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Abstract: This work deals with safe control of manufacturing systems controlled by Pro-
grammable Logic Controller (PLC). The used approach is based on Boolean safety constraints,
which act as a safety filter, in order to guarantee the safety on-line. To ensure the safety whatever
the inputs and the control program, the safety constraints must be checked formally. In this
paper we proposed a formal off-line approach to check and ensure the consistency. The approach
uses graph representation of the safety constraints. Thanks to graph algorithm, it is possible
to detect inconsistencies and to help designers to solve them. Previous works on safety filter
have proposed necessary conditions but none sufficient conditions, in this paper we proposed a
necessary and sufficient condition to check and ensure the consistency. The safety filter approach
and the consistency problem are presented. Then the approach is illustrated and a discussion
around the application to manufacturing system is done.

Keywords: Boolean algebra, Safety filter, Discrete-Event Dynamic Systems, formal methods,
consistency.

1. INTRODUCTION

The safety of a system includes the protection of human,
systems, equipment, and the environment (II, 2015). Due
to the automation and robotisation of manufacturing
systems, the risks for human and plant increase. In order
to prevent them as far as possible, automatic control
engineers have to design control programs taking into
account the safety. But regarding the complexity (number
of variables, interaction of sub-systems, etc.), automatic
control engineers do not have efficient formal approach to
design safe control programs.

In this work, manufacturing systems are considered as
Discrete-Event Dynamic Systems (DEDS) (Cassandras
and Lafortune, 2009) with logical inputs and logical out-
puts. Moreover manufacturing systems are mostly con-
trolled by Programmable Logic Controller (PLC), pro-
grammed with standardized languages (61131-3, 2003).

Ramadge and Wonham (1989) described a framework
to synthesize a supervisor for DEDS: Supervisory Con-
trol Theory (SCT). SCT is based on automaton models
(language theory) of plant and specification, from these
models a supervisor is computed automatically. But in
practice, this leads to a state explosion that restricts the
applicability of SCT to small systems (Charbonnier et al.,
1999) (Vilela and Pena, 2016). Finally SCT is based on
the asynchronous hypothesis (one event at each time), but
in a PLC several variables may change simultaneously, so
the asynchronous hypothesis is not guaranteed.

To solve these problems, some approaches are based on
Boolean algebra instead of automaton models and lan-

guage theory. Algebraic synthesis introduces formalism,
theorem and algorithm to solve a Boolean equations sys-
tem (Hietter, 2009). Authors proposed a formal approach
to compute PLC control program from specifications.

Riera et al. (2014) propose an approach (safety filter) in
order to guarantee the safety whatever the PLC program
already in PLC. This safety filter is based on a set of
Boolean equations which define safety constraints. Online,
for a given set of input variables (I) and a first affectations
of output variables (G), the safety filter must find the
nearest affectation to G which does not violate any safety
constraint.

Considering the online uses of the safety filter to guarantee
the safety, it is necessary to prove its ability to find a
dependable solution whatever the uncontrollable variables
(inputs, internal variables and first affectation). This prob-
lem is called consistency problem and includes two points:
(i) the set of constraints admits at least one solution (ii)
the online algorithm is always able to find a solution. In
previous works on safety filter, necessary consistent con-
ditions have been proposed but none sufficient condition.
In this paper we proposed to use a graph representation
of the safety constraints in order to check and ensure their
consistency.

The paper is organized as follows, firstly the safety filter
formalism is described and the online algorithm is pre-
sented. Then a methodology to construct an observer of
the safety filter is proposed and illustrated. Next the con-
sistency properties based on the observer are proposed. At
last a discussion around the application to manufacturing
system and a conclusion are done.



2. THE SAFETY FILTER

2.1 Principle

The classical cycle of a PLC is: update the inputs (sensors),
compute the next values of actuators (PLC program) and
send these values to the plant. The main idea of the safety
filter is to interleave between the PLC program and the
outputs update, a block which checks and modifies the
outputs vectors (actuators) if needed regarding the safety
(see fig. 1). In this work we consider the safety of products
and machines, so the safety filter has to avoid possibilities
of collision, destruction and so on. Moreover we consider
that the functional part (production objectives) is fully
contained in the PLC program block.

