so that redexes are preserved under collapsing input and output). J

Note that the converse of Lemma 30 does not hold. For instance, dom(a) (cf. Figure 1) re-
duces by rule 2 to a graph G with a single node labeled 1dom(a1). Hence, dom(a) dom(G)
since G ∼= dom(G), but a is an atom and thus irreducible.

I Proposition 31 (Reducibility). g(u) df(u)e

Proof. The proof proceeds by induction on u.
case u ‖ v : We first reduce g(u) and g(v) using the context lemma.

g(u ‖ v) = g(u) ‖ g(v) def. g
 df(u)e ‖ g(v) IH, Lemma 30
 df(u)e ‖ df(v)e IH, Lemma 30, comm. ‖

We consider several cases.
If f(u) = (γ) and f(v) = (αv, v′, βv), then df(u)e ‖ df(v)e has a single node labeled
γαvβv (up to commutativity of tests) and a single self loop labeled v′. Hence, we can
apply rule 4:

df(u)e ‖ df(v)e d(γαvβv(v′ ‖ 1))e ∼= d(γ ‖αvv′βv)e ∼= df(u ‖ v)e

If f(u) = (αu, u′, βu) and f(v) = (αv, v′, βv) then df(u)e ‖ df(v)e is an instance of rule 3
and we have:

df(u)e ‖ df(v)e d(αuαv, u′ ‖ v′, βuβv)e ∼= df(u ‖ v)e

The remaining cases are analogous.
case u·v :

g(u·v) = g(u)·g(v) def. g
∼= df(u)e·df(v)e IH, Lemma 30 (twice)

If f(u) = (αu, u′, βu) and f(v) = (αv, v′, βv) then df(u)e · df(v)e is an instance of rule 1
with the intermediate vertex labeled βuαv. Hence,

df(u)e·df(v)e d(αu, u′βuαvv′, βv)e ∼= df(u·v)e

The cases where either f(u) = (γ) or f(v) = (γ′) are straightforward.
case dom(u) :

g(dom(u)) = dom(g(u)) def. g
 dom(df(u)e) IH, Lemma 30

60:10 Treewidth-Two Graphs as a Free Algebra

If f(u) = (γ), there is nothing to show. Otherwise we have f(u) = (αu, u′, βu) and
therefore dom(df(u)e) is an instance of rule 1:

dom(df(u)e) d(αudom(u′βu))e ∼= df(dom(u))e

The cases for a and 1 are straightforward (no reduction required). J

We can finally characterise the equational theory of 2pdom-algebras:

I Theorem 32. 2pdom ` u = v iff g(u) ' g(v).

Proof. The direction from left to right follows with Proposition 5. For the converse direction,
assume g(u) ' g(v). Then g(u) ∼= g(v) and therefore df(u)e ≡ df(v)e by Proposition 31 and
Lemma 26. Hence, u ≡ bf(u)c = df(u)e ≡ df(v)e = bf(v)c ≡ v using Lemma 28 twice. J

As explained in the introduction we did not use minors to obtain this result. Actually, we did
not use tree decompositions either: those arise only in the following section, where we need to
characterize the image of the function g. This sharply contrasts with the approach from [7],
where both tree decompositions and minors are used to obtain the above characterization.

5 The free 2pdom-algebra

In order to show that the connected graphs in TW2 form the free 2p-algebra, it remains to
obtain an inverse to g (up to ≡), i.e., we need to extract terms from such graphs. We again
make use of the rewriting system.

In a slight abuse of notation, we also write G ∈ TW2 to denote that (the strong skeleton
of) a term-labeled graph G has treewidth at most two.

I Lemma 33 (Preservation). If G ∈ TW2 is a connected term-labeled graph and G 7→ G′,
then G′ ∈ TW2 and G′ is connected.

