
HAL Id: hal-01780844
https://hal.science/hal-01780844v1

Preprint submitted on 28 Apr 2018 (v1), last revised 12 Sep 2018 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Treewidth-Two Graphs as a Free Algebra
Christian Doczkal, Damien Pous

To cite this version:

Christian Doczkal, Damien Pous. Treewidth-Two Graphs as a Free Algebra. 2018. �hal-01780844v1�

https://hal.science/hal-01780844v1
https://hal.archives-ouvertes.fr

Treewidth-Two Graphs as a Free Algebra
Christian Doczkal
CNRS, Plume team, LIP, ENS de Lyon, France
christian.doczkal@ens-lyon.fr

Damien Pous
CNRS, Plume team, LIP, ENS de Lyon, France
damien.pous@ens-lyon.fr

Abstract
We give a new and elementary proof that the graphs of treewidth at most two can be seen as a
free algebra. This result was presented last year at MFCS and was proved through an elaborate
analysis of the structure of K4-free graphs, ultimately reproving the well-known fact that the
graphs of treewidth at most two are precisely those excluding K4 as a minor. Our new proof is
based on a confluent and terminating rewriting system for treewidth-two graphs and does not
involve graph minors anymore. The new strategy is simpler and robust in the sense that it can
be adapted to subclasses of treewidth-two graphs. It could also be amenable to handle graphs of
larger treewidth, where the excluded minors are typically unknown.

2012 ACM Subject Classification Algebra, Graph theory

Keywords and phrases Treewidth, Universal algebra, Rewriting

1 Introduction

The notion of treewidth [9] is a cornerstone of algorithmic graph theory and parameterised
complexity: treewidth measures how close a graph is to a forest, and many problems that
can be solved in polynomial time on forests but are NP-complete on arbitrary graphs remain
polynomial on classes of graphs of bounded treewidth. This is the case for instance for the
graph homomorphism problem (and thus k-coloring) [12, 5, 13].

Similar to trees, graphs of bounded treewidth can be described by a variety of syntaxes [8].
Among the open problems, there is the question, for graphs of a given treewidth, of finding
a syntax making it possible to get a finite and equational axiomatisation of graph isomor-
phism [8, page 118]. This question was recently answered positively for treewidth two [7].

The syntax used in [7] is comprised of two binary operations: series and parallel compo-
sition [11], their neutral elements, and a unary converse operation. In this syntax, several
terms may denote the same graph (up-to isomorphism); the key result of [7] is that the corre-
sponding equational theory is characterized by twelve equational axioms, defining so-called
2p-algebras.

To get this result, the authors define a function t from graphs to terms and establish
that t is a isomorphism of 2p-algebras. The function t is defined using an elaborate anal-
ysis of the structure of treewidth-two graphs, which requires complicated graph-theoretical
arguments that are not directly related to the proposed axiom system. For instance they
ultimately reprove the well-known fact that the graphs of treewidth at most two are pre-
cisely those graphs excluding K4 (the complete graph with four vertices) as a minor [11].
The authors also make t as canonical as possible in order to facilitate the proof that on
isomorphic graphs, t returns terms that are congruent modulo the axioms. This comes at
the price of complicating the proofs that t is a homomorphism of 2p-algebras.

In the present paper, we reprove the result from [7] using a completely different approach
inspired by [3]: instead of using an elaborate top-down analysis, we design a graph rewriting

mailto:christian.doczkal@ens-lyon.fr
mailto:damien.pous@ens-lyon.fr

1:2 Treewidth-Two Graphs as a Free Algebra

system on term-labeled graphs and use it to reduce graphs, in a bottom-up fashion, to a
shape where a term can be read off. This process is highly nondeterministic but can be
shown confluent modulo the axioms. This results in big simplifications: tree decompositions
are only used to show that all treewidth-two graphs can be reduced to the point where a
term can be read off, and minors are not used at all in this new approach.

Another important feature of this new proof is that it makes it possible to discover the
required axioms almost automatically, mainly during the confluence proof. It is also more
robust: it allows us to solve two problems left open in [7], characterizing connected graphs
as a free-algebra, and characterizing self-loop free graphs as a free-algebra, in both cases for
graphs of treewidth at most two.

The first problem was solved recently [15] using a purely model-theoretic argument: 2p-
algebras form a conservative extension of 2pdom-algebras, the counterpart of 2p-algebras for
connected graphs. Our strategy makes it possible to proceed the other way around: we
prove the main result for connected graphs and 2pdom-algebras (Sections 3 to 5), before
extending it to potentially disconnected graphs and 2p-algebras using a simple and mainly
algebraic argument (Section 6).

The second problem was still open. We solve it using a slight variation of the presented
proof, which actually leads us to the discovery of the required axioms (Section 7).

2 Preliminaries: 2p- and 2pdom-algebras

We recall the definitions of 2p- and 2pdom-algebras [7, 15]. We let a, b . . . range over the
letters of a fixed alphabet A. We consider labeled directed graphs with two designated
vertices. We just call them graphs in the sequel.

I Definition 1. A graph is a tuple G = 〈V,E, s, t, l, ι, o〉, where V is a finite set of vertices,
E is a finite set of edges, s, t : E → V are maps indicating the source and target of each
edge, l : E → A is a map indicating the label of each edge, and ι, o ∈ V are the designated
vertices, respectively called input and output.

Note that we allow multiple edges between two vertices, as well as self-loops.

I Definition 2. A homomorphism from G = 〈V,E, s, t, l, ι, o〉 to G′ = 〈V ′, E′, s′, t′, l′, ι′, o′〉
is a pair h = 〈f, g〉 of functions f : V → V ′ and g : E → E′ that respect the various
components: s′ ◦ g = f ◦ s, t′ ◦ g = f ◦ t, l = l′ ◦ g, ι′ = f(ι), and o′ = f(o).

A (graph) isomorphism is a homomorphism whose two components are bijective func-
tions. We write G ' G′ when there exists an isomorphism between graphs G and G′.

We consider the following signatures for terms and algebras:

Σ = {·2,∩2,_◦1, 10} Σ> = Σ ∪ {>0} Σdom = Σ ∪ {dom1}

We usually omit the · symbol and we assign priorities so that the term (a · (b◦)) ‖ c can
be written just as ab◦ ‖ c.

Graphs form algebras for those signatures by considering the operations depicted in
Figure 1, where input and outputs are represented by unlabelled ingoing and outgoing
arrows. The binary operations (·) and (‖) respectively correspond to series and parallel
composition, converse (_◦) just exchanges input and output, and domain (dom(_)) relocates
the output to the input.

