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Nonconvex optimization for 3D point source localization using a rotating point
spread function∗

Chao Wang† , Raymond Chan† , Mila Nikolova‡ , Robert Plemmons§ , and Sudhakar Prasad¶

Abstract. We consider the high-resolution imaging problem of 3D point source image recovery from 2D data
using a method based on point spread function (PSF) engineering. The method involves a new
technique, recently proposed by S. Prasad, based on the use of a rotating PSF with a single lobe to
obtain depth from defocus. The amount of rotation of the PSF encodes the depth position of the
point source. Applications include high-resolution single molecule localization microscopy as well as
the problem addressed in this paper on localization of space debris using a space-based telescope.
The localization problem is discretized on a cubical lattice where the coordinates of nonzero entries
represent the 3D locations and the values of these entries the fluxes of the point sources. Finding
the locations and fluxes of the point sources is a large-scale sparse 3D inverse problem. A new
nonconvex regularization method with a data-fitting term based on Kullback-Leibler (KL) divergence
is proposed for 3D localization for the Poisson noise model. In addition, we propose a new scheme of
estimation of the source fluxes from the KL data-fitting term. Numerical experiments illustrate the
efficiency and stability of the algorithms that are trained on a random subset of image data before
being applied to other images. Our 3D localization algorithms can be readily applied to other kinds
of depth-encoding PSFs as well.

Key words. nonconvex optimization algorithms, 3D localization, space debris, point spread function, image
rotation, image processing

AMS subject classifications. 65K10, 65F22, 90C26

1. Introduction. Imaging and localizing point sources with high accuracy in a 3D volume
is an important and challenging task. An example is super-resolution 3D single-molecule
localization [3, 38], which is an area of intense interest in biology (cell imaging, folding,
membrane behavior, etc.), in chemistry (spectral diffusion, molecular distortions, etc.), and
in physics (structures of materials, quantum optics, etc.). A different problem of interest in
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the space-surveillance community is that of localization of space debris using a space-based
telescope. Since the optical wavelength is much shorter than the radio wavelength, optical
detection and localization is expected to attain far greater precision than the more commonly
employed radar systems. However, the shorter field depth of optical imaging systems may
limit their performance to a shorter range of distances. An integrated system consisting of
a radar system for performing radio detection, localization, and ranging of space debris at
larger distances, which cues in an optical system when debris reach shorter distances, may
ultimately provide optimal performance for detecting and tracking debris at distances ranging
from tens of kilometers down to hundreds of meters.

A stand-alone optical system based on the use of a light-sheet illumination and scattering
concept [8] for spotting debris within meters of a spacecraft has been proposed. A second
system can localize all three coordinates of an unresolved, scattering debris [10, 39] by utilizing
either parallex between two observatories or a pulsed laser ranging system or a hybrid system.
For parallex, two observatories receive debris scattered optical signal simultaneously. For the
pulsed laser, the ranging system is coupled to a single imaging observatory. The hybrid system
utilizes both approaches in which the laser pulse transmitted from one of the two observatories
is received at time-gated single-photon detectors with good parallax information at both the
observatories. However, to the best of our knowledge there is no other proposal for a full 3D
debris localization and tracking optical or optical-radar system working in the range of tens
to hundreds of meters. Prasad [31] has proposed the use of an optical imager that exploits
off-center image rotation to encode in a single image snapshot both the range z and transverse
(x, y) coordinates of a swarm of unresolved sources such as small, sub-centimeter class space
debris, which when actively illuminated can scatter a fraction of laser irradiance back into the
imaging sensor.

Here we develop a promising non-convex optimization algorithm and compare its per-
formance with other recent algorithms that can reconstruct the 3D positions and fluxes of
a random collection of many point sources within the focal depth of a rotating-PSF-based
imaging system from a single image dataset. We shall assume the data to be corrupted only
by signal-dependent shot noise that is well described by a Poisson statistical model, as would
be roughly characteristic of signal acquisition by an EM-CCD sensor in the photon counting
(PC) mode [7].

1.1. Previous related work. The area of 3D object localization and imaging is getting
increased attention in recent years. One method is to scan the 2D slices of information at
different depths and then reconstruct the 3D image [29]. Owing to the inefficiency and other
limitations of standard PSFs, several optical modifications [3, 38] have been developed for
these problems. There are three typical classes of methods: multifocus method, interferomet-
ric detection and point spread function (PSF) engineering. The multifocus method [13, 30]
uses more than one focal plane simultaneously. The interferometric method [35] extracts the
locations of point sources from the interference fringes of a source signal coherently propagat-
ing in two opposed paths in the imaging instrument. PSF engineering [27, 28, 16, 32, 33, 34],
which encodes the depth coordinate of point sources in a 3D scene into a single 2D snapshot,
is based on choosing a phase pattern that makes the defocused image of a point source depth-
dependent without blurring it excessively. For example, this can be achieved by inserting a
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cylindrical lens into an optical system to get approximately elliptical Gaussian, astigmatic
images whose axial orientation and size contain unique information about the source loca-
tions relative to the plane of best focus [12]. A more general way to create the requisite phase
aberrations is to use phase masks. There are many different kinds of phase masks, which
give rise to the double-helix PSF [28, 27], the corkscrew PSF [16], the Tetrapod PSFs [33, 34]
and the single-lobe PSF [32, 14]. Since the amount of rotation of the PSF encodes the depth
information for the double-helix PSF, the corkscrew and the single-lobe PSF, we call them
rotating PSFs. Tetrapod PSFs [33, 34] represent another approach that is rather analogous to
astigmatic imaging in that the source depth is encoded in the shape of the PSF. In this paper,
we will only focus on Prasad’s single-lobe rotating PSF [32]. Let us explain the movitivation
for this choice.