Proof. Clearly, no rule disconnects the graph. Also, if G 7→ G′, then the strong skeleton of
G′ is a minor of the strong skeleton of G and taking minors does not increase treewidth. J

I Lemma 34 (Progress). If G ∈ TW2 is a connected term-labeled graph, then either there
exists some G′ such that G 7→ G′ or G is atomic.

Proof. W.l.o.g., we can assume that rules 3 and 4 do not apply. Thus, it suffices to show
that either ι and o are the only vertices of G or that there is some vertex distinct from input
and output that has at most two neighbors. Let T be a tree decomposition of the strong
skeleton of G of width at most two, and remove leafs of T that are included in their unique
neighbor (T remains a tree-decomposition). If T has only one node (say t) then {ι, o} ⊆ Bt.
Hence, if there is another vertex, it has degree at most two. Otherwise, let t be a leaf and
let z be a vertex appearing only in Bt. Without loss of generality, we can assume z /∈ {ι, o}.
(If z = ι then o ∈ Bt, due to the ιo-edge in the strong skeleton; hence, for any other leaf,
neither ι nor o can be the vertex unique to that leaf.) Since z appears only on Bt it has at
most two neighbors. J

I Definition 35. We define a function t′ from connected term-labeled graphs of treewidth
at most two to terms as follows: t′(G) , A for some atomic graph such that G 7→∗ A. A
suitable atomic graph A can be computed by blindly applying the rules (Lemmas 33 and 34):
all choices lead to equivalent terms (Lemma 26). For connected (standard) graphs G, we
write t(G) for t′(G′) where G′ is G seen as a term-labeled graph.

C. Doczkal and D. Pous 60:11

I Lemma 36. If G ∈ TW2 is a term-labeled graph and G H, then t′(G) ≡ t′(H).

Proof. Follows with Lemma 26. J

As an immediate consequence of the lemma above we also have:

I Proposition 37. If G,H ∈ TW2 are are connected and G ' H, then t(G) ≡ t(H).

We now show that t and g are inverses up to term equivalence and isomorphism respectively.

I Proposition 38. For all Σdom-terms u, t(g(u)) ≡ u.

Proof. We have t(g(u)) ≡ df(u)e = bf(u)c by Proposition 31 and Lemma 36. The claim
then follows with Lemma 28. J

I Proposition 39. If G ∈ TW2 is connected, then g(t(G)) ' G.

Proof. We have t(G) = A for some A such that G 7→∗ A. Hence, exp(A) ' G (Lemma 21).
The claim follows since g(A) ' exp(A) for all atoms A. J

The function g is a Σdom-homomorphism by definition. By the above results, this is ac-
tually an isomorphism between the 2pdom-algebra of connected graphs in TW2 and the
(canonically) free 2pdom-algebra of Σdom-terms quotiented by ≡:

I Theorem 40 ([16]). The connected graphs in TW2 (with labels in A) form the free 2pdom-
algebra (over A).

6 The free 2p-algebra

We now extend the results from the previous section to disconnected graphs. That is, we
show that the class of all graphs in TW2 forms the free 2p-algebra [7]. We use for that the
previous function t to extract terms from the various connected components of a graph.

In this section, we take u ≡ v to mean 2p ` u = v. Recall that 2p ` u = v whenever
2pdom ` u = v (Lemma 4). Hence, all the lemmas from the previous section still apply.

I Definition 41. Let G be a graph. For vertices x, y of G, we write G[x, y] for the graph G
with input set to x and output set to y. We abbreviate G[x, x] as G[x]. Further, we write
Gx for the connected component of x (as a subgraph of G, with input and output set to x).

I Definition 42. Let C(G) be the collection of components Gx obtained by choosing some
vertex x for every connected component of G containing neither ι nor o. We define a function
t> extracting terms from (possibly disconnected) graphs as follows:

cG ,
n

H∈C(G)

>·t(H)·> t>(G) ,
{

t(Gι)·>·t(Go) ‖ cG ι and o disconnected
t(Gι[ι, o]) ‖ cG ι and o connected

Note that the function t> needs to choose shared input/outputs vertices for all disconnected
components. For isomorphic arguments, these choices can differ. We begin by showing that
this choice does not matter up to term equivalence.