A graph is called a test if its input and output coincide. The parallel composition of
a graph with a test merges the input and output of the former graph. For instance, the

C. Doczkal and D. Pous 1:3

1 , G ·H , G H G◦ , G

> , G ‖H ,
G

H
dom(G) , G

a ,
a

Figure 1 Graph operations

u ‖ (v ‖w) = (u ‖ v) ‖w (A1)
u ‖ v = v ‖u (A2)

u·(v·w) = (u·v)·w (A4)
u·1 = u (A5)
u◦◦ = u (A6)

(u ‖ v)◦ = u◦ ‖ v◦ (A7)
(u·v)◦ = v◦·u◦ (A8)

1 ‖ 1 = 1 (A9)
dom(u ‖ v) = 1 ‖u·v◦ (A10)

u ‖> = u (A3)
u·> = dom(u)·> (A11)

(1 ‖u)·v = (1 ‖u)·> ‖ v (A12)

dom(u·v) = dom(u·dom(v)) (A13)
dom(u)·(v ‖w) = dom(u)·v ‖w (A14)

Figure 2 Axioms of 2p-algebras (A1-A12) and 2pdom-apgebras (A1,A2,A4-A10,A13,A14)

graph a ‖ 1 consists of a single vertex with a self-loop labeled with a. Also note that the
graph dom(G) is isomorphic to the graph G·> ‖ 1. For Σ>-terms, we will therefore consider
dom(u) to be an abbreviation for u>‖ 1.

I Definition 3. A 2p-algebra is a Σ>-algebra satisfying axioms A1-A12 from Figure 2. A
2pdom-algebra is a Σdom-algebra satisfying axioms A1,A2,A4-A10,A13,A14 from Figure 2.

I Lemma 4. Every 2p-algebra is a 2pdom-algebra (with dom(u) , u>‖ 1).

Proof. This easy result is implicitely proved in [15]; Coq proofs scripts are available [10]. J

I Proposition 5. Graphs (up to isomorphism) form a 2p-algebra.

I Proposition 6. Connected graphs form a subalgebra of the Σdom-algebra of graphs.

Given Σ>-terms u, v with variables in A, we write 2p ` u = v when the equation is
derivable from the axioms of 2p-algebra (equivalently, when the equation universally holds
in all 2p-algebras). Similarly for Σdom-terms and 2pdom-algebras.

By interpreting a letter a ∈ A as the graph a in Figure 1, we can associate a graph g(u) to
every term over the considered signatures. By Proposition 5, 2p ` u = v entails g(u) ' g(v)
for all Σ>-terms u, v. Similarly for Σdom-terms and 2pdom-algebras (using Lemma 4).

I Definition 7. A Σ>-term u is called a test if 2p ` u ‖ 1 = u. A Σdom-term u is called a
test if 2pdom ` u ‖ 1 = u. We write T for the set of tests and N for the set of non-tests. We
let α, β, and γ range over terms that are tests.

Thanks to converse being an involution, there is a notion of duality in 2p-algebras: a valid law
remains so when swapping the arguments of products and replacing dom(u) with dom(u◦).

1:4 Treewidth-Two Graphs as a Free Algebra

I Lemma 8. The following laws hold in all 2pdom-algebras.
1. dom(u) = dom(u) ‖ 1, i.e., dom(u) is a test
2. α◦ = α

3. αβ = α ‖β = βα

4. (u ‖ v)α = u ‖ vα

Proof. See Appendix A. J

I Lemma 9 ([7, Proposition 1]). The following laws hold in all 2p-algebras
1. u>v ‖>w> = u>w>v
2. uv ‖>w> = (u ‖>w>)v
3. >u◦> = >u>

I Lemma 10. A Σdom- or Σ>-term u is a test iff g(u) is a test.

Proof. The direction from left to right follows with Proposition 5. The converse direction
follows by induction on u using the lemmas above. J

One useful consequence of the lemma above is that uv is a test iff both u and v are tests
and u ‖ v is test if either u or v is a test.

We conclude this preliminary section by defining the subalgebra of treewidth-two graphs.

I Definition 11. A simple graph is a pair 〈V,R〉 consisting of a finite set V of vertices and
an irreflexive and symmetric binary relation R on V . The skeleton of a graph G is the simple
graph obtained from G by forgetting input, output, labeling, self loops, and edge directions
and multiplicities. The strong skeleton of a graph is the skeleton of G with an additional
edge connecting ι and o.

I Definition 12 ([9]). Let G be a simple graph. A tree decomposition of G is a tree T where
each node t ∈ T is labeled with a set of vertices Bt such that:
1. For every vertex x of G, the set of nodes t such that x ∈ Bt is nonempty and connected

in T (i.e., forms a subtree)
2. For every xy-edge, there exists some t such that {x, y} ⊆ Bt.
The width of a tree decomposition is the size of its largest bag Bt minus one, and the
treewidth of a graph is the minimal width of a tree decomposition for this graph.
The simple graphs of treewidth at most one are the forests. We write TW2 for the collection
of graphs whose strong skeleton has treewidth at most two.

I Proposition 13 ([7]). TW2 forms a subalgebra of the Σ>-algebra of graphs.

I Corollary 14. For every term u, g(u) ∈ TW2.

The main results about 2p- and 2pdom-algebras, which we reprove in this paper, are
that TW2 (up to isomorphism) forms the free 2p-algebra [7] and that the connected graphs
in TW2 form the free 2pdom-algebra [15]. As explained in the introduction, we start with
the connected case, which we then extend to deal with disconnected graphs.

3 A Confluent Rewriting System for Term-labeled Graphs

The rewriting system we define to extract terms from graphs works on a generalised form
of graphs, whose edges are labeled by terms rather than just letters, and whose vertices are
labeled by tests.

We work exclusively with Σdom-terms and connected graphs in Sections 3 to 5; for these
sections we thus abbreviate 2pdom ` u = v as u ≡ v.

C. Doczkal and D. Pous 1:5

I Definition 15. A term-labeled graph is a tuple G = 〈V,E, s, t, l, ι, o〉 that is a graph except
that l is a function from V] E to Σdom-terms (we assume V and E to always be disjoint)
such that l(x) ∈ T for vertices x and l(e) ∈ N for edges e. We write exp(G) for the expansion
of G obtained by replacing every edge e with g(l(e)) and every vertex x with g(l(x)).

Restricting edge labels to non-tests ensures that replacing edges by the graphs described by
their labels does not collapse source and target of the edge. Similarly, replacing vertices by
graphs is only meaningful if the replacement is a test. See Appendix B for an example.