Fig. 1. PLC cycle with safety filter

The safety filter must guarantee the safety whatever the
controller, so without knowledge on functional specifica-
tions. Moreover considering the online uses, the safety
filter has to be deterministic. So given an affectation of the
variables (sensors, functional outputs, internal variables)
the decision must be always the same.

2.2 Formalism

The safety filter is defined by a set of Boolean equations
called safety constraints. Two kinds of safety constraints
exist, (i) Simple Safety Constraints and (ii) Combined
Safety Constraints. These safety constraints are defined as
logical functions and designed to be true when the safety
is violated (Riera et al., 2014).

A Simple Safety Constraint (CSs) is defined as a product
of uncontrollable variables and only 1 controllable variable
(ok). So there are only 2 forms of CSs. But several
constraints can exist for a specific ok. The number of CSs
for ok is depicted Ncssk. Let i ∈ [1, Ncssk], k ∈ [1, No]
such that:

CSsoki =

{
hok0i . ok
OR
hok1i . ok

(1)

With hok0i and hok1i two monomial (product) functions of
uncontrollable variables.

A Combined Safety Constraint (CSc) is defined as logical
product function. The number of CSc is depicted Ncsc.

Unlike CSs, each CSc depends on several controllable
variables. Let a subset of uncontrollable variables Γ ⊆ Y
and a subset of controllable variables Θ ⊆ O with γj ∈ Γ
and θk ∈ Θ such that:

CSci =
∏
j

γj .
∏
k

θk (2)

To guarantee the safety, we proposed the following condi-
tion: the safety constraints (CSs and CSc) must be false
(= 0) before updating outputs (eq. 3). So, the aim of the
safety filter is to check the functional outputs values by
verifying the safety condition. Else the algorithm will cor-
rect constraints by setting appropriate values to involved
outputs.

Safety condition A PLC program can be considered as
safe if, for the outputs vector (o1, . . . , ok, . . . , oNo

), eq. 3 is
verified before outputs update.

No∑
k=1

Ncssk∑
i=1

CSsoki +

NCSc∑
j=1

CScj = 0 (3)

2.3 Resolution procedure

The resolution of the safety problem (at least 1 safety
constraint equals to true) is subject to a procedure (see
fig 2).

Fig. 2. Safety filter details

Firstly the Simple Safety Constraints are used to compute
functions F0sk and F1sk for each output ok (eq. 5).
These functions are used as set and reset functions of each
output, F0sk = 1 implies ok must be forced to 0 and
F1sk = 1 implies ok must be forced to 1.

From equations 1 and 3, the logical OR of all simple safety
constraints (CSs) can be written as:∑Ncssk

i=1 CSsoki =
∑Ncssk

i=1 (hok0i . ok + hok1i . ok)

= (ok.
∑Ncssk

i=1 (hok0i )+ok.
∑Ncssk

i=1 (hok1i ))∑Ncssk
i=1 CSsoki = (ok . F0sk + ok . F1sk)

(4)

With F0sk and F1sk polynomial functions (sum of prod-
ucts,

∑∏
) of only uncontrollable variables (eq. 5).



∀k ∈ [1, No] :

{
F0sk =

∑Ncssk
i=1 hok0i

F1sk =
∑Ncssk

i=1 hok1i
(5)

Secondly the Combined Safety Constraints are used to
choose values for unforced variables: when F0sk and
F1sk are false. The forced variables may be seen as
uncontrollable variables for Combined Safety Constraints
solving. The CSc resolution is also based on functional
outputs values (G): if the output ok stays free (unforced
by CSs or CSc), final value of ok is gk.

However the difficulty of solving CSs and CSc is not
the same. The differences are illustrated in the following
example.

Constraints example Let 2 uncontrollable variables Y =
{a, b} and 3 controllable variables O = {O1, O2, O3}. We
will consider in this paper the following example:

Table 1. Example problem

CSs1 = a.O2 CSs2 = a.b.O1

CSc1 = O1.O2 CSc2 = O2.O3

Considering the safety condition (eq. 3), each constraint
has to be false at the end of PLC cycle. If a = true,
CSs1 implies O2 := false because O2 is controllable
and not a (F0sO2 = a = 1). So for a Simple Safety
Constraint (CSs), the choice to solve a violated constraint
is deterministic.