I Lemma 43. Let G ∈ TW2 be a connected test and let x be a neighbor of ι in G. We have
t(G)·> ≡ t(G[ι, x])·>.

60:12 Treewidth-Two Graphs as a Free Algebra

Proof. Since G ∈ TW2, so is G[ι, x]. Hence, G[ι, x] d(α, u, β)e for some terms α,β, and u.
Since G = dom(G[ι, x]), we also have G dom(d(α, u, β)e) by Lemma 30. Moreover,
dom(d(α, u, β)e) d(α·dom(uβ))e by rule 2. We reason as follows:

t(G)·> ≡ t′(d(α·dom(uβ))e)·> Lemma 36
= (α·dom(uβ))·>
≡ αuβ·> (A11)
= t′(d(α, u, β)e)·>
≡ t(G[ι, x])·> Lemma 36 J

I Lemma 44. Let G ∈ TW2 be a connected graph and let x, y be vertices of G. We have
>·t(G[x])·> ≡ >·t(G[y])·>

Proof. Since G is connected, it suffices to show the property for all xy-edges of G. We have

>·t(G[x])·> ≡ >·t(G[x, y])·> Lemma 43
≡ >·t(G[y, x])◦·> t is a homomorphism
≡ >·t(G[y, x])·> Lemma 9(3)
≡ >·t(G[y])·> Lemma 43

J

Lemmas 44 and 43 also appear in [7]. We remark that the proof of Lemma 43 given here,
which depends on the definition of t, is considerably simpler than the one in [7]. The proof
of Lemma 44 remains essentially unchanged.

I Proposition 45. Let G,H ∈ TW2. If G ' H, then t>(G) ≡ t>(H).

Proof. Follows with Proposition 37 and Lemma 44. J

I Proposition 46. g(t>(G)) ' G.

I Lemma 47. t> is a homomorphism of 2p-algebras.

Proof. We already showed that that t> respects graph isomorphisms. It remains to show
that t> commutes with all operations.

We show t>(G·H) ≡ t>(G)·t>(H). Let F , G·H. We distinguish four cases based on
whether ι and o are connected in G and H respectively.
ι and o disconnected in both G and H: In that case, Go and Hι are merged into one

component of F that is connected neither to the input nor to the output of F . By
Lemma 44 and Proposition 37 we therefore have: cF ≡ (>t(Go·Hι)>) ‖ cG ‖ cH . We
reason as follows:

t>(F) ≡ t(Fι)·>·t(Fo) ‖ cF ι and o disconnected in F
≡ t(Gι)·>·t(Ho) ‖>·t(Go·Hι)·> ‖ cG ‖ cH Fι ' Gι, Fo ' Go
≡ t(Gι)·>·t(Go·Hι)·>·t(Ho) ‖ cG ‖ cH Lemma 9(1)
≡ t(Gι)·>·t(Go)·t(Hι)·>·t(Ho) ‖ cG ‖ cH t is a homomorphim
≡ t>(G)·t>(H) Lemma 9(2) and its dual

C. Doczkal and D. Pous 60:13

ι and o connected in G but not in H: We have cF ≡ cG ‖ cH by Prop. 37 and Lemma 44.

t>(F) ≡ t(Fι)·>·t(Fo) ‖ cF
≡ t(dom(Gι[ι, o]·Hι))·>·t(Ho) ‖ cF Fι ' dom(Gι[ι, o] ·Hι), Fo ' Ho

≡ t(Gι[ι, o])·t(Hι)·>·t(Ho) ‖ cF (A11), t is a homomorphism
≡ t(Gι[ι, o])·t(Hι)·>·t(Ho) ‖ cG ‖ cH
≡ t>(G)·t>(H) Lemma 9(2) and its dual

The case where input and output are connected only in H is symmetric and the case
where they are connected in both graphs follows from t being a homomorphism.