We will compare term-labeled graphs using a notion of isomorphism where labels are
compared modulo 2pdom-axioms. A subtlety here is that we should consider as equivalent
two graphs where one is obtained from the other by reversing a u-labeled edge and labeling
it with u◦ (this operation preserves the expansion). The following predicate, which we use
in the definitions below, captures this idea in a formal way: L(x, y, e, u) means that e can
be seen as a u-labeled xy-edge, up to ≡.

L(x, y, e, u) , (s(e) = x ∧ t(e) = y ∧ l(e) ≡ u) ∨ (s(e) = y ∧ t(e) = x ∧ l(e) ≡ u◦)

IDefinition 16. Two term-labeled graphsG = 〈V,E, s, t, l, ι, o〉 andH = 〈V ′, E′, s′, t′, l′, ι′, o′〉
are weakly isomorphic, written G ∼= H, if there is a pair of bijective functions 〈f, g〉 satisfying
1. f(ι) = ι′ and f(o) = o′.
2. For all vertices x ∈ V , l(x) ≡ l′(f(x)).
3. For all edges e ∈ E, L(s′(g(e)), t′(g(e)), g(e), l(e)).

I Example 17. Weakly isomorphic graphs always have isomorphic expansions. However,
the converse is not true: all three graphs below have isomorphic expansions, but only the
first two are weakly isomorphic.

a b◦

c

1 1
1 ‖ d

∼=
a b

c

1 1
d ‖ 1

6∼=

a(d ‖ 1)b

c

1 1

We now define the rewriting system on term-labeled graphs, as depicted in Figure 3.

I Definition 18. Let G = 〈V,E, s, t, l, ι, o〉 be a term-labeled graph. We write G 7→ G′ if G′
can be obtained from G by applying one of the following rules.
1. If l(x) = α, L(x1, x, e1, u) and L(x, x2, e2, v) where x /∈ {ι, o, x1, x2} and e1 and e2 are

the only incident edges of x, then replace e1 and e2 with an uαv-labeled edge from x1
to x2 and remove x.

2. If l(x) = α, l(y) = β and L(x, y, e, u) where y /∈ {ι, o} and e is the only edge incident to
y, then change the label of x to α·dom(u·β) and remove y and e.

3. If L(x, y, e1, u) and L(x, y, e2, v) then replace e1 and e2 with a (u ‖ v)-labeled xy-edge.
4. If s(e) = t(e) = x, l(x) = α and l(e) = u, then assign label α(u ‖ 1) to x and remove e.
It is straightforward to verify that 7→ preserves the requirements on edge and vertex labels
from Definition 15. We write for the transitive closure of 7→ up to ∼= (i.e., G H iff
there exists a sequence G ∼= G1 7→ G2 ∼= G3 7→ . . . 7→ Gn ∼= H).

I Lemma 19. The relation 7→ is terminating.

I Lemma 20. If G 7→ G′, then exp(G) ' exp(G′).

I Lemma 21. If G ∼= H and G 7→ G′, then there exists H ′ such that H 7→ H ′ and G′ ∼= H ′.

1:6 Treewidth-Two Graphs as a Free Algebra

(1) u vα
7→ uαv

(2) uα β
7→

α·dom(u·β)

(3)
u

v
7→

u ‖ v

(4)
u

α
7→

α(u ‖ 1)

Figure 3 Rewriting system for term-labeled graphs. The square vertices may have additional
incident edges. The circular vertices (i.e., those that are removed) must be distinct from input and
output and may not have other incident edges.

We now show that the relation 7→ is locally confluent up to weak isomorphism. The proof
is fundamental: while closing the various critical pairs, we rediscover most of the axioms of
2pdom-algebras. Note that for rules (1) and (3) we do not assume that the square vertices
are distinct. This introduces some critical pairs (e.g, between rules 3 and 4), but ensures
that reductions are preserved in contexts that collapse input and output (Lemma 29 below).

I Lemma 22 (Local Confluence). If G1 ←[G 7→ G2, then there exist G′1 and G′2 such that
G1 7→ G′1, G2 7→ G′2 and G′1 ∼= G′2.

Proof. If the redexes do not overlap, we can reduce G1 and G2 to the same graph in one
step. It remains to analyze the critical pairs. The nontrivial interactions are as follows:

Rules 1 and 2 can interact as follows:

uαvγ β
←[u vγ α β

7→ uγ αdom(uβ)

After applying rule 2 on both sides, it suffices to show dom(uαvβ) ≡ dom(uαdom(vβ)),
which is an instance of (A13).
Rules 1 and 3 can interact as follows: uαv◦

γ
← [

u

v

γ α
7→

u ‖ vγ α

After applying rule 4 on the left and rule 2 on the right, it suffices to show that we
have uαv◦ ‖ 1 ≡ dom((u ‖ v)α). We prove it as follows using Lemma 8(4) and (A10):
dom((u ‖ v)α) ≡ dom(u ‖ vα) ≡ 1 ‖u(vα)◦ ≡ uαv◦ ‖ 1.
Rules 3 and 4 can interact as follows:

u ‖ v

γ
← [

u v

γ
7→

v

γ(u ‖ 1)
After applying rule 4 on both sides, it suffices to show u ‖ v ‖ 1 ≡ (u ‖ 1)(v ‖ 1). Since
v ‖ 1 is a test, this follows with Lemma 8(4) and (A5).

There are a number of other critical pairs that can easily be resolved using (A1)-(A8) (e.g.,
two overlapping instances of rule 1 that differ in the direction the edges are matched, or
overlapping instances of rule 3). Similarly, overlapping instances of rules 2 and 4 remain
instances after the first rule has been applied and the resulting graphs only differ in the
order of the tests being generated; thus they are weakly isomorphic by Lemma 8(3). J

I Proposition 23 (Confluence). If G1 G G2, then there exists H such that G1 H G2.

I Definition 24. We call a term-labeled graph atomic if it consists of either a single vertex
and no edges or two vertices connected by a single edge as depicted in Figure 4. If A is
atomic, we write A for the term that can extracted from A, i.e., αuβ, αu◦β, or α for the
atoms in Figure 4, from left to right.

