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Abstract 

Background:  The use of insecticides, through indoor residual spraying and long-lasting insecticide-treated nets 
(LLINs), is essential to control malaria vectors. However, the sustainability of these tools is challenged by the spread of 
insecticide resistance in Anopheles mosquitoes. This study was conducted to assess the susceptibility to insecticides 
and to determine the resistance mechanisms in malaria vectors in Dielmo, a rural area of western Senegal where LLINs 
were introduced a decade ago.

Methods:  CDC bottle bioassays were used to determine the susceptibility of 2–5 day-old unfed Anopheles gambiae 
s.l. females to alphacypermethrin (12.5 µg/bottle), deltamethrin (12.5 µg/bottle), etofenprox (12.5 µg/bottle), lambda-
cyhalothrin (12.5 µg/bottle), permethrin (21.5 µg/bottle), DDT (100 µg/bottle), bendiocarb (12.5 µg/bottle), pirimi-
phos-methyl (20 µg/bottle) and fenitrothion (50 µg/bottle). The involvement of glutathione-S-transferases (GSTs) in 
insecticide resistance was assessed using a synergist, etacrynic acid (EA, 80 µg/bottle). Polymerase chain reaction 
(PCR) was used to investigate the presence of ‘knock-down resistance (kdr)’ mutation and to identify sibling species 
within the An. gambiae complex.

Results:  CDC bottle bioassays showed that mosquitoes were fully susceptible to lambdacyhalothrin, bendiocarb 
and fenitrothion. Overall, mortality rates of 97, 94.6, 93.5, 92.1, and 90.1% were, respectively, observed for perme-
thrin, deltamethrin, pirimiphos-methyl, etofenprox and alphacypermethrin. Resistance to DDT was observed, with a 
mortality rate of 62%. The use of EA significantly improved the susceptibility of An. gambiae s.l. to DDT by inhibiting 
GSTs (p = 0.03). PCR revealed that Anopheles arabiensis was the predominant species (91.3%; IC 95 86.6–94%) within 
An. gambiae complex from Dielmo, followed by Anopheles coluzzii (5.4%; IC 95 2.7–8.1%) and Anopheles gambiae s.s. 
(3.3%; IC 95 0.6–5.9%). Both 1014F and 1014S alleles were found in An. arabiensis population with frequencies of 0.08 
and 0.361, respectively, and 0.233 and 0.133, respectively in An. coluzzii. In An. gambiae s.s. population, only kdr L1014F 
mutation was detected, with a frequency of 0.167. It was observed that some individual mosquitoes carried both 
alleles, with 19 specimens recorded for An. arabiensis and 2 for An. coluzzii. The presence of L1014F and L1014S alleles 
were not associated with resistance to pyrethroids and DDT in An. arabiensis.
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Background
The constant and significant decrease of malaria inci-
dence reported during recent years has instilled a hope 
that malaria elimination is a feasible objective in several 
endemic areas. The current situation is driven by the 
combination of different malaria control strategies deliv-
ered through National Malaria Control Programmes 
(NMCPs) supported by financial partners [1]. The main 
tools used are artemisinin-based combination therapy 
(ACT) to treat Plasmodium infection, indoor residual 
spraying (IRS) and long-lasting insecticide-treated nets 
(LLINs) to control malaria vectors. Of these, the use 
of LLINs remains the most effective strategy to con-
trol malaria in endemic areas [2, 3]. During the period 
2001–2015, malaria control tools have helped to prevent 
633 million cases, and LLINs have been allocated a 69% 
share of that estimation, in contrast to 21% for ACT and 
10% for IRS. In sub-Saharan Africa, 53% of the popula-
tion at risk slept under LLINs [1]. However, the develop-
ment of insecticide resistance in Anopheles populations is 
threatening the effectiveness of LLINs. Some studies have 
shown that resistant mosquitoes can blood-feed effec-
tively despite the use of LLINs, even when net integrity is 
not compromised [4–6].