Proving that t> commutes with the other operations is done in a similar manner. J

I Proposition 48. For all Σ>-terms u, t>(g(u)) ≡ u.

Proof. By induction on u, using Lemma 47. J

I Theorem 49 ([7]). The graphs in TW2 (with labels in A) form the free 2p-algebra (over A).

7 1-free 2p-algebras

We now show that the techniques from the previous sections can be adapted to the setting
where 1 (and hence dom(_)) are removed from the signature. We define algebras over the
signature Σ−1

> , Σ> \ {1}, which we call 1-free 2p-algebras, and show that the graphs of
treewidth at most two without self-loops and with distinct input and output form the free
1-free 2p-algebra (over A).

The axioms for 1-free 2p-algebras are A1-A4,A6-A8 plus the following three axioms:

(u·v ‖w)·> = (u ‖w·v◦)·> (A15)
u·(v·> ‖w) = (u ‖>·v◦)·w (A16)
u·v ‖>·w = u·(v ‖>·w) (A17)

The main complication in adapting our techniques to the 1-free case is that the syntax
of 1-free 2p-algebras cannot express tests, even though the algebra of graphs still exhibits
tests-like structures. For instance, if G is a test without self-loops, then G·> is a graph of
the proposed free 1-free 2p-algebra. To account for this, we distinguish between the type of
Σ−1
> -terms, written Tm, and a type of (syntactic) tests defined as follows:

α ∈ Tst ::= 1 | [u] (u ∈ Tm)

Tests, which are not terms, allow us to describe graphs that are tests. We let α,β,. . . range
over tests, and we extend the definition of g to tests by setting g(1) = 1 and g([u]) =
dom(g(u)). Intuitively, in a test [u], the output of the term u does not matter: u will always
be used in contexts where this information disappears, e.g., as in u>; this allows us to treat
[u] essentially like dom(u). It also motivates the following notion of equivalence for tests:
1 ≡ 1, and [u] ≡ [v] if u·> ≡ v·>.

I Lemma 50. If α ≡ β then g(α) ' g(β).

60:14 Treewidth-Two Graphs as a Free Algebra

We extend the sequential composition to take one or two tests as arguments in a manner
that 1 is the neutral element on both sides:

1·v , v u·1 , u 1·α , α
[u]·v , u>‖ v u·[v] , u ‖>v◦ [u]·1 , [u]

[u]·[v] , [u>‖ v]

Note that α·β is a test whereas all other variants are terms. The three operations above
appropriately preserve test equivalence (e.g., if α ≡ β, then uα ≡ uβ, αu ≡ βu, γα ≡ γβ,
αγ ≡ βγ for all terms u and tests γ.

The definitions above essentially yield a 2-sorted extension of 1-free 2p-algebras. We
prove various laws, including all axioms of 2pdom-algebras that can still be expressed in the
2-sorted setting (using [_] instead of dom(_)). Examples of laws that cannot be expressed
in the 2-sorted setting are dom(α) ≡ α, and dom(u ‖ v) ≡ 1 ‖uv◦.

I Lemma 51. We have the following equivalences:
1. u> ≡ [u]> and >u ≡ >[u◦].
2. (αu)◦ ≡ u◦α, (uα)◦ ≡ αu◦.
3. (xy)z ≡ x(yz)

(for all x, y, z either test or term).

4. [uv] ≡ [u[v]]
5. αβ ≡ βα
6. α(v ‖w) ≡ αv ‖w.
7. [uv ‖w] ≡ [u ‖wv◦].