C. Doczkal and D. Pous 1:7

uα β uα β α

Figure 4 Atomic Graphs

f(u◦) = match f(u) with f(1) = (1)
(αu, u′, βu)⇒ (βu, u′

◦
, αu)

(γ)⇒ (γ)
f(u ‖ v) = match f(u), f(v) with f(a) = (1, a, 1)

(αu, u′, βu), (αv, v′, βv)⇒ (αuαv, u′ ‖ v′, βuβv)
(αu, u′, βu), (γ)⇒ (αuu′βu ‖ γ)
(γ), (αv, v′, βv)⇒ (γ ‖αvv′βv)
(γ1), (γ2)⇒ (γ1γ2)

f(u·v) = match f(u), f(v) with f(dom(u)) = (dom(u))
(αu, u′, βu), (αv, v′, βv)⇒ (αu, u′βuαvv′, βv)
(αu, u′, βu), (γ)⇒ (αu, u′, βuγ)
(γ), (αv, v′, βv)⇒ (γαv, v′, βv)
(γ1), (γ2)⇒ (γ1γ2)

Figure 5 Test analysis for Σdom-terms

I Lemma 25. If A G B for some atomic graphs A,B, then A ≡ B.

Proof. We have A ∼= B by Proposition 23, since atomic graphs are irreducible. The claim
then follows by case analysis on A and B. J

4 Reducibility of Term-Graphs

We now show that the rewriting system from the previous section can be used to reduce
graphs of the shape g(u) to atomic graphs. As a consequence, we obtain that u ≡ v iff
g(u) ' g(v) and, hence, that equivalence of Σdom-terms is decidable.

To show that g(u) reduces to an atomic graph, we define a function computing for every
u an equivalent term that can be obtained as A for some atomic graph A. In particular, if
u is not a test, it computes “maximal” tests α and β and a non-test v such that u ≡ αvβ.

I Definition 26. We define a function f : Tm→ T ∪ T ×N ×T as depicted in Figure 5, as
well as functions d_e and b_c interpreting elements of T ∪ T ×N ×T as atomic graphs and
terms, respectively: d(α, u, β)e is the graph on the left in Figure 4 and d(α)e is the graph
on the right, b(α, u, β)c , αuβ, and b(γ)c , γ. Note that d(α, u, β)e = b(α, u, β)c.

A summary of the functions defined so far is given in Figure 6.

I Lemma 27. u ≡ bf(u)c.

Proof. By induction on u. The cases for a, 1, and dom(u) are trivial. The case for u◦
follows with Lemma 8(2). We show the case for f(u ‖ v) where f(u) = (αu, u′, βu) and

1:8 Treewidth-Two Graphs as a Free Algebra

T ∪ T ×N × T

Tm graphs

term-labeled graphs

g

fb_c
d_e

exp(_)

Figure 6 Summary of functions between terms and graphs

f(v) = (αv, v′, βv).

bf(u ‖ v)c = αuαv(u′ ‖ v′)βuβv
≡ (αuu′βu) ‖ (αvv′βv) Lemma 8(4) and commutativity of ‖
≡ bf(u)c ‖ bf(v)c
≡ u ‖ v induction hypothesis

The remaining cases are straightforward. J

We now show that g(u) (seen as a term-labeled graph) reduces to df(u)e. To do so, we first
extend the graph operations to term-labeled graphs and prove the context lemma below.

I Definition 28. If a graph G occurs as a term-labeled graph, it is to be read as the graph
where every vertex is labeled with 1 (and every edge is labeled with a single letter as before).
We extend the operations ·, ‖ and dom(_) to term-labeled graphs. If two vertices x and y
are identified by an operation, we label the resulting vertex with l(x)·l(y).

I Lemma 29 (Context Lemma). If G G′, then G ‖H G′ ‖H, G·H G′·H, H·G
H·G′, and dom(G) dom(G′).

Proof. By induction on G G′. First, all operations preserve weak isomorphisms. Second,
a redex in G is still a redex in G·H, H·G, and dom(G) since G remains unchanged except
that one of its nodes may cease to be input or output. Similarly, a redex in G is also a redex
in G ‖H (even if H is a test: we do not require the square vertices in rules 1 and 3 to be
distinct so that redexes are preserved under collapsing input and output). J

Note that the converse of Lemma 29 does not hold. For instance, dom(a) (cf. Figure 1)
reduces by rule 2 to a single node labeled 1dom(a1), but a is an atom.

I Proposition 30 (Reducibility). g(u) df(u)e

Proof. By induction on u. The base cases are trivial. For the inductive cases, we use
Lemma 29 and the induction hypothesis to reduce the respective subgraphs to atomic graphs.
The resulting graphs always reduce to atomic graphs in a single step. See Appendix C. J

We can finally characterise the equational theory of 2pdom-algebras:

I Theorem 31. 2pdom ` u = v iff g(u) ' g(v).

Proof. The direction from left to right follows with Proposition 5. For the converse direction,
assume g(u) ' g(v). Then g(u) ∼= g(v) and therefore df(u)e ≡ df(v)e by Proposition 30 and
Lemma 25. Hence, u ≡ bf(u)c = df(u)e ≡ df(v)e = bf(v)c ≡ v using Lemma 27 twice. J

As explained in the introduction we did not use minors to obtain this result. Actually, we did
not use tree decompositions either: those arise only in the following section, where we need to
characterize the image of the function g. This sharply contrasts with the approach from [7],
where both tree decompositions and minors are used to obtain the above characterization.

C. Doczkal and D. Pous 1:9

5 The free 2pdom-algebra

In order to show that the connected graphs in TW2 form the free 2p-algebra, it remains to
obtain an inverse to g (up to ≡), i.e., we need to extract terms from such graphs. We again
make use of the rewriting system.

In a slight abuse of notation, we also write G ∈ TW2 to denote that (the strong skeleton
of) a term-labeled graph G has treewidth at most two.

I Lemma 32 (Preservation). If G ∈ TW2 is a connected term-labeled graph and G 7→ G′,
then G′ ∈ TW2 and G′ is connected.

I Lemma 33 (Progress). If G ∈ TW2 is a connected term-labeled graph, then either there
exists some G′ such that G 7→ G′ or G is atomic.

Proof. W.l.o.g., we can assume that rules 3 and 4 do not apply. Thus, it suffices to show
that either ι and o are the only vertices of G or that there is some vertex distinct from input
and output that has at most two neighbors. Let T be a tree decomposition of the strong
skeleton of G of width at most two, and remove leafs of T that are included in their unique
neighbor (T remains a tree-decomposition). If T has only one node (say t) then {ι, o} ⊆ Bt.
Hence, if there is another vertex, it has degree at most two. Otherwise, let t be a leaf and
let z be a vertex appearing only in Bt. Without loss of generality, we can assume z /∈ {ι, o}.
(If z = ι then o ∈ Bt, due to the ιo-edge in the strong skeleton; hence, for any other leaf,
neither ι nor o can be the vertex unique to that leaf.) Since z appears only on Bt it has at
most two neighbors. J

I Definition 34. We define a function t′ from connected term-labeled graphs of treewidth
at most two to terms as follows: t′(G) , A for some atomic graph such that G 7→∗ A. A
suitable atomic graph A can be computed by blindly applying the rules (Lemmas 32 and 33):
all choices lead to equivalent terms (Lemma 25). For connected (standard) graphs G, we
write t(G) for t′(G′) where G′ is G seen as a term-labeled graph.