Several algorithms have been developed for point source localization, for example in the
area of single molecule localization in microscopy 3D DAOSTORM [1] and 3D FALCON [18].
However these two methods cannot be applied for localization using rotating PSFs, since they
are based on fitting Gaussian functions, which works well only for astigmatism-based PSFs.
Easy-DHPSF [17] is a popular approach for solving the double-helix PSF problem but it
requires no overlap for PSF images which is often impossible to satisfy in reality. In [36], the
authors proposed a generalized method for various rotating PSFs by using 3D deconvolution
with a regularization method. The optimization model is for an additive Poisson noise model
that is only approximately correct even under highly limited brightness conditions. Owing
to sparsity, a hybrid algorithm with matching pursuit and convex optimization was described
in [2] without any theoretical outline. We therefore believe that it is important to propose
an algorithm for the high-density case without the assumption of highly limited brightness
condition. With this aim, we propose an optimization model for 3D localization and consider
the single-lobe rotating PSF [32]. We emphasize, however, that our model is broadly applicable
to a variety of PSFs.

1.2. Problem development. In image formation modeling, the point spread function
(PSF) is the imaging system’s response to light from a point source. Our purpose is to extend
the work of Prasad on PSF engineering [32], which proposed the use of depth-dependent image
rotation, by developing a nonconvex optimization algorithm for 3D point source localization
using such an imaging system. See Section 2 for details.

By imposing spiral phase retardation with a phase winding number that changes in reg-
ular integer steps from one annular zone to the next of an aperture-based phase mask, one
can create an image of a point source that has an approximate rotational shape invariance,
provided the zone radii have a square root dependence on their indices. Specifically, when the
distance of the source from the aperture of such an imaging system changes, the off-center,
shape-preserving PSF merely rotates by an amount roughly proportional to the source mis-
focus from the plane of best focus. The following general model based on the rotating PSF
image describes the spatial distribution of image brightness for P point sources. The observed
2D image without noise is

(1.1) I0(x, y) =

P∑
i=1

Hi(x− xi, y − yi)fi + b,
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where b is the uniform background and Hi(x−xi, y−yi) is the rotating PSF for the i-th point
source of flux fi and 3D position coordinates (xi, yi, zi) with the depth information coded in
each Hi, and (x, y) is the position in image plane.

Here, we build a forward model for the problem based in part on the approach developed
in [36]. In order to estimate the 3D locations of the point sources, we assume their distribution
is approximated by a discrete lattice X ∈ Rm×n×d. The indices of the nonzero entries of X
are the 3-dimensional locations of the point sources and the values at these entries correspond
to the fluxes, i.e., the energy emitted by the illuminated point source. The 2D observed image
G ∈ Rm×n can be represented as

G = P (T (A ∗ X ) + b) ,

where b is background signal and A∗X is the convolution of X with the 3D PSF A. This 3D
PSF is a cube which is constructed by a sequence of images with respect to different depths of
the points. Each slice is the image corresponding to a point source at the origin in the (x, y)
plane and at depth z. Here T is an operator for extracting the last slice of the cube A∗X since
the observed information is a snapshot, and P is the Poisson noise operator. Figure 1 shows
the forward model for a specific PSF. In order to recover X , we need to solve a large-scale
sparse 3D inverse problem given as follows:

min
X

‖X‖0

s.t. D (X ) < ε
(1.2)

where ‖X‖0 is the counting function which gives the number of nonzero entries in X and is
also called the `0 norm. Here ε provides the noise level and D is a certain data-fitting term
based on the noise model. This problem is NP-hard [20] and there are a number of algorithms
and methods [9] being developed to find sparse representation or a good approximate solu-
tion. Examples of such algorithms include greedy algorithms like orthogonal matching pursuit
(OMP) [26], iterative hard thresholding algorithm (IHT) [4], which requires the knowledge
of the exact number of sparse entries in the ground truth, and convex/nonconvex relaxation
methods [23, 21, 22, 40, 6, 37] where the `0 term is approximated and (1.2) is replaced by a
regularization model. Here, we develop a convex/nonconvex relaxation approach to solving
(1.2) for the Poisson noise model. In comparison to state-of-the-art methods, our approach
is more efficient even for high density cases. We do not need to know the exact number of
the ground truth point sources and, furthermore, we have observed less overfitting than other
methods. That is to say that our estimated result recovers fewer false point sources.

1.3. Outline of the paper. The rest of the paper is organized as follows. In Section 2, we
describe the physics model for Prasad’s single lobe rotating PSF. In Section 3, we propose a
nonconvex optimization model to solve the point source localization problem. In Section 4, our
nonconvex optimization algorithm is developed, with a post-processing step for eliminating
clustered false positive point sources. In addition, a new iterative scheme for estimating the
flux values is also proposed in this section. Numerical experiments, including comparisons
with other optimization models, are discussed in Section 5. Some concluding remarks are
made in Section 6.
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Figure 1. Illustration of the discretized forward model for the single lobe PSF.

2. Physics model for single lobe rotating PSFs . Here, we consider a new technique,
recently patented by Prasad in [14, 32], for applying a rotating PSF with a single lobe to
obtain depth from defocus. Comparing to the traditional double-helix rotating PSF [28], this
single lobe PSF uses photons from targets more efficiently and yields images that are less
cluttered and confounding in high-density swarm scenarios than other techniques.