Proof. For all statements involving tests α of unknown shape, we distinguish the cases α = 1
(usually trivial) and α = [w] for some w. Claims (1) and (2) are straightforward. By (2) and
the laws for converse, we only need to consider 5 of the 8 cases of (3). (uα)v ≡ u(αv) follows
with (A16) and (uv)α ≡ u(αv) follows with (A17). For (αβ)γ ≡ α(βγ) we repeatedly use
(A15) with v = >. The remaining cases for associativity are straightforward. Claims (4) and
(5) follow with associativity. Claim (6) follows with (A1). Claim (7) follows with (A15). J

Having recovered most of the laws of 2pdom-algebras, we adapt the rewriting system for
2pdom-algebras (Figure 3) to the 1-free case. We define term-labeled graphs as for 2pdom,
with the difference that now vertices are labeled with syntactic tests and edges are labeled
with Σ−1

> -terms (whose graphs are never tests). The rewriting system on term-labeled graphs
(Figure 3) is adapted by replacing dom(u) with [u], removing rule 4, and restricting rules 1
and 3 such that the two outer vertices must be distinct. For rule 1, this is necessary to avoid
introducing self loops.

Local confluence adapts, although for one of the pairs we now need two reduction steps
to join the two alternatives.

I Lemma 52 (Local Confluence). If G1 ← [G 7→ G2, then there exist G′1 and G′2 such that
G1 G′1, G2 G′2 and G′1 ∼= G′2.

Proof. The only interesting (new) critical pair is that of overlapping instances of rule 1,
where the outer nodes are the same. Due to the restriction that the outer nodes of rule 1
must be distinct, this pair can no longer be joined by applying rule 1. Instead we use rules 3
and 2 as follows:

uαv ‖wγ β
← [

uαv

w

γ β
← [

v

u w

α β

γ

7→
u

wβv◦

γ α
7→

u ‖wβv◦γ α

After applying rule 2 on both sides, it suffices to show [(uαv ‖w)β] ≡ [(u ‖wβv◦)α]. This
follows with Lemma 51(6+7). J

C. Doczkal and D. Pous 60:15

In order to adapt Proposition 31, we need to restrict to terms u such that g(u) is con-
nected. We write Tm′ and Tst′ for the set of terms and tests respectively, where tests and
the extended sequential composition are treated as primitive and > does not occur. We then
employ a function f : Tm′ → Tst′ × Tm′ × Tst′ that can be seen as a type directed variant
of the function in Figure 5.

f(a) = (1, a, 1)
f(u◦) = let (αu, u′, βu) := f(u) in (βu, u′

◦
, αu)

f(u ‖ v) = let (αu, u′, βu), (αv, v′, βv) := f(u), f(v) in (αuαv, u′ ‖ v′, βuβv)
f(u·v) = let (αu, u′, βu), (αv, v′, βv) := f(u), f(v) in (αu, u′βuαvv′, βv)
f(γ·u) = let (αu, u′, βu) := f(u) in (γαu, u′, βu)
f(u·γ) = let (αu, u′, βu) := f(u) in (αu, u′, βuγ)

I Lemma 53. If u ∈ Tm′ and α ∈ Tst′, then g(u) dfue and g(α) d(α)e.

Proof. We have a context lemma similar to Lemma 30. The proof then proceeds by mutual
induction on u and α. The cases correspond to those of Proposition 31. We show two
representative cases:
Case u = α · v: We reason as follows.

g(γ · v) ∼= g(γ) · g(v) def. of γ · v
 d(γ)e · df ve IH on γ and v, context lemma
= d(γ)e · d(αv, v′, βv)e f v = (αv, v′, βv) ≡ v
= d(γαv, v′, βv)e
= df(γ · v)e

Case α = [u]: We reason as follows.

g([u]) = dom(g(u)) def. g
 dom(df ue) IH on u, context lemma
= dom(d(αu, u′, βu)e) f u = (αu, u′, βu) ≡ u
7→ d(αu[u′βu])e rule 2
∼= d([u])e

The remaining cases are analogous. J

We define two extraction functions t1 and t2, where t1 extracts syntactic tests (in Tst′)
from graphs that are tests and t2 extracts terms (in Tm′) from non-tests. Both functions are
defined just like t (Definition 35), exploiting the fact that the rewriting system does not merge
or delete input and output. Propositions 38 and 39 then adapt without conceptual changes.