Insecticide resistance has been associated with the use 
of pesticides for agricultural purposes and for malaria 
vector control strategies, through IRS and LLINs [7, 8]. 
Pyrethroid resistance is commonly reported; in 2014, it 
was recorded in three-quarters of malaria-endemic coun-
tries [1]. This situation is alarming as pyrethroids are the 
only insecticides approved by the World Health Organi-
zation (WHO) for LLIN impregnation. Global efforts 
deployed to control malaria vectors through LLINs 
could be jeopardized by pyrethroid resistance. Target site 
resistance and metabolic resistance are the two major 
mechanisms typically assumed to be responsible for mos-
quito resistance to insecticides [9]. The voltage-gated 
sodium channel (VGSC), located in the insect’s nervous 
system, is the target site for pyrethroids and DDT. Mos-
quitoes resistant to these insecticides exhibit some modi-
fication of their VGSC, due to a mutation of the gene 
encoding this protein [10]. This target site resistance, 
better known as ‘knock-down resistance’ (kdr), results 
from a substitution of a leucine amino acid at codon 1014 
by a phenylalanine (L1014F or kdr-west) or by a serine 

(L1014S or kdr-east). Kdr-west and kdr-east mutations 
were described for the first time in West [11] and East 
[12] Africa, respectively. However, recent findings sug-
gest that the circulation of L1014F and L1014S alleles is 
not geographically limited and both mutations are today 
found in West and East African countries [13, 14].

Metabolic resistance is due to changes in the mosqui-
to’s enzyme systems which results in rapid detoxification 
of the insecticide preventing it from reaching the site of 
action within the mosquito. Several families of enzymes, 
including cytochrome P450 monooxygenases (P450s), 
glutathione-S-transferases (GSTs) and carboxylesterases, 
are involved in mosquito metabolic resistance to insec-
ticides [9, 15–27]. Some chemical compounds, such as 
piperonyl butoxide (PBO), S-S-S-tributylphosphoro-
trithioate (DEF) and etacrynic acid (EA), can be used as 
synergists to inhibit P450s, carboxylesterases and GSTs, 
respectively [28]. To deal with insecticide resistance, par-
ticularly in areas where insecticide-based tools have been 
implemented for several years, it is relevant to monitor 
the dynamics and the level of Anopheles susceptibility to 
insecticide while exploring insecticide resistance mecha-
nisms. Dielmo village, in rural Senegal, has been under 
LLIN universal coverage since 2008. The use of LLINs in 
this setting has enabled the control of Anopheles gambiae 
sensu lato (s.l.) and Anopheles funestus, the main malaria 
vectors, and to reduce drastically malaria incidence; 
occasional malaria cases observed were attributed to a 
lack of LLIN use [29].

Notwithstanding the collapse of malaria incidence in 
Dielmo through the long-term use of LLINs, there is little 
information on insecticide resistance in malaria vectors. 
The main purpose of this work was to investigate insec-
ticide resistance in An. gambiae s.l. to insecticides, a dec-
ade since the introduction of LLINs in Dielmo.

Methods
Study area
The study was conducted in Dielmo, which is located in 
the Fatick region, 280 km from Dakar, in a Soudan-type 
climate area. Since 1990, a regular epidemiological survey 
has been conducted in this setting to understand the epi-
demiology of malaria [30]. In Dielmo, malaria vector con-
trol has always been based on LLIN universal coverage. 
This strategy was implemented in July 2008. Since then, it 

Conclusions:  The co-occurrence of 1014F and 1014S alleles and the probable involvement of GSTs enzymes in 
insecticide resistance in An. gambiae s.l. should prompt the local vector programme to implement non-pyrethroid/
DDT insecticides alternatives.