The amount of rotation of Prasad’s PSF encodes the depth position of the point source.
Denote Aζ as the PSF matrix for a point source with flux f = 1, transverse location r0 =
(x0, y0) = 0, and defocus parameter ζ. Note that ζ is proportional to the object-distance δz
from the in-focus object plane, according to the relation

(2.1) ζ = − πδzR2

λl0(l0 + δz)
,

where l0 is the distance between the lens and the best focus point and R is the radius of the
pupil. Here the imaging wavelength is denoted by λ. The two-dimensional image data matrix
G ∈ Rm×n with Poisson noise is generated as:

(2.2) G = P

(
P∑
i=1

fi (Aζi ∗ δ(xi, yi)) + b

)
,

where b is the spatially uniform background, ∗ is the convolution operation, and δ(xi, yi) is
the location matrix for the ith source, with elements,

(δ(xi, yi))uv =

{
1, (u, v) = (xi, yi),

0, otherwise.
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The center of rotation of the image in the transverse plane, denoted by rI = (x, y), is related
to the source transverse location, r0, in the object plane as

rI = − zIr0
l0 + δz

,

where zI is the distance between the image plane and the lens.
According to the Fourier optics model, the incoherent PSF for a clear aperture containing

a phase mask with optical phase retardation, ψ(s), is given by

Aζ(s) =
∣∣F−1 {P (s)exp

[
ι(ζs2 − ψ(s))

]}∣∣2 ,
where ι =

√
−1, F−1 denotes the inverse Fourier transform, P (s) denotes the indicator func-

tion for the pupil of radius R, and s = (s, φs) is a scaled version of the image-plane position
vector, r, namely s = r

λzI/R
. Here r is measured from the center of the geometric image point

located at rI . For the single-lobe rotating PSF, ψ(s) is chosen to be the spiral phase profile
defined as

ψ(s) = lφs, for

√
l − 1

L
≤ s ≤

√
l

L
, l = 1, · · ·, L,

in which L is the number of concentric annular zones in the phase mask.

Remark: For the discretized forward model (see Figure 1), we get the dictionary A by
sampling depths at regular intervals in the range, ζi ∈ [−πL, πL], over which the PSF
performs one complete rotation about the geometric image center before it begins to break
apart. The i-th slice of dictionary is denoted as Aζi .

3. Nonconvex optimization model . In general, for inverse problems the objective func-
tion includes a data-fitting term and a regularization term. The regularization term, represent-
ing prior information, is based on the desired properties of the solution, while the data-fitting
term measures the discrepancy between the estimated and the observed images according to
the noise model. Here we consider the Poisson noise model for which the data fitting term is
the I-divergence. The model with a regularization term, µR(X ) is

min
X≥0

DKL(T (A ∗ X ) + b 1, G) + µR(X ),

where the uniform background is denoted as b. Here we also use it to denote the matrix
b 1, 1 ∈ Rm×n, i.e., b 1 is the m× n matrix with all entries b. The data-fidelity term is the
negative log-likelihood of the data. For Poisson noise, this term is the I-divergence which is
also known as Kullback-Leibler (KL) divergence (see [15])

DKL(z, g) = 〈g, ln g
z
〉+ 〈1, z − g〉.

This is a large-scale sparse 3D inverse problem. For the regularization term, we consider
a nonconvex nondifferentiable function (see [23, 21, 22, 40]), using specifically

R(X ) :=

m,n,d∑
i,j,k=1

θ(Xijk) =

m,n,d∑
i,j,k=1

|Xijk|
a+ |Xijk|

,
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where a is fixed and determines the degree of nonconvexity, see Figure 2(a). Therefore, the
minimization problem amounts to

(3.1) min
X≥0

〈1, T (A ∗ X )−G ln(T (A ∗ X ) + b 1)〉+ µ

m,n,d∑
i,j,k=1

|Xijk|
a+ |Xijk|

 .

Here, θ(t) = lim
ε→1

θε(t), where θε(t) = |t|
a+ε|t| . Since θε(t) represents the `1 norm when ε = 0,

we see the process of increasing nonconvexity as ε increases from 0 to 1; see Figure 2(b).
Moreover, we easily get the derivative of θ(t):

θ′(t) =
a sign(t)

(a+ |t|)2
, when t 6= 0, and θ′(0+) =

1

a
,

where θ′(0+) is the right derivative at zero.
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Figure 2. Plot of θ(t; a) and θε(t; a). In (a), we choose different values of a; in (b) we choose different
values of ε while fixing a = 80.

4. Algorithm development. The minimization problem (3.1) involves nonconvex nondif-
ferentiable optimization. Here we use an iterative reweighted `1 algorithm (IRL1) [25] to solve
this optimization problem. It is a majorization-minimization method which solves a series of
convex optimization problem with a weighted-`1 regularization term. It considers the problem
(see Algorithm 3, in [25])

min
x∈X

F (x) := F1(x) + F2(G(x)),

where X is the constraint set. F is a lower semicontinuous (lsc) function, extended, real-
valued, proper, while F1 is proper, lower-semicontinous, and convex and F2 is coordinatewise
nondecreasing, i.e. F2(x) ≤ F2(x+ tei) with x, x+ tei ∈ G(X) and t > 0, where ei is the i-th
canonical basis unit vector. The function F2 is concave on G(X). The IRL1 iterative scheme
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[25, Algorithm 3] is w
l = ∂F2(y), y = G(xl),

xl+1 = argmin
x∈X

{
F1(x) + 〈wl, G(x)〉

}
,

where ∂ stands for subdifferential. For our problem (3.1), we can choose:

F1(X ) = 〈1, T (A ∗ X )−G log(T (A ∗ X ) + b 1)〉;

F2(X ) = µ

m,n,d∑
i,j,k=1

Xijk
a+ Xijk

;

G(X ) = |X |;
X = {X | Xijk ≥ 0 for all i, j, k}.

Therefore, we compute the partial derivative of wl and get wlijk = aµ

(a+X̂ lijk)
2 , ∀i, j, k. Here

wl 6= 0 is finite, since a, µ 6= 0, and all Xijk ≥ 0 owning to the constraint X. According to
[23, 11], these terms satisfy the requirements of the algorithm. Algorithm 4.1 gives the IRL1
for solving (3.1).

Algorithm 4.1 Iterative reweighted `1 algorithm (IRL1) for the rotating PSF problem

Input: X 0 ∈ Rm×n×d and G ∈ Rm×n. Set a and µ.
Output: The solution X ∗ which is the minimizer in the last outer iteration.