But for Combined Safety Constraint (CSc), a choice has
to be done. For example if CSc1 is violated the filter has
to force: (i) O1 or (ii) O2 or (iii) both:

CSc1 = true =⇒
(i) O1 := 0 ;O2 := O2

(ii) O1 := O1 ;O2 := 1

(iii) O1 := 0 ;O2 := 1

(6)

These choices are made by the expert of the system
during the constraints definition and can translate general
functional specifications. For a constraint the choice is
to select which actuators have priority against others, so
which actuators must be forced to solve the constraint.

2.4 Priority

Regarding the resolution procedure and the online al-
gorithm, there are 2 kinds of priority. The first one is
the structural priority and the second one is the chosen
priority.

• Structural priority: if some controllable variables are
forced by CSs (set/reset functions), for the CSc
resolution these variables are uncontrollable. So the
CSc resolution must be adaptive to take into account
the actions of CSs.
• Chosen priority: if the controllable variables of a CSc

are not forced by any CSs, there are several solutions
to solve the constraint (see previous example). In this
condition the choice made by expert must be applied
to solve the constraint.

Chosen priorities are translated using bold actuators in
table 1. For example with CSc1 the choice is to force O1

(i.e. (i) in equation 6).

Online, given an affectation of uncontrollable variables
which violates at least one CSc, the way to solve con-
straints is always the same, so the safety filter is deter-
ministic.

2.5 Safety filter algorithm

At each PLC cycle there are two inputs set: I given by
input scan and G given by functional program. Both are
considered as constant and uncontrollable during a cycle.
The aim is to detect if a constraint is violated, and in
this case, find ok (based on gk) to guaranty the safety.
Moreover thanks to figure 2, the resolution procedure is to
solve firstly the CSs and secondly the CSc.

CSs resolution Theorem 1 describes resolution and
consistency condition for a single-unknown equation (Cf.
theorem 11 in Roussel and Lesage (2014)).

Theorem 1. Let B a boolean algebra, let a, b, x ∈ B. The
solution of the equation a.x + b.x = 0 is x = a + b.p with
p ∈ B a parameter iff a.b = 0 (consistency condition).

Based on theorem 1, a solution of equation 4 is:

∀k ∈ [1, No], ok := F0sk.p+ F1sk (7)

In our case this solution is used to initialize temporary
values of outputs (ok) based on the gk values (functional
values):

∀k ∈ [1, No], tempk := F0sk.gk + F1sk (8)

CSc resolution For the CSc resolution the variables
forced by CSs (F0sk = 1 or F1sk = 1) are uncontrollable.
Moreover solving a violated combined constraint may
violate other combined constraints, the goal is to find
progressively a safe solution (no constraints violated).

The inputs of CSc resolution are: the sensors and func-
tional values (I and G), the set and reset functions (F0s
and F1s) and a first solution (temp) which do not violates
CSs but may violates CSc.

The CSc resolution procedure consist in: updating the
CSc values based on memk and I, activating a flag if at
least one CSc is violated and then applying the priority
in order to solve the violated constraints. But by solving
some constraints other may be violated, so this procedure
must be applied until all constraints are solved.

At last, the final values memk which do not violate any
constraint are sent to the plant using the ok values.

The resulted algorithm is presented in algorithm 1.

In order to guarantee the safety whatever the inputs (sen-
sors) and the functional control part, the safety constraints
must be checked formally offline. That implies firstly to
verify the consistency of the constraints with chosen pri-
orities, then to check the sufficiency using model checking
(Marangé et al., 2010) (Sufficiency is not detailed in this
paper).

2.6 Safety filter consistency

In the safety filter approach, the problem (constraints and
priorities) is consistent if and only if the following equation
9 is validate.