I Lemma 35. If G ∈ TW2 is a term-labeled graph and G H, then t′(G) ≡ t′(H).

Proof. Follows with Lemma 25. J

As an immediate consequence of the lemma above we also have:

I Proposition 36. If G,H ∈ TW2 and G ' H, then t(G) ≡ t(H).

We now show that t and g are inverses up to term equivalence and isomorphism respectively.

I Proposition 37. t(g(u)) ≡ u

Proof. We have t(g(u)) ≡ df(u)e = bf(u)c by Proposition 30 and Lemma 35. The claim
then follows with Lemma 27. J

I Proposition 38. If G ∈ TW2 then g(t(G)) ' G.

Proof. We have t(G) = A for some A such that G 7→∗ A. Hence, exp(A) ' G (Lemma 20).
The claim follows since g(A) ' exp(A) for all atoms A. J

The function g is a Σdom-homomorphism by definition. By the above results, this is ac-
tually an isomorphism between the 2pdom-algebra of connected graphs in TW2 and the
(canonically) free 2pdom-algebra of Σdom-terms quotiented by ≡:

I Theorem 39 ([15]). The connected graphs in TW2 form the free 2pdom-algebra.

1:10 Treewidth-Two Graphs as a Free Algebra

6 The free 2p-algebra

We now extend the results from the previous section to disconnected graphs. That is, we
show that the class of all graphs in TW2 forms the free 2p-algebra [7]. We use for that the
previous function t to extract terms from the various connected components of a graph.

From now on, we take u ≡ v to mean 2p ` u = v. Recall that 2p ` u = v whenever
2pdom ` u = v (Lemma 4). Hence, all the lemmas from the previous section still apply.

I Definition 40. Let G be a graph. For vertices x, y of G, we write G[x, y] for the graph G
with input set to x and output set to y. We abbreviate G[x, x] as G[x]. Further, we write
Gx for the connected component of x (as a subgraph of G, with input and output set to x).

I Definition 41. Let C(G) be the collection of components Gx obtained by choosing some
vertex x for every connected component of G containing neither ι nor o. We define a function
t> extracting terms from (possibly disconnected) graphs as follows:

cG ,
n

H∈C(G)

>·t(H)·> t>(G) ,
{

t(Gι)·>·t(Go) ‖ cG ι and o disconnected
t(Gι[ι, o]) ‖ cG ι and o connected

Note that the function t> needs to choose shared input/outputs vertices for all disconnected
components. For isomorphic arguments, these choices can differ. We begin by showing that
this choice does not matter up to term equivalence.

I Lemma 42. Let G ∈ TW2 be a connected test and let x be a neighbor of ι in G. We have
t(G)·> ≡ t(G[ι, x])·>.

Proof. Since G ∈ TW2, so is G[ι, x]. Hence, G[ι, x] d(α, u, β)e for some terms α,β, and u.
Since G = dom(G[ι, x]), we also have G dom(d(α, u, β)e) by Lemma 29. Moreover,
dom(d(α, u, β)e) d(α·dom(uβ))e by rule 2. We reason as follows:

t(G)·> ≡ t′(d(α·dom(uβ))e)·> Lemma 35
= (α·dom(uβ))·>
≡ αuβ·> (A11)
= t′(d(α, u, β)e)·>
≡ t(G[ι, x])·> Lemma 35 J

I Lemma 43. Let G ∈ TW2 be a connected graph and let x, y be vertices of G. We have
>·t(G[x])·> ≡ >·t(G[y])·>

Proof. Since G is connected, it suffices to show the property for all xy-edges of G. We have

>·t(G[x])·> ≡ >·t(G[x, y])·> Lemma 42
≡ >·t(G[y, x])◦·> t is a homomorphism
≡ >·t(G[y, x])·> Lemma 9(3)
≡ >·t(G[y])·> Lemma 42 J

Lemmas 42 and 43 also appear in [7]. For the former, which depends on the definition of t,
the proof here is considerably simpler, for the latter the proof is essentially the same.

I Proposition 44. Let G,H ∈ TW2. If G ' H, then t>(G) ≡ t>(H).

Proof. Follows with Proposition 36 and Lemma 43. J

C. Doczkal and D. Pous 1:11

I Proposition 45. g(t>(G)) ' G.

I Lemma 46. t> is a homomorphism of 2p-algebras.

Proof. We already showed that that t> respects graph isomorphisms. It remains to show
that t> commutes with all operations.

We show t>(G·H) ≡ t>(G)·t>(H). Let F , G·H. We distinguish four cases based on
whether ι and o are connected in G and H respectively.
ι and o disconnected in both G and H: In that case, Go and Hι are merged into one

component of F that is connected neither to the input nor to the output of F . By
Lemma 43 and Proposition 36 we therefore have: cF ≡ (>t(Go·Hι)>) ‖ cG ‖ cH . We
reason as follows:

t>(F) ≡ t(Fι)·>·t(Fo) ‖ cF ι and o disconnected in F
≡ t(Gι)·>·t(Ho) ‖>·t(Go·Hι)·> ‖ cG ‖ cH Fι ' Gι, Fo ' Go
≡ t(Gι)·>·t(Go·Hι)·>·t(Ho) ‖ cG ‖ cH Lemma 9(1)
≡ t(Gι)·>·t(Go)·t(Hι)·>·t(Ho) ‖ cG ‖ cH t is a homomorphim
≡ t>(G)·t>(H) Lemma 9(2) and its dual

ι and o connected in G but not in H: We have cF ≡ cG ‖ cH by Proposition 36 and Lemma 43.

t>(F) ≡ t(Fι)·>·t(Fo) ‖ cF
≡ t(dom(Gι[ι, o]·Hι))·>·t(Ho) ‖ cF Fι ' dom(Gι[ι, o] ·Hι), Fo ' Ho

≡ t(Gι[ι, o])·t(Hι)·>·t(Ho) ‖ cF (A11), t is a homomorphism
≡ t(Gι[ι, o])·t(Hι)·>·t(Ho) ‖ cG ‖ cH
≡ t>(G)·t>(H) Lemma 9(2) and its dual

The case where input and output are connected only in H is symmetric and the case
where they are connected in both graphs follows from t being a homomorphism.