I Proposition 54. 1. t1(g(α)) ≡ α for all α ∈ Tst′ and t2(g(u)) ≡ u for all u ∈ Tm′.
2. If G ∈ TW2 is a connected test without self loops, then g(t1(G)) ' G.
3. If G ∈ TW2 is a connected non-test without self loops, then g(t2(G)) ' G.

Using t1 and t2, we define a variant of t> extracting Σ−1
> -terms from non-tests without

self-loops.

60:16 Treewidth-Two Graphs as a Free Algebra

I Definition 55. Let C(G) as in Definition 42. We define

cG ,
n

H∈C(G)

>·t1(H)·> t>(G) ,
{

t1(Gι)·>·t1(Go) ‖ cG ι and o disconnected
t2(Gι[ι, o]) ‖ cG ι and o connected

That t> respects graph isomorphisms is immediate with Proposition 54. To show t> is a
homomorphism of 1-free 2p-algebras, we require a 2-sorted analog to Lemma 9.
I Lemma 56. We have the following equivalences:
1. >u◦> ≡ >u>.
2. αv ≡ α>‖ v.
3. α>β ≡ α>‖>β

4. uv ‖>α> ≡ (u ‖>α>)v
5. α>β ‖>γ> ≡ α>γ>β

Note that, due to Lemma 51(1), any equivalence where a test α appears either only as α>
or only as >α (i.e., in α in Lemma 56(4)), also holds if α is replaced by a term.

The remaining proofs of Section 6 adapt to the 1-free setting by carefully distinguish-
ing between terms and tests, but without any conceptual changes. For instance, we have
t1(G)> ≡ t2(G[ι, x])> for neighbors x of ι.
I Theorem 57. The graphs (with labels in A) of treewidth at most two, with distinct input
and output, and without self-loops form the free 1-free 2p-algebra (over A).

The axioms we listed for 1-free 2p-algebras are precisely those needed to prove the 2-
sorted 2pdom- and 2p-laws. The proofs of Lemmas 51 and 56 have been verified in the Coq
proof assistant [6]. We also used the model generator Mace4 [15] to verify that the axioms of
1-free 2p-algebras are independent. The corresponding scripts can be downloaded from [10].

8 Conclusion and directions for future work

We have proved that graphs in TW2, connected graphs in TW2, and self-loop free graphs in
TW2 with distinct input and output respectively form the free 2p-algebra, the free 2pdom-
algebra, and the free 1-free 2p-algebra.

To do so, we used a graph rewriting system that makes it possible to extract terms from
connected graphs in TW2, in a bottom-up fashion. This technique is much easier than the
one used in [7] in that it is more local and does not require us to study the precise structure
of graphs in TW2 (i.e., through excluded minors).

As explained in the introduction, the result about connected graphs can be reduced to the
one about arbitrary graphs by model-theoretic means: one can easily embed a 2pdom-algebra
into a 2p-algebra [16], so that 2p-algebras form a conservative extension of 2pdom-algebras.
As a corollary of Theorem 57, we get that 2p-algebras also form a conservative extension
of 1-free 2p-algebras. It is however unclear how to prove this result directly, by model-
theoretic means: terms which are missing in 1-free 2p-algebras (self-loops) can occur deep
inside terms of 2p-algebras, unlike terms which are missing in 2pdom-algebras (disconnected
components).

As a natural follow-up to this work, we would like to study whether one can character-
ize the classes of graphs of higher treewidth as free algebras. The present approach seems
promising for treewidth at most three: a reasonable rewriting system is known for recog-
nising such graphs [2]. In contrast, trying to exploit the four excluded minors known to
characterize treewidth three [4, 2] seems extremely difficult. For larger treewidth, rewriting
systems recognizing graphs of a given treewidth can be shown to exist [1]. However, the
result is nonconstructive in the same way as the existence of a finite set of excluded minors
for each treewidth [17]).