1: repeat
2: Compute wlijk = aµ

(a+X̂ lijk)
2 , ∀i, j, k;

3: Given G, wlijk, obtain X̂ l by solving

(4.1) X̂ l = argmin
X≥0

〈1, T (A ∗ X )−G log(T (A ∗ X ) + b 1)〉+

m,n,d∑
i,j,k=1

wlijk|Xijk|

 .

4: until convergence

4.1. Subproblem of IRL1. In Algorithm 4.1, we need to solve the subproblem (4.1), which
can be solved by the alternating direction method of multipliers (ADMM) [5]. For this, we
introduce two auxiliary variables, namely U0 and U1, and transform (4.1) into

min
U1≥0,U0,X

〈1, T U0 −G log(T U0 + b 1)〉+

m,n,d∑
i,j,k=1

wlijk|(U1)ijk| : U0 = A ∗ X ,U1 = X

 .
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The nonnegative constraint can be rewritten as an indicator function such that the objective
function in this subproblem becomes

(4.2) 〈1, T U0 −G log(T U0 + b 1)〉+

m,n,d∑
i,j,k=1

wlijk|(U1)ijk|+ 1+(U1),

where 1+(X ) is the indicator function of the nonnegative constraint

1+(X ) =

{
0, X ≥ 0,

∞, otherwise.

Therefore, the augmented Lagrangrian function L(U0,U1,X , η0, η1) [24] for subproblem (4.1)
is

L(U0,U1,X , η0, η1) :=〈1, T U0 −G log(T U0 + b 1)〉+

m,n,d∑
i,j,k=1

wlijk|(U1)ijk|

+
β0
2
‖U0 −A ∗ X − η0‖2F +

β1
2
‖U1 −X − η1‖2F + 1+(U1),

where η0, η1 ∈ Rm×n×d are the Lagrange multipliers and β0, β1 > 0. Here ‖X‖F is the
Frobenius norm of X , which is equal to the `2 norm of the vectorized X . Starting at X =
X t, U1 = U t1 and U2 = U t2, applying ADMM in [5] yields the iterative scheme

U t+1
0 = argmin

U0

{
〈1, T U0 −G log(T U0 + b 1)〉+

β0
2
‖U0 −A ∗ X t − ηt0‖2F

}
(4.3a)

U t+1
1 = argmin

U1≥0


m,n,d∑
i,j,k=1

wlijk|(U1)ijk|+
β1
2
‖U1 −X t − ηt1‖2F

(4.3b)

X t+1 = argmin
X

{
β0
2

∥∥U t+1
0 −A ∗ X − ηt0

∥∥2
F

+
β1
2

∥∥U t+1
1 −X − ηt1

∥∥2
F

}
(4.3c)

ηt+1
0 = ηt0 − U t+1

0 +A ∗ X t+1(4.3d)

ηt+1
1 = ηt1 − U t+1

1 + X t+1(4.3e)

The U1-subproblem (4.3b) is solved by soft-thresholding under nonnegative constraint. So
the closed-form solution is given by(

U t+1
1

)
ijk

= max
{
X t + ηt1 − wlijk/β1, 0

}
.

The X -subproblem (4.3c) is a least squares problem. We rewrite the convolution into the
componentwise multiplication by using the Fourier transform and the subproblem becomes

β0
2

∥∥F{A} · F{X} − F {U t+1
0 − ηt0

}∥∥2
F

+
β1
2

∥∥F{X} − F{U t+1
1 − ηt1}

∥∥2
F
.
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Its closed-form solution reads as

(4.4) X t+1 = F−1
{(
|F{A|2}+

β1
β0

)−1(
F{A} · F{U t+1

0 − ηt0}+
β1
β0
F{U t+1

1 − ηt1}
)}

,

where |X |2 and X are the componentwise operations of the square of absolute value of X , and
complex conjugate of X , respectively. By assuming the boundary condition to be periodic,
we use the 3D fast Fourier transformation (3D FFT) to compute (4.4) efficiently.

For the solution of U0-subproblem (4.3a), we need Theorem 4.1. The range of the follow-
ing theorem goes beyond the solution of (4.3a). It gives a closed-form solution to a highly
nonlinear and useful functional, namely the Thikhonov regularized KL divergence involving
high-dimensional linear operators. It can also be seen as the closed-form solution of the
proximal operator of this general KL divergence.

Theorem 4.1. Given β, b ∈ R1, η ∈ Rm×n×d and G ∈ Rm×n, consider the minimization
problem

(4.5) min
U

{
〈1, T U −G log(T U + b 1)〉+

β

2
‖U − η‖2F

}
.

It has a closed-form solution

U =
−B +

√
B2 + 4βC

2β
,

where B = T T (1 + βb 1)− βη and C = T T (G− b 1) + βbT TT η. Here T T is an operator from
Rm×n → Rm×n×d with entries

(T T (K))ijk =

{
Kij , if k = d,

0, otherwise.

Proof. For any X ∈ Rm×n×d and K ∈ Rm×n, using the fact that T extracts the last slice,
we easily deduce that

〈T (X ),K〉 =

m,n∑
i,j=1

(T (X ))ijKij

=

m,n∑
i,j=1

XijdKij =
〈
X , T TK

〉
.

Therefore, T T defined as above is the adjoint operator for T . We directly get the derivative
of 〈1, T U〉 as

(4.6) ∇〈1, T U〉 = ∇〈T T 1,U〉 = T T 1.

In addition, 〈1, G log(T U + b 1)〉 can be rewritten as
m,n∑
i,j=1

Gij log(Uijd + b 1). It is easy to get

(4.7)
∂

∂Uuvw
〈1, G log(T U + b 1)〉 = 0, if w 6= d.
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When w = d, the partial derivative of 〈1, G log(T U + b 1)〉 with respect to Uuvw becomes

(4.8)
∂

∂Uuvw
〈1, G log(T U + b 1)〉 =

Guv
Uuvd + b

.