Proving that t> commutes with the other operations is done in a similar manner. J

I Proposition 47. t>(g(u)) ≡ u.

Proof. By induction on u, using Lemma 46. J

I Theorem 48 ([7]). The graphs in TW2 form the free 2p-algebra.

7 1-free 2p-algebras

We now show that the techniques from the previous sections can be adapted to the setting
where 1 (and hence dom(_)) are removed from the signature. We define 1-free 2p-algebras
over the signature Σ−1

> , Σ> \ {1} and show that the graphs of treewidth at most two
without self-loops and with distinct input and output form the free 1-free 2p-algebra.

The axioms for 1-free 2p-algebras are A1-A4,A6-A8 plus the following three axioms:

(u·v ‖w)·> = (u ‖w·v◦)·> u·(v·> ‖w) = (u ‖>·v◦)·w u·v ‖>·w = u·(v ‖>·w)

The main complication in adapting our techniques to the 1-free case is that the syntax
of 1-free 2p-algebras cannot express tests, even though the algebra of graphs still exhibits
tests-like structures. For instance, if G is a test without self-loops, then G·> is a graph of
the proposed free 1-free 2p-algebra.

1:12 Treewidth-Two Graphs as a Free Algebra

To account for this, we define a type of tests that can be either 1 or [u] for some term u.
Tests, which are not terms, allow us to describe graphs that are tests. Letting α and β range
over tests, we then define three operations α·v and u·α yielding terms and α·β yielding a
test. For instance, 1·v , v and [u]·v , u>‖ v. Intuitively, the term u in [u] will always
be used in contexts where its output is discarded, like in u>; this allows us to treat [u]
essentially like dom(u).

Doing so, we eventually obtain a 2-sorted algebra whose sorts are tests and terms. Using
these operations and replacing dom(u) with [u], the rules of the rewriting system in Figure 3
(except rule 4, since u ‖α does not make sense) can also be seen as rules for graphs where
vertices are labeled with tests and edges are labeled with Σ−1

> -terms. Thus, removing rule 4
and disallowing the instance of rule 1 where the square vertices coincide (as this would
introduce a self-loop) yields a rewriting system on connected self-loop free graphs. We prove
2-sorted variants of the relevant 2pdom- and 2p-laws and define a variant of the function
f that always returns a triple of two tests and a term. This allows us to prove confluence
and reducibility. The rest of the proofs then carry over to the disconnected case without
conceptual changes. For additional detail, see Appendix D.

The axioms we listed for 1-free 2p-algebras are precisely those needed to prove the 2-
sorted 2pdom- and 2p-laws. We verified the derivation of these laws in the Coq proof
assistant [6], and we used the model generator Mace4 [14] to verify that these axioms are
independent. The corresponding scripts can be downloaded from [10].

I Theorem 49. The graphs of treewidth at most two with distinct input and output and
without self-loops form the free 1-free 2p-algebra.

8 Conclusion and directions for future work

We have proved that graphs in TW2, connected graphs in TW2, and self-loop free graphs in
TW2 with distinct input and output respectively form the free 2p-algebra, the free 2pdom-
algebra, and the free 1-free 2p-algebra.

To do so, we used a graph rewriting system that makes it possible to extract terms from
connected graphs in TW2, in a bottum-up fashion. This technique is much easier than the
one used in [7] in that it is more local and does not require us to study the precise structure
of graphs in TW2 (i.e., through excluded minors).

As explained in the introduction, the result about connected graphs can be reduced to the
one about arbitrary graphs by model-theoretic means: one can easily embed a 2pdom-algebra
into a 2p-algebra [15], so that 2p-algebras form a conservative extension of 2pdom-algebras.
As a corollary of Theorem 49, we get that 2p-algebras also form a conservative extension
of 1-free 2p-algebras. It is however unclear how to prove this result directly, by model-
theoretic means: terms which are missing in 1-free 2p-algebras (self-loops) can occur deep
inside terms of 2p-algebras, unlike terms which are missing in 2pdom-algebras (disconnected
components).

As a natural follow-up to this work, we would like to study whether one can character-
ize the classes of graphs of higher treewidth as free algebras. The present approach seems
promising for treewidth at most three: a reasonable rewriting system is known for recog-
nising such graphs [2]. (In contrast, trying to exploit the four excluded minors known to
characterize treewidth three [4, 2] seems extremely difficult.) One could also hope to handle
the general case since rewriting systems for recognizing a given treewidth always exist [1]
(constructively, unlike the existence of a finite set of excluded minors for each treewidth [16]).

C. Doczkal and D. Pous 1:13

References
1 S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese. An algebraic theory of graph

reduction. Journal of the ACM, 40(5):1134–1164, 1993.
2 S. Arnborg and A. Proskurowski. Characterization and recognition of partial 3-trees. SIAM

J. Algebraic Discrete Methods, 7(2):305–314, Apr. 1986.
3 S. Arnborg and A. Proskurowski. Canonical representations of partial 2- and 3-trees. In

Proc. SAWT, pages 310–319. Springer, 1990.
4 S. Arnborg, A. Proskurowski, and D. G. Corneil. Forbidden minors characterization of

partial 3-trees. Discrete Mathematics, 80(1):1–19, 1990.
5 C. Chekuri and A. Rajaraman. Conjunctive query containment revisited. Theoretical

Computer Science, 239(2):211–229, 2000.
6 Coq team. The Coq proof assistant. https://coq.inria.fr/.
7 E. Cosme-Llópez and D. Pous. K4-free graphs as a free algebra. In Proc. MFCS, volume 83

of LIPIcs. Schloss Dagstuhl, 2017.
8 B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-Order Logic - A

Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and its applica-
tions. Cambridge Univ. Press, 2012.

9 R. Diestel. Graph Theory. Graduate Texts in Mathematics. Springer, 2005.
10 C. Doczkal and D. Pous. Supplementary material accompanying this paper. https://

perso.ens-lyon.fr/christian.doczkal/mfcs18.
11 R. Duffin. Topology of series-parallel networks. Journal of Mathematical Analysis and

Applications, 10(2):303–318, 1965.
12 E. C. Freuder. Complexity of k-tree structured constraint satisfaction problems. In Proc.