C. Doczkal and D. Pous 60:17

References
1 S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese. An algebraic theory of graph

reduction. Journal of the ACM, 40(5):1134–1164, 1993.
2 S. Arnborg and A. Proskurowski. Characterization and recognition of partial 3-trees. SIAM

J. Algebraic Discrete Methods, 7(2):305–314, Apr. 1986.
3 S. Arnborg and A. Proskurowski. Canonical representations of partial 2- and 3-trees. In

Proc. SAWT, pages 310–319. Springer, 1990.
4 S. Arnborg, A. Proskurowski, and D. G. Corneil. Forbidden minors characterization of

partial 3-trees. Discrete Mathematics, 80(1):1–19, 1990.
5 C. Chekuri and A. Rajaraman. Conjunctive query containment revisited. Theoretical

Computer Science, 239(2):211–229, 2000.
6 Coq team. The Coq proof assistant.
7 E. Cosme-Llópez and D. Pous. K4-free graphs as a free algebra. In Proc. MFCS, volume 83

of LIPIcs. Schloss Dagstuhl, 2017.
8 B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-Order Logic - A

Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and its applica-
tions. Cambridge Univ. Press, 2012.

9 R. Diestel. Graph Theory. Graduate Texts in Mathematics. Springer, 2005.
10 C. Doczkal and D. Pous. Supplementary material accompanying this paper. http://

perso.ens-lyon.fr/damien.pous/covece/tw2rw.
11 C. Doczkal and D. Pous. Treewidth-two graphs as a free algebra. In Proc. MFCS, volume

117 of LIPIcs, pages 60:1–60:15. Schloss Dagstuhl, 2018.
12 R. Duffin. Topology of series-parallel networks. Journal of Mathematical Analysis and

Applications, 10(2):303–318, 1965.
13 E. C. Freuder. Complexity of k-tree structured constraint satisfaction problems. In Proc.

NCAI, pages 4–9. AAAI Press / The MIT Press, 1990.
14 M. Grohe. The complexity of homomorphism and constraint satisfaction problems seen

from the other side. Journal of the ACM, 54(1):1:1–1:24, 2007.
15 W. McCune. Prover9 and Mace4, 2005–2010.
16 D. Pous and V. Vignudelli. Allegories: decidability and graph homomorphisms, 2018. to

appear in Proc. LiCS 2018.
17 N. Robertson and P. Seymour. Graph minors. XX. Wagner’s conjecture. Journal of Com-

binatorial Theory, Series B, 92(2):325 – 357, 2004.

http://dx.doi.org/10.1145/174147.169807
http://dx.doi.org/10.1145/174147.169807
http://dx.doi.org/10.1137/0607033
http://dl.acm.org/citation.cfm?id=88723.88787
http://dx.doi.org/10.1016/0012-365X(90)90292-P
http://dx.doi.org/10.1016/0012-365X(90)90292-P
http://dx.doi.org/10.1016/S0304-3975(99)00220-0
https://coq.inria.fr/
http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.76
http://perso.ens-lyon.fr/damien.pous/covece/tw2rw
http://perso.ens-lyon.fr/damien.pous/covece/tw2rw
http://perso.ens-lyon.fr/damien.pous/covece/tw2rw
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.60
http://dx.doi.org/10.1016/0022-247X(65)90125-3
http://www.aaai.org/Library/AAAI/1990/aaai90-001.php
http://dx.doi.org/10.1145/1206035.1206036
http://dx.doi.org/10.1145/1206035.1206036
http://www.cs.unm.edu/~mccune/prover9/
https://hal.archives-ouvertes.fr/hal-01703906/
http://dx.doi.org/10.1016/j.jctb.2004.08.001

	Introduction
	Preliminaries: 2p- and 2pdom-algebras
	A Confluent Rewriting System for Term-labeled Graphs
	Reducibility of Term-Graphs
	The free 2pdom-algebra
	The free 2p-algebra
	1-free 2p-algebras
	Conclusion and directions for future work