Combining (4.7) and (4.8), we get

(4.9) ∇〈1, G log(T U + b)〉 = T T
 m,n∑
i,j=1

Gij

eTi T Uej + b
eie

T
j

 ,

where ei is the i-th canonical basis unit vector.
Denote J (U) := 〈1, T U − G log(T U + b 1)〉 + β

2 ‖U − η‖
2
F . Combining (4.6) and (4.9) as

well as ∇β
2 ‖U − η‖

2
F = β(U − η), so

∇J (U) = T T 1− T T
 m,n∑
i,j=1

Gij

eTi T Uej + b
eie

T
j

+ β(U − η).

The minimizer of J with respect to U satisfies ∇J (U∗) = 0. We notice that Uijk with k 6= d
are not involved in the sum between the parentheses and that the corresponding indexes in
T are null, hence

(4.10) U∗ijk = ηijk if k 6= d,

For those entries in the last slice of U∗, we have

(4.11) 1− Gij
U∗ijd + b

+ β(U∗ijd − ηijk) = 0, for all i = 1, · · · ,m; j = 1, · · · , n

Multiplying by (U∗ijd + b) both sides of (4.11), we have a quadratic equation with respect to
each Uijd

β
(
U∗ijd

)2
+ (1 + βb− βηijk)U∗ijd − (Gij − b+ βbηijk) = 0.

which is easily solved to yield

(4.12) U∗ijd =
−(1 + βb− βηijk) +

√
(1 + βb− βηijk)2 + 4β(Gij − b+ βbηijk)

2β
.

Combining (4.10) and (4.12) proves Theorem 4.1.

Based on Theorem 4.1, we have the following closed-form solution for U0-subproblem

U t+1
0 =

−B +
√
B2 + 4β0C

2β0
,

where B = T T (1 + β0b)− µ(A ∗ X t + ηt0) and C = T T (G− b 1) + β0bT TT (A ∗ X t + ηt0).
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4.2. Removing false positives using a centroid method. For real data, point sources may
be not on the grid, which means the discrete model is not accurate. In order to avoid missing
sources, the regularization parameter µ is kept small, which leads to the over-fitting effect.
That is to say that there are more point sources in our estimated result than the ground
truth, which we must attempt to mitigate. Our optimization solution generally contains
tightly clustered point sources, so we need to regard any such cluster of point sources as a
single point source. The same phenomenon has been observed in [36]. To this end, we apply
a post-processing approach following [36]. The method is based on the well-defined tolerance
distance for recognizing clustered neighbors denoted as C. The criterion is to find nonzero
entries that are within a certain distance from the given point whose pixel value is higher than
or equal to other nonzero points in the neighborhood. For recognizing the cluster of point
sources, we need to start from the entry with the highest intensity. By the above criterion, one
clustered neighborhood is recognized. Then we compute the centroid of each cluster. That is
to say, to get the centroid location (x, y, z) for one cluster C as

x =

∑
(i,j,k)∈C iXijk∑
(i,j,k)∈C Xijk

; y =

∑
(i,j,k)∈C jXijk∑
(i,j,k)∈C Xijk

; z =

∑
(i,j,k)∈C kXijk∑
(i,j,k)∈C Xijk

.

The flux for this representative point source in cluster C is
∑

(i,j,k)∈C Xijk. We set the value
of these entries in the recognized neighborhood as 0 and then we proceed with the searching
process recursively. An estimated point source that cannot find out its corresponding ground
truth is called false positive. To some false positives which may be due to the effect of the
periodic boundary condition, we set a threshold, say 5% of highest intensity [36]. Those
entries whose pixel value is lower than the threshold will be regarded as false positives so
that we directly delete them in the searching process. The whole post-processing method is
summarized in Algorithm 4.2.

Algorithm 4.2 Removing cluster point sources by computing centroids (Centroid FP).

1: Set U as a zero 3D tensor of the same size as X ;
2: Find the maximum value of the solution X ;
3: Recognize the neighbour C based on the above criterion and recursively check the other

nonzero points;
4: Compute the centroid of C and set the value of this centroid entry in U as the summation

of all the pixel values in C;
5: Set X (C) = 0;
6: If there is any nonzero entry in X , go to Step 2, otherwise, go to the next step;
7: Set pixel value of these entries in U whose value is lower than 5% of the highest intensity

as 0.

4.3. Estimating the flux values. In Section 4, we provided an algorithm for estimating
the locations and fluxes for the point sources. However, numerical results show that the flux
values are generally underestimated. In [36, 19], least squares fitting is used for improving
the resolution as well as updating the corresponding fluxes. However, our problem is not
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Gaussian noise or additive Poisson noise as used in their paper. Our Poisson noise is data-
dependent, which cannot force the regenerated image T (A ∗ X ∗) to match the observed data
with least squares, where X ∗ is the result after solving the nonconvex optimization problem
and post-processing. Our aim is thus to estimate the source fluxes from the KL data-fitting
term appropriate to the Poisson noise model when the source 3D positions have already been
accurately estimated.

Let the PSF corresponding to the i-th source be arranged as the column vector hi. The
stacking of the P column vectors in the same sequence as the source labels for the P sources
then defines a system PSF matrix H, with H = [h1,h2, · · · ,hP ] ∈ RK×P , where K is the total
number of pixels in the vectorized data array, so K = mn. The vectorized observed image is
denoted by g ∈ RK×1. The uniform background is denoted as the vector b1 with 1 ∈ RK×1.
The flux vector is denoted as f ∈ RP×1. Here the problem is overdetermined meaning that
the number of point sources P is much smaller than the number of available data K = mn.
Therefore we need to do some refinement of the estimates by minimizing directly data fitting
term. Since the negative log-likelihood function for the Poisson model, up to certain data
dependent terms, is simply the KL divergence function,

DKL(Hf + b1,g) = 〈1, Hf − g log(Hf + b1)〉 ,

its minimization with respect to the flux vector f , performed by setting the gradient of DKL

with respect to f (see [11]) zero, yields the nonlinear relation

∇DKL(Hf + b1,g) =HT1−
m∑
i=1

gi

eTi (Hf + b1)
HTei

=
m∑
i=1

eTi (Hf + b1− g)

eTi (Hf + b1)
HTei = 0.