Keywords:  LLINs, Insecticide resistance, kdr, Metabolic resistance, Anopheles arabiensis, Anopheles coluzzii, Anopheles 
gambiae s.s., Vector control, Dielmo, Senegal
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has been maintained through three LLIN general renew-
als, in 2011, 2014 and 2016. In Dielmo, IRS has never 
been introduced. In 2015, there were approximately 
481 inhabitants distributed in 42 concessions. The rainy 
season usually lasts from July to October. In 2015, the 
first rains were recorded in July. August was the wettest 
month, followed by September, with respective monthly 
rainfalls of 262 and 225 mm. In October, rainfall of only 
94 mm was recorded. Overall, in 2015, annual rainfall was 
estimated at 784 mm and the mean temperature ranged 
from 22 to 35 °C. The villagers are millet and groundnut 
farmers, but during the dry season, market gardening is 
practised along the swampy bank of a small permanent 
river, the Nema, around which market-garden wells or 
ceanes are dug for watering. In Dielmo, commercial pes-
ticides including organophosphates (Dimethoate®, Pyri-
cal 480EC®), organochlorine and pyrethroids, most often 
in combination (Callifan Super 40EC®), are used for agri-
cultural purposes.

Anopheles immature stages collection and mosquito 
rearing
Surveys were carried out in September 2015 in Dielmo. 
During the study period, five breeding sites were identi-
fied in and around the village and were all used to collect 
Anopheles larvae and pupae. These breeding sites con-
sisted of fresh water with vegetation, especially from the 

Gramineae family (Fig. 1). Larval collections were pooled 
in sampling containers and transferred to a local insec-
tary for rearing. Larvae were fed with fishmeal (Tetramin 
Baby®). Pupae were daily collected and introduced into 
rearing cages using small plastic cups. At emergence, 
mosquito adults were fed using absorbent cotton soaked 
with 10% sucrose solution.

Anopheles susceptibility to insecticides
The Centers for Disease Control and Prevention (CDC) 
bottle bioassays was used to assess Anopheles susceptibil-
ity to insecticides. Insecticides were provided by CDC in 
lyophilized forms or in hyper-concentrated formulations. 
In the laboratory, reconstitution or dilution was per-
formed using acetone to obtain stock solutions of which 
1  mL contained the diagnostic dose of the insecticide 
(expressed in µg/bottle). Stock solutions were then stored 
at 4  °C in foil-wrapped Falcon tubes before being trans-
ported into the field using an electric icebox. Wheaton 
glass (250 mL) bottles were coated using 1 ml of insecti-
cide solution as described in the CDC protocol [28]. Five 
pyrethroid insecticides (Alphacypermethrin 12.5 µg/bot-
tle, Deltamethrin 12.5 µg/bottle, Etofenprox 12.5 µg/bot-
tle, Lambdacyhalothrin 12.5  µg/bottle and Permethrin 
21.5  µg/bottle), one organochlorine (DDT 100  µg/bot-
tle), one carbamate (Bendiocarb 12.5 µg/bottle) and two 
organophosphates (Pirimiphos-methyl 20  µg/bottle and 

Fig. 1  Map showing the location of Dielmo (study area), its aspect in the rainy season and one anopheline breeding site
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Fenitrothion 50  µg/bottle) were tested. Bioassays were 
carried out on 2–5 day-old unfed females using the CDC 
bottle protocol [28, 31, 32]. Each insecticide molecule 
was tested in four replicates using 16–25 female mosqui-
toes for each replicate; a control bottle with 20–25 female 
mosquitoes was used in parallel. The temperature in the 
field testing room was 25 ± 3 °C and the relative humid-
ity was 75 ± 10%. Mortality was recorded at 15-min inter-
vals until insecticide-diagnostic time (DT) was reached. 
Mortality at DT represents the most critical value in 
CDC bottle bioassays and thus, in this study any 24-h 
holding period for mortality recording was not taken into 
account. The DT was 30  min for all insecticides except 
DDT which had a DT of 45  min [28]. A mosquito was 
considered dead if it could not stand or fly in coordinated 
way, especially when the bottle was gently rotated while 
making the count. When the DT of the insecticide being 
tested elapsed, mosquitoes were transferred to holding 
cartons and survivors were collected using an aspirator 
and then killed with chloroform. The number of dead 
mosquitoes for all replicates of each test was used to 
determine percentage mortality. Finally, both surviving 
and dead mosquitoes were individually stored in num-
bered Eppendorf tubes containing silica gel. A random 
sample of dead mosquitoes and survivors were used for 
species identification and the detection of kdr gene.