NCAI, pages 4–9. AAAI Press / The MIT Press, 1990.
13 M. Grohe. The complexity of homomorphism and constraint satisfaction problems seen

from the other side. Journal of the ACM, 54(1):1:1–1:24, 2007.
14 W. McCune. Prover9 and Mace4. http://www.cs.unm.edu/~mccune/prover9/, 2005–

2010.
15 D. Pous and V. Vignudelli. Allegories: decidability and graph homomorphisms. https:

//hal.archives-ouvertes.fr/hal-01703906/, 2018. to appear in Proc. LiCS 2018.
16 N. Robertson and P. Seymour. Graph minors. XX. Wagner’s conjecture. Journal of Com-

binatorial Theory, Series B, 92(2):325 – 357, 2004.

http://dx.doi.org/10.1145/174147.169807
http://dx.doi.org/10.1145/174147.169807
http://dx.doi.org/10.1137/0607033
http://dl.acm.org/citation.cfm?id=88723.88787
http://dx.doi.org/10.1016/0012-365X(90)90292-P
http://dx.doi.org/10.1016/0012-365X(90)90292-P
http://dx.doi.org/10.1016/S0304-3975(99)00220-0
https://coq.inria.fr/
http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.76
https://perso.ens-lyon.fr/christian.doczkal/mfcs18
https://perso.ens-lyon.fr/christian.doczkal/mfcs18
http://dx.doi.org/10.1016/0022-247X(65)90125-3
http://www.aaai.org/Library/AAAI/1990/aaai90-001.php
http://dx.doi.org/10.1145/1206035.1206036
http://dx.doi.org/10.1145/1206035.1206036
http://www.cs.unm.edu/~mccune/prover9/
https://hal.archives-ouvertes.fr/hal-01703906/
https://hal.archives-ouvertes.fr/hal-01703906/
http://dx.doi.org/10.1016/j.jctb.2004.08.001

1:14 Treewidth-Two Graphs as a Free Algebra

A 2pdom-Facts

The basic laws about 2pdom-algebras we use (Lemma 8) are implicitely proved in [15], and
Coq proofs scripts are available [10]. We nevertheless give their proofs here for the sake of
completeness. Also note that similar facts were already proven for 2p-algebra in [7] but that
we need proofs in 2pdom-algebras here.

Proof of Lemma 8. As is standard for involutive monoids, we have 1◦ = 1 and, therefore,
dom(α) = α by (A10).
dom(u) = dom(u) ‖ 1:

dom(u) = dom(u)(1 ‖ 1) = dom(u)1 ‖ 1 = dom(u) ‖ 1

α◦ = α:

α◦ = (α ‖ 1)◦ = 1 ‖ 1α◦ = dom(1 ‖α) = dom(α) = α

(u ‖ v)α = u ‖ vα: We show the dual:

α(u ‖ v) = dom(α)(u ‖ v) = dom(α)u ‖ v = αu ‖ v

αβ = α ‖β = βα: By commutativity of ‖ , it suffices to prove the first equation:

αβ = (α ‖ 1)β = α ‖ 1β = α ‖β

This finishes the proof. J

B Graph Expansion

I Example 50. A term-labeled graph and its expansion:

exp

a b

cc◦

1
ef ‖ 1

d ‖ 1
 =

a b

c c

d

e
f

C Proof of Reducibility

Proof of Proposition 30. The proof proceeds by induction on u.
case u ‖ v :

g(u ‖ v) = g(u) ‖ g(v) def. g
 df(u)e ‖ g(v) IH, Lemma 29
 df(u)e ‖ df(v)e IH, Lemma 29, comm. ‖

We consider several cases.
If f(u) = γ and f(v) = (αv, v′, βv), then df(u)e ‖ df(v)e has a single node labeled γαvβv
(up to commutativity of tests) and a single self loop labeled v′. Hence, we can apply
rule 4:

df(u)e ‖ df(v)e d(γαvβv(v′ ‖ 1))e ∼= d(γ ‖αvv′βv)e ∼= df(u ‖ v)e

C. Doczkal and D. Pous 1:15

If f(u) = (αu, u′, βu) and f(v) = (αv, v′, βv) then df(u)e ‖ df(v)e is an instance of rule 3
and we have:

df(u)e ‖ df(v)e d(αuαv, u′ ‖ v′, βuβv)e ∼= df(u ‖ v)e

The remaining cases are analogous.
case u·v :

g(u·v) = g(u)·g(v) def. g
∼= df(u)e·df(v)e IH, Lemma 29 (twice)

If f(u) = (αu, u′, βu) and f(v) = (αv, v′, βv) then df(u)e · df(v)e is an instance of rule 1
with the intermediate vertex labeled βuαv. Hence,

df(u)e·df(v)e d(αu, u′βuαvv′, βv)e ∼= df(u·v)e

The other cases are straightforward.
case dom(u) :

g(dom(u)) = dom(g(u)) def. g
 dom(df(u)e) IH, Lemma 29

If f(u) = (γ), there is nothing to show. Otherwise we have f(u) = (αu, u′, βu) and
therefore dom(df(u)e) is an instance of rule 1:

dom(df(u)e) d(αudom(u′βu))e ∼= df(dom(u))e

The cases for a and 1 are straightforward (no reduction required). J

D 1-Free 2p-algebras

We repeat the axioms for 1-free 2p-algebras (in addition to A1-A4,A6-A8) in order to give
them names:

(u·v ‖w)·> = (u ‖w·v◦)·> (A15)
u·(v·> ‖w) = (u ‖>·v◦)·w (A16)
u·v ‖>·w = u·(v ‖>·w) (A17)

In this section, we take u ≡ v to mean that u = v holds in all 1-free 2p-algebras. Note that,
since >◦ ≡ >, (u·> ‖w)·> ≡ (u ‖w·>)·> is (essentially) an instance of (A15); one we will
use it repeatedly.

Terms of 1-free 2p-algebras all denote graphs with distinct input and output. To be able
to denote tests, we define the following type of tests:

α : Tst ::= 1 | [u] (u ∈ Tm)

We let α,β,. . . range over these tests and we extend the definition of g to tests as follows:

g(1) = 1 g([u]) = dom(g(u))

Intuitively, in a test [u], the output of the term u does not matter: u will always be used
in contexts where this information disappears, e.g., as in u>. This motivates the following
notion of equivalence for tests: 1 ≡ 1, and [u] ≡ [v] if u·> ≡ v·>.

1:16 Treewidth-Two Graphs as a Free Algebra

I Lemma 51. If α ≡ β then g(α) ' g(β).

We extend the sequential composition to take one or two tests as arguments in a manner
that 1 is the neutral element on both sides:

1·v , v u·1 , u 1·α , α
[u]·v , u>‖ v u·[v] , u ‖>v◦ [u]·1 , [u]

[u]·[v] , [u>‖ v]

(Note that α·β is a test whereas all other variants are terms.) Doing so, we obtain a 2-sorted
algebra, whose sorts are tests and terms.