(4.13)

Consider now an iterative solution of (4.13). Since b is proportional to the vector of ones,
1, we write (4.13) as

0 = bDKL(Hf + b1,g)

=
K∑
i=1

eTi (Hf + b1− g) eTi (b1)

eTi (Hf + b1)
HTei

=

K∑
i=1

eTi (Hf + b1− g) eTi (Hf + b1−Hf)

eTi (Hf + b1)
HTei

=

K∑
i=1

eTi (Hf + b1− g)HTei −
K∑
i=1

eTi (Hf + b1− g) eTi Hf

eTi (Hf + b1)
HTei

= HTHf +HT (b1− g)−
K∑
i=1

eTi (Hf + b1− g) eTi Hf

eTi (Hf + b1)
HTei.
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Algorithm 4.3 KL-NC with post-processing and estimation of the flux.

Input: X 0 ∈ Rm×n×d and G ∈ Rm×n.
Output: The locations of point sources with the corresponding flux {(x∗i , y∗i , z∗i , f∗i )}.

1: Solve the nonconvex optimization problem by Algorithm 4.1 and get the minimizer X ∗;
2: Do the post-processing by Algorithm 4.2 to get the locations of estimated point sources
{(x∗i , y∗i , z∗i )};

3: Estimate the fluxes by the iterative scheme (4.15) and get f∗.

In this form, we easily get

HTHf = HT (g − b1) +

K∑
i=1

eTi (Hf + b1− g) eTi Hf

eTi (Hf + b1)
HTei,

By multiplying by (HTH)−1 the two sides of this equation, we directly get

(4.14) f = fG +

K∑
i=1

eTi (Hf + b1− g) eTi Hf

eTi (Hf + b1)
H+ei,

where H+ = (HTH)−1HT and fG = H+(g−b1) is the solution corresponding to the Gaussian
noise model. This suggests the following iterative algorithm:

(4.15) fn+1 = fG +K(fn), n = 1, 2, · · ·

where

K(f) =
K∑
i=1

eTi (Hf + b 1− g) eTi Hf

eTi (Hf + b1)
H+ei.

To emphasize that our nonconvex optimization model is based on the use of a KL data fitting
(KL) term and a nonconvex (NC) regularization term, we designate our approach as KL-NC
that has been enhanced with post-processing and a refined estimation of flux. We summarize
the different steps of our proposed method for the rotating PSF problem in Algorithm 4.3.

5. Numerical experiments. In this section we apply our optimization approach to solving
simulated rotating PSF problems for point source localization and compare it to some other
optimization methods. The codes of our algorithm and the others with which we compared
our method were written in MATLAB 9.0 (R2016a), and all the numerical experiments were
conducted on a typical personal computer with a standard CPU (Intel i7-6700, 3.4GHz).

The fidelity of localization is assessed in terms of the recall rate, defined as the ratio of
the number of identified true positive point sources over the number of true positive point
sources, and the precision rate, defined as the ratio of the number of identified true positive
point sources over the number of all point sources obtained by the algorithm; see [3].

To distinguish true positives from false positives from the estimated point sources, we need
to determine the minimum total distance between the estimated point sources and true point



NONCONVEX OPTIMIZATION FOR 3D LOCALIZATION 15

sources. Here all 2D simulated observed images are described by 96-by-96 matrices. We set
the number of zones of the spiral phase mask responsible for the rotating PSF at L = 7 and the
aperture-plane side length as 4 which sets the pixel resolution in the 2D image (FFT) plane
as 1/4 in units of λzI/R. The dictionary corresponding to our discretized 3D space contains
21 slices in the axial direction, with the corresponding values of the defocus parameter, ζ,
distributed uniformly over the range, [−21, 21]. According to the Abbe-Rayleigh resolution
criterion, two point sources that are within (1/2)λzI/R of each other and lying in the same
transverse plane cannot be separated in the limit of low intensities. In view of this criterion
and our choice of the aperture-plane side length and if we assume conservatively that our
algorithm does not yield any significant superresolution, we must regard two point sources
that are within 2 image pixel units of each other as a single point source. Analogously, two
sources along the same line of sight (i.e., with the same x, y coordinates) that are axially
separated from each other within a single unit of ζ must also be regarded as a single point
source.

As for real problems, our simulation does not assume that the point sources are on the
grid points. Rather, a number of point sources are randomly generated in a 3D continuous
image space with certain fluxes. We consider a variety of source densities, from 5 point
sources to 40 point sources in the same size space. For each density, we randomly generate
20 observed images and use them for training the parameters in our algorithm, and then test
50 simulated images with the well-selected parameters. The number of photons emitted by
each point source follows a Poisson distribution with mean of 2000 photons. Instead of adding
Poisson noise as additive noise as in [36], we apply data-dependent Poisson noise by using the
MATLAB command

G = poissrnd(I0+b),

where I0 is the 2D original image formed by adding all the images of the point sources, and
b is the background noise which we set to a typical value 5. Here, poissrnd is the MATLAB
command whose input is the mean of the Poisson distribution.

5.1. 3D localizations for low and high density cases. In this subsection, we will show
some 3D localizations results in low and high density cases (15 point sources and 30 point
sources); see Figure 3.

Note that our 3D localization is estimated very well for 15 point sources. In this example,
all the true positives are identified and there is only one false positive. From Figure 3(c) and
(e), we see there are two true point sources that are close in their transverse coordinates, but
well-separated in axial direction. In the 2D original image (without noise) in Figure 3(c),
the corresponding two rotating PSF images are not overlapping and our approach can well
identify both two point sources.