Data: priority, No
Input: G, I
Output: O
/* F0sk and F1sk calculation (eq. 5) */

for k = 1, ..., No do
F0s(k) := ...;
F1s(k) := ...;

end
/* Initialization (eq. 8) */

for k = 1, ..., No do
temp(k) := NOT F0s(k) AND G(k) OR F1s(k);

end
Flag := true;
/* Combined constraints resolution */

while Flag do
CSC := cscUpdate(mem,I);
Flag := cscIsViolated(CSC);
if Flag then

for k = 1, ..., No do
temp(k) := applyPriority(F0s, F1s, priority);

end

end

end
/* Output update */

for k = 1, ..., No do
O(k) := temp(k);

end

Algorithm 1: Safety filter algorithm

Whatever the set of uncontrollable variables Y (sensors
(I), functional outputs (G)) there exists a safe output
vector (O):
∀(I,G),∃O = (o1, . . . , oNo

) such that:
No∑
k=1

Ncssk∑
i=1

CSsoki +

NCSc∑
j=1

CScj = 0 (9)

According to this consistency definition, there are 3 parts:

1- CSs set must be consistent
2- CSc set must be consistent
3- CS set with priorities must be consistent.

The first point is easily checked thanks to consistency
condition of theorem 1:

∀k ∈ [1, No], F0sk.F1sk = 0; (10)

Second and third points are more difficult to check. We
proposed in this paper a graphical representation of con-
straints, interaction between them and resolution proce-
dure. Thanks to this graphical representation, the consis-
tency checking is reduced to a cycle detection in a directed
graph.

3. THE PROPOSED APPROACH

Based on the safety filter problem (constraints and pri-
orities) we proposed to analyze the structural links be-
tween constraints without priorities in order to reduce the
problem. Thanks to this reduced problem we construct an
observer of the safety filter algorithm (alg. 1) in order to
check the consistency (fig. 3).

3.1 Reduced problem: Structural Graph

We proposed to represent the structural interaction be-
tween constraints with an undirected graph called Struc-
tural Graph SG = (CS, E) such that:

Fig. 3. Method to check the consistency

• CS = CSs ∪ CSc is a set of vertex: each vertex is a
safety constraint;

• E is a set of edges. Each edge represents a link
between 2 constraints.

An edge between 2 constraints means that if one of them is
violated, the resolution may violates the other. For exam-
ple, consider previous constraints (CSs1 = a.O2;CSc1 =
O1.O2), CSs1 = 1 implies O2 will be forced to 0 so if
O1 = 1 at the same time, CSc1 will be violated.

Definition 2. Given 2 constraints CSi and CSj , an edge
exists between them iff:

1- Logical product of uncontrollable part of CSi and
CSj is not false;

2- If Ok ∈ CSi then Ok ∈ CSj OR If Ok ∈ CSi then
Ok ∈ CSj

An edge can exist between 2 constraints only if they can
be violated at the same time whatever the controllable
variables (first point in def. 2). Moreover if there are no
shared controllable variables between constraints, edge can
not exist (second point in def. 2).

Considering the previous example (table 1) without pri-
ority, the corresponding structural graph is presented in
figure 4.

Fig. 4. Structural graph

There is no edge between CSs2 and CSs1 because
(a).(a.b) = 0 (first point in def 2). Moreover there is no
edge between CSs2 and CSc1 due to second point in def
2. At last there are no shared variables between CSs2 and
CSc2 so no edge between them.

CSs2 is isolated (no edges with other constraints) so
regarding the consistency problem, this constraint should
be ignored. Indeed the resolution of CSs2 will never
violates other constraints, and other constraints will never
violate CSs2.



Considering the structural graph in figure 4 we can extract
the reduced problem by removing the isolated constraint
CSs2 (table 2).

Table 2. Reduced problem

CSs1 = a.O2

CSc1 = O1.O2 CSc2 = O2.O3

Based on this reduced problem the observer can be con-
structed.

3.2 Observer construction

The goal is to construct a graph which represents all
possible developments of the variables during a PLC cycle.
Each vertex of the graph is defined by an affectation of
variables and labeled by constraints which are violated or
set and reset functions (eq. 5). Each arc represents the
choice made to solve the constraints. The Safety Filter
Observer (SFO) is defined as follows:

Definition 3. The Safety Filter Observer (SFO) is a di-
rected graph SFO = (V, A) such that:

• V is a set of vertices: each vertex is a full affectation
of the safety filter variables;
• A is a set of arcs which represents the choice made

by the safety filter algorithm.

Given a reduced problem (section 3.1), the Safety Filter
Observer is built as follows:

1- Compute each safe vertex;
2- Compute each unsafe vertex;
3- Link vertices according to the priorities;
4- Delete safe vertices which are not linked.