The above three operations appropriately preserve test equivalence (e.g., if α ≡ β, then
uα ≡ uβ, αu ≡ βu, γα ≡ γβ, αγ ≡ βγ for all terms u and tests γ.

We then prove various laws, which cover all axioms of 2pdom-algebras that still make
sense in the 2-sorted setting (using [_] instead of dom(_)). All these equivalences have been
proved in the interactive theorem prover Coq [10].

I Lemma 52.
1. u> ≡ [u]> and >u ≡ >[u◦].
2. (αu)◦ ≡ u◦α, (uα)◦ ≡ αu◦.
3. (xy)z ≡ x(yz) for all x, y, z either test or term.
4. [uv] ≡ [u[v]]
5. αβ ≡ βα
6. α(v ‖w) ≡ αv ‖w.
7. [uv ‖w] ≡ [u ‖wv◦].

Proof. For all statements involving tests α of unknown shape, we distinguish the cases α = 1
(usually trivial) and α = [w] for some w. Claims (1) and (2) are straightforward. By (2) and
the laws for converse, we only need to consider 5 of the 8 cases of (3). (uα)v ≡ u(αv) follows
with (A16) and (uv)α ≡ u(αv) follows with (A17). For (αβ)γ ≡ α(βγ) we repeatedly use
(A15) with v = >:

(([u][v])[w])> ≡ ((u>‖ v)>‖w)> ≡ ((u>‖ v) ‖w>)> ≡ (u>‖ (v ‖w>))>
≡ (u ‖ (v ‖w>)>)> ≡ (u ‖ (v>‖w)>)> ≡ (u>‖ (v>‖w))> ≡ ([u]([v][w]))>

The remaining cases for associativity are straightforward. Claims (4) and (5) follow with
associativity. Claim (7) follows with (A15). The remaining claims are straightforward. J

Typical laws that do not make sense in the 2-sorted setting are dom(α) ≡ α, and dom(u ‖ v) ≡
1 ‖uv◦.

We define term-labeled graphs as for 2pdom, with the difference that now vertices are
labeled with our handcrafted notion of tests and edges are labeled with terms (whose graphs
are never tests). The rewriting system on term-labeled graphs (Figure 3) is adapted by
removing rule 4, restricting rules 1 and 3 such that the two outer vertices must be distinct,
and replacing dom(u) with [u].

Local confluence adapts, although for one of the pairs we now need two reduction steps
to join the two alternatives.

I Lemma 53 (Local Confluence). If G1 ←[G 7→ G2, then there exist G′1 and G′2 such that
G1 G′1, G2 G′2 and G′1 ∼= G′2.

C. Doczkal and D. Pous 1:17

Proof. The only interesting (new) critical pair is that of overlapping instances of rule 1,
where the outer nodes are the same. Due to the restriction that the outer nodes of rule 1
must be distinct, this pair can no longer be joined by applying rule 1. Instead we use rules 3
and 2 as follows:

uαv ‖wγ β
←[

uαv

w

γ β
← [

v

u w

α β

γ
7→

u

wβv◦

γ α
7→

u ‖wβv◦γ α

After applying rule 2 on both sides, it suffices to show [(uαv ‖w)β] ≡ [(u ‖wβv◦)α]. This
follows with Lemma 52(6+7). J

For the normalization proof, we employ a function f : Tm→ Tst×Tm×Tst that can be
seen as a type directed variant of the function in Figure 5.

f(a) = (1, a, 1)
f(u◦) = let (αu, u′, βu) := f(u) in (βu, u′

◦
, αu)

f(u ‖ v) = let (αu, u′, βu), (αv, v′, βv) := f(u), f(v) in (αuαv, u′ ‖ v′, βuβv)
f(u·v) = let (αu, u′, βu), (αv, v′, βv) := f(u), f(v) in (αu, u′βuαvv′, βv)
f(γ·u) = let (αu, u′, βu) := f(u) in (γαu, u′, βu)
f(u·γ) = let (αu, u′, βu) := f(u) in (αu, u′, βuγ)

I Lemma 54. If u ∈ Tm and α ∈ Tst, then g(u) dfue and g(α) d(α)e.

Proof. We have a context lemma similar to Lemma 29. The proof then proceeds by mutual
induction in u and α. The cases correspond to those of Proposition 30. J

We define two extraction functions t1 and t2, where t1 extracts syntactic tests from
graphs that are tests and t2 extracts terms from non-tests. Both functions are defined just
like t (Definition 34), exploiting the fact that the rewriting system does not merge or delete
input and output.

I Proposition 55.
1. If G ∈ TW2 is a test without self loops, then g(t1(G)) ' G.
2. If G ∈ TW2 is a non-test without self loops, then g(t2(G)) ' G.
3. t1(g(α) ≡ α.
4. t2(g(u)) ≡ u.
Using t1 and t2 we can define a typed variant of t>.

I Definition 56. Let C(G) as in Definition 41. We define

cG ,
n

H∈C(G)

>·t1(H)·> t>(G) ,
{

t1(Gι)·>·t1(Go) ‖ cG ι and o disconnected
t2(Gι[ι, o]) ‖ cG ι and o connected

That t> respects graph isomorphisms is immediate with Proposition 55. To show t> is a
homomorphism of 1-free 2p-algebras, we require a typed analog to Lemma 9. Again, all the
equivalences below have been verified in Coq [10].

I Lemma 57.
1. >u◦> ≡ >u>.

1:18 Treewidth-Two Graphs as a Free Algebra

2. αv ≡ α>‖ v.
3. α>β ≡ α>‖>β
4. uv ‖>α> ≡ (u ‖>α>)v
5. α>β ‖>γ> = α>γ>β
Note that, due to Lemma 52(1), any equivalence where a test α appears either only as α>
or only as >α (i.e., in α and β in Lemma 57(4)), also holds if α is replaced by a term.

The remaining proofs of Section 6 adapt to the 1-free setting by carefully distinguish-
ing between terms and tests, but without any conceptual changes. For instance, we have
t1(G)> ≡ t2(G[ι, x])> for neighbors x of ι. Thus we obtain a proof of Theorem 49.

	Introduction
	Preliminaries: 2p- and 2pdom-algebras
	A Confluent Rewriting System for Term-labeled Graphs
	Reducibility of Term-Graphs
	The free 2pdom-algebra
	The free 2p-algebra
	1-free 2p-algebras
	Conclusion and directions for future work
	2pdom-Facts
	Graph Expansion
	Proof of Reducibility
	1-Free 2p-algebras