Figure 3(b), (d) and (f) show the high density (30 point sources) case with many over-
lapping rotating PSF images. Such image overlap in the presence of Poisson noise makes the
problem difficult. The number of point sources is not easily obtained by observation. In this
specific case, our algorithm still identifies all the true point sources correctly, but produces 9
false positives. From Figure 3(d), we can see that these false positives come from the serious
PSF overlapping.
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(a) Observed image (b) Observed image

(c) Estimated result (d) Estimated result
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Figure 3. 3D localizations for low and high density cases: (a), (c) and (e) are the results for the 15 point
sources case; (b), (d) and (f) are the results for the 30 point sources case. “o” is the ground truth point source
and “+” is the estimated point source.
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Recall that the solution of our nonconvex optimization problem involves outer and inner
iterations. Here, we set the maximum number of outer iterations as 2 and maximum number
of inner iterations as 400. From Figures 4 and 5, we can see how and why we chose these
two maximum iteration numbers. Let us denote the number of maximum outer iterations and
inner iterations as Maxout and Maxin respectively. In Figure 4, we fixed Maxin as 400 and
tried different Maxout. As we see, the recall rate, whether with or without post-processing,
changes little. The precision rate increases, however, when we change Maxout from 1 to 2,
but it changes considerably less when changing Maxout from 2 to 3, while the computational
time increases linearly with Maxout. In Figure 5, on the other hand, we fixed Maxout as 2 and
changed Maxin. Here Maxin = 400 gives the best results with a relatively low time cost. In
both cases, the precision rate can be improved significantly with post-processing.
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Figure 4. Tests on effects of the maximum number of outer iterations.

Here, we consider the practical convergence of our algorithm. That is to check the differ-
ences between the auxiliary variables (U0 and U1) and their corresponding substituted variables
(A ∗ X and X ), i.e., the value of ‖U0 − A ∗ X‖F and ‖U1 − X‖F in each iteration. Noted
that the maximum number of inner and outer iterations are 400 and 2 respectively. We plot
the values of these two terms for each iteration in Figures 6 and 7. Both two terms decrease
iteratively. Note that the values of ‖U0‖F and ‖A ∗ X‖F are about 3000 and the values of
‖U1‖F and X are about 400. Therefore, the differences between auxiliary variables and their
substituted variables are small, which shows the convergence numerically.

5.2. Comparison of Algorithm KL-NC with other algorithms. In this subsection we
compare our approach with three other optimization algorithms: KL-`1 (KL data fitting with
`1 regularization model); `2-`1 (least squares fitting term with `1 regularization model) and
`2-NC (least squares fitting term with nonconvex regularization model). For all these models,
we do the same post-processing and estimation of flux values after solving the corresponding
optimization problem.
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Figure 5. Tests on effects of the maximum number of inner iterations.
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Figure 6. ‖U1 −X‖F in the each iteration.

In KL-`1, we need to solve the following optimization problem

min
X≥0
{DKL(T (A ∗ X ) + b 1, G) + µ‖X‖1} .

We use ADMM by introducing two auxiliary variables U0 = A ∗ X and U1 = X . We get a
similar augmented Lagrangrian function with wlijk replaced by µ in (4.2). Therefore, we use
Theorem 4.1 to solve this problem.
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Figure 7. ‖U0 −A ∗ X‖F in the each iterations.

In `2-`1, we need to solve the following optimization problem

min
X≥0

{
1

2
‖T (A ∗ X ) + b 1−G‖2F + µ‖X‖1

}
.

The problem is similar to the optimization problem in [36], except that we include the back-
ground which is estimated easily by signal processing. We can therefore still use ADMM for
solving this problem.

In `2-NC, we need to solve the following optimization problem

min
X≥0

{
1

2
‖T (A ∗ X ) + b 1−G‖2F + µR(X )

}
,

where R(X ) is the same as KL-NC method. We see that IRL1 can also work well for solving
this problem with the `1 weighted optimization as a subproblem which we solve by ADMM
since it is similar to `2-`1.

Both the initial guesses of X and U0 are set as 0 for all these methods. In order to do
the comparison, we plot the solutions for the four models as well as the ground truth in the
same space; see Figures 8 and 9 which correspond to the cases of 15 and 30 point sources,
respectively.

From Figure 8 and Figure 9, we see the overfitting of the `1 regularization models (KL-`1
and `2-`1). Before post-processing, the solutions of these two algorithms spread out the PSFs
a lot and have many false positives. After post-processing, both algorithms are improved,
especially KL-`1. However, in comparison to the nonconvex regularization (KL-NC and `1-
NC), they still have many more false positives. Among the four algorithms, our approach
(KL-NC) performs the best in terms of the recall and precision rates.

We also tested a number of other values of point source density, namely 5, 10, 15, 20, 30
and 40 point sources, and computed the average recall and precision rate of 50 images for each
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Figure 8. Solution X from 4 algorithms (15 point sources).

density and for each algorithm; see Tables 1 and 2. The results show the superior results of our
method in terms of both recall and precision rates. In Table 1, the best recall and precision
rates in each case are labeled by bold fonts. As in the above discussion, our nonconvex
regularization tends to eliminate more false positives which increases the precision rate. The
KL data-fitting term, on the other hand, improves the recall rate as we see by comparing the
results of KL-NC with `2-NC. Before post-processing, we see that all the algorithms have low
precision rates, especially the two employing the `1 regularization model at less than 10%.