Computation of safe vertices is possible with a SATisfi-
ability problem solver (Du et al., 1997). Given a set of
clauses (Boolean equations) a SAT solver is able to provide
all possible affectations of variables which satisfy all the
clauses.

Each affectation which is not listed by SAT solver is
obviously unsafe. For each of them we have to analyze the
affectation in order to know which constraints are violated.
We labeled each unsafe vertex with the corresponding
violated constraints.

For each unsafe vertex and considering the violated con-
straints we apply the priorities. As shown previously the
resolution is deterministic for an affectation, so there exists
only one outgoing arcs from each vertex. If for an affec-
tation, two constraints are in contradiction (one force to
false and an other to true) the arc is changed to a loop
on the same unsafe vertex.

Finally the safe vertices without any entering or outgoing
arcs are removed in order to reduce the size of final graph.

Considering the previous example and the reduced prob-
lem presented in table 2 (with CSc priorities), the resulting
Safety Filter Observer is presented in figure 5.

3.3 Consistency condition

Each vertex of the observer represents an affectation of
variables at the beginning of the safety filter algorithm
(algo. 1). So each vertex may be initial and given an initial
vertex, the final value of actuators will be always the same
because the resolution procedure (through priorities) is
deterministic.

Based on the definition and construction of the Safety
Filter Observer (SFO), the consistency condition (section
2.6) can be translated to a reachable analysis (theorem 4).

Theorem 4. Problem consistent ⇔ For all unsafe vertices,
a safe vertex is reachable.

Checking each path of the graph is time-consuming. But
regarding the construction of the SFO, there is only 1 out-
going arc from each vertex. So the consistency condition
can be resumed to the non-existence of a cycle in the SFO
(theorem 5). Indeed if a cycle exists, it means that there
exists at least 1 unsafe vertex which can not be changed
to a safe vertex (example provided below).

Theorem 5. Problem consistent ⇔ A cycle does not exist
in the SFO.

The consistency condition can be illustrated on the previ-
ous example by changing priority for CSc1: O1 prioritary
instead of O2. The constraints have not changed so the
structural analysis must not be computed. The SFO cor-
responding to this new priority is presented in figure 6.

A cycle exists between vectors 0110 and 0100. So if the
inputs of algorithm (sensors I and functional outputs G)
equal one of these vectors, the algorithm will not be able

Fig. 5. Safety Filter Observer for example 2



Fig. 6. SFO with inconsistent priorities for example 2

to find a safe affectation. In this condition the problem is
inconsistent and the constraints and/or the priorities have
to be redefined.

When the set of constraints and priorities are consistent,
the safety filter can be synthesized and implemented in the
PLC in order to make safe any existing program.

4. WHAT ABOUT MANUFACTURING SYSTEM ?

Our approach is based on an exploration of all the possible
states of variables, so there exists a risk of state explosion.
But in practice on manufacturing systems, the constraints
are weakly connected so the problem is highly reduced.

Riera et al. (2014) detail the constraints and priorities for a
sorting boxes system. The system is instrumented using 11
sensors and 7 actuators. The safety analysis has resulted
in 17 CSs and 5 CSc for a total of 21 variables (sensors,
actuators and internal variables).

The structural analysis presented before reduced the prob-
lem to only 7 constraints (4 CSs and 3 CSc) and 10
variables. And the consistency checking on the reduced
problem is computed in few seconds.

Moreover in many times manufacturing systems are struc-
turally modular. This modularity can be seen in the struc-
tural graph if there are subgraphs. Indeed, unconnected
subgraphs allowed to analyze separately each subgraph to
conclude about the global consistency.

Based on our experiences and tests on different kinds of
manufacturing systems, the state explosion problem has
never appear.

5. CONCLUSION

In this paper we have proposed for the first time a
graphical representation of the safety constraints. Two
levels of representation have been developed, the first one
is a structural approach by undirected graph in order to
underline the links between constraints and to reduce the
problem. The second one is an observer of the safety filter
using directed graph in order to follow the developments of
the algorithm. Thanks to this observer, we have proposed a
graphical necessary and sufficient condition which ensures
the consistency of the constraints and priorities off-line.
The graphical representation of the safety constraints

offers new ways of research for the safety filter approach:
model-based diagnosis and compatibility checking with the
plant’s model.
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mande pour les systèmes à évènements discrets logiques.
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