In the following, we compare the results of the estimation of the flux in these four algo-
rithms, considering specifically the case of 15 point sources. In Figure 10, we plot the fluxes
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Figure 9. Solution X from 4 algorithms (30 point sources).

of ground truth as well as the fluxes of the estimated point sources for the true positive point
sources. For the false positive point sources, we only show the estimated fluxes. Both `1
models underestimate the fluxes. The rotating PSF images for false positives carry the energy
away from the true positive source fluxes. In nonconvex models, we also have similar observa-
tions when we have false positives. For example, in Figure 10(b), we see the flux on the third
bar is underestimated more than the others. We note that it’s rotating PSF is overlapping
with the image of a false positive. The more false positives an algorithm recovers the more
they will spread out the intensity, leading to more underestimated fluxes for the true positives.

We also tested 50 different observed images for each density, and analyzed the relative
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Table 1
Comparison of KL-NC with KL-`1, `2-`1 and `2-NC. All the results are after performing post-

processing.

KL-`1 KL-NC `2-`1 `2-NC

No.source Recall Prec. Recall Prec. Recall Prec. Recall Prec.

5 98.53% 58.67% 100.00% 93.71% 100.00% 68.41% 97.20% 87.95%

10 99.40% 65.33% 100.00% 92.83% 99.60% 56.54% 94.40% 83.33%

15 98.53% 58.67% 98.80% 87.22% 99.20% 54.20% 93.33% 83.45%

20 98.10% 57.76% 98.60% 85.29% 97.70% 56.03% 93.60% 78.89%

30 95.33% 54.54% 94.47% 79.93% 95.67% 54.16% 89.73% 74.63%

40 93.60% 53.87% 95.40% 69.22% 95.25% 49.32% 82.45% 51.63%

Table 2
Comparison of KL-NC with KL-`1, `2-`1 and `2-NC. All the results are without post-processing.

KL-`1 KL-NC `2-`1 `2-NC

No.source Recall Prec. Recall Prec. Recall Prec. Recall Prec.

5 100.00% 2.82% 100.00% 44.85% 100.00% 8.89% 98.80% 57.67%

10 100.00% 2.91% 100.00% 44.87% 100.00% 8.15% 95.60% 55.45%

15 100.00% 2.82% 100.00% 44.67% 100.00% 5.95% 96.80% 56.74%

20 100.00% 3.26% 99.70% 46.29% 100.00% 4.83% 96.20% 52.15%

30 100.00% 3.56% 98.27% 44.44% 100.00% 4.85% 95.07% 52.02%

40 100.00% 3.75% 99.00% 23.42% 100.00% 6.07% 98.25% 32.19%

error in the estimated flux values, which we define as

error =
fest − ftru

ftru
,

where (fest, ftru) is the pair which contains the flux of an identified true positive and the
corresponsing ground truth flux. We plot the histogram of the relative errors on these four
models in Figures 11 and 12. We still see the advantage of KL-NC over other algorithms in this
respect. The distribution of relative errors mostly lies within [0, 0.1]. For the `1 regularization
algorithms, the distribution of the relative error spreads out and there are many cases with
error higher than 0.3. For `2-NC, we have the similar result for the 15 point sources case;
however, in higher density cases, KL-NC has better results comparing with `2-NC.

5.3. Low number of photons case. In the previous subsection, we saw the advantages
of using our nonconconvex regularization term. However, KL-NC does not seem to possess
significant advantages over the `2-NC model, especially in the cases of low source density. This
is because only when we have a sufficiently large number of photons, as was the case in the
results discussed earlier, the `2 data-fitting term corresponding to the maximum likelihood
estimator for the Gaussian noise model is well approximated by the KL data-fitting term
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Figure 10. Tests on estimating flux values. The bar graph with no value ground truth part corresponds to
a false positive.

for the Poisson noise model assumed here. In order to verify this, we study the case of low
photon number in this subsection. In Figure 13, we see the observed image with three different
photon numbers per source, namely 500, 1000, and 2000. For the case of 500 photons per
source, the image is very dim, and we can barely distinguish the rotating PSF signal from the
background noise, so we do not consider this case any further. For the case of 1000 photons
being emitted by each point source, the corresponding image follows a Poisson distribution
with a mean of 1000 photons. We take each image to contain 15 point sources. As before,
we first randomly generated 20 images, which were used for training parameters. Then we
tested 50 different observed images by using the trained parameter values. We got 90.53% for
the recall rate and 78.32% for the precision rate in the KL-NC algorithm, but only 81.33%
and 64.24%, respectively, for the two rates in the `2-NC algorithm. For evaluation of the flux
estimates, we refer to Figure 14 from which we see that once again KL-NC gives much better
results than `2-NC since the bars corresponding to the low relative error case are higher. We
therefore conclude that the KL data-fitting term is much better than the `2 data-fitting term
when dealing with low numbers of photons.
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Figure 11. Histogram of the relative errors of the flux values for the 15 point sources case.

6. Conclusions and Current Directions. In this paper, we have proposed a nonconvex
optimization algorithm for the 3D localization of a swarm of randomly spaced point sources
using a specific rotating PSF which has a single lobe in the image of each point source.
Rotating PSFs that have a single lobe have several obvious advantages over those that have
multiple lobes or are more spread out, particularly when dealing with relatively high source
densities and relatively small photon numbers per source. We employed a post-processing step
based both on centroiding the locations of recovered sources that are tightly clustered and
thresholding the recovered flux values to eliminate obvious false positives from our recovery
sources. In addition, we have proposed a new iterative scheme for refining the estimate of
the source fluxes after the sources have been localized. These techniques can be applied to
other rotating PSFs as well as other depth-encoding PSFs for accurate 3D localization and
flux recovery of point sources in a scene from its image data under the Poisson noise model.
Applications include not only 3D localization of space debris, but also super-resolution 3D
single-molecule localization microscopy, e.g. [3, 38]. Tests of this algorithm based on real data
collected using phase masks fabricated for both applications are currently being planned. In
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Figure 12. Histogram of relative errors of flux values in the 30 point sources case.

addition, work involving snapshot multi-spectral imaging, which will permit accurate material
characterization, as well as higher 3D resolution and localization of space microdebris via a
sequence of snapshots is under way.
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