Detection of detoxification enzymes using synergist
In case mosquitoes displayed mortality rate below resist-
ance threshold after exposure to DDT, complementary 
bioassays with synergist EA (80  µg/bottle) were per-
formed according to CDC protocol [28], using another 
mosquito sample from the population previously tested. 
A batch of 100–125 unfed females was exposed to 
one bottle coated with EA (EA-exposed mosquitoes). 
Another batch with the same number of mosquitoes 
was used as a control and was exposed to one acetone-
coated bottle (non-EA-exposed mosquitoes). After 1  h 
of exposure, mosquitoes from each batch were sepa-
rately released into rearing cages. Then, EA-exposed and 
non-EA-exposed mosquitoes were in parallel exposed to 
DDT (100  µg/bottle) according to standard CDC bottle 
bioassay as above. Data comparisons were made between 
mortality rates from EA-exposed and non-EA-exposed 
mosquitoes.

Species identification and detection of kdr‑w and kdr‑e 
mutations
CTAB Method was used for extracting genomic deoxy-
ribonucleic acid (DNA) from entire mosquitoes. The 
one-step polymerase chain reaction (PCR) technique 
using intentional mismatch primers (IMPs) described by 
Wilkins et al. [33] was used to identify the sibling species 

of the An. gambiae complex. L1014F (kdr-w) and L1014S 
(kdr-e) mutations were investigated using also IMP PCR 
primers [34]. A volume of 1–2 µL of DNA template was 
added to 23–25  µL PCR Master Mix containing Taq 
DNA Polymerase, Microbial DNA-free water, 5X Green 
GoTaq Buffer, 2.0–2.5  mM dNTP, 25  mM MgCl2 and 
2.5–25  pmol/µL of specific primers. PCR amplification 
conditions in a Bio-Rad® Thermocycler were as follows: 
95  °C for 5 min for 1 cycle, followed by [95  °C for 30 s, 
58 °C (or 57/59 °C for kdr-e/kdr-w) for 30 s and 72 °C for 
30 s] for 30 cycles (or 35 cycles for kdr-e and kdr-w), fol-
lowed by 1 cycle of 72 °C for 5 min. PCR amplicons were 
migrated on 2% agarose gel mixed with fluorescent Gel 
Red DNA stain (BIOTIUM®). Specific target bands were 
visualized under UV light using a Bio-Rad®Gel Doc XR 
connected to computer running software (Quantity One, 
4.6.6 Basic Version).

Data interpretation and statistical analysis
Percentage mortality was interpreted according to WHO 
criteria [35] to determine susceptibility status. Pearson’s 
Chi squared test was used to compare mortality rates. 
Allelic association studies were conducted using Fisher 
exact test and odds ratio test. A p value less than 5% 
was considered as significant. All statistical analyses and 
graphs were made using R software version 3.4.1 [36].

Results
Susceptibility to insecticides
A total of 834 An. gambiae s.l. female mosquitoes were 
tested with 9 insecticides. In the group of pyrethroids 
(Fig.  2), full mortality (100%) was only observed with 
lambdacyhalothrin (n = 91), after 30  min of exposure. 
Resistance was suspected with permethrin, deltame-
thrin, etofenprox, and alphacypermethrin, with mortal-
ity rates of 97% (n = 67), 94.6% (n = 110), 92.1% (n = 101), 
and 92.1% (n = 101), respectively, after 30  min of expo-
sure (Fig.  2). Anopheles gambiae s.l. was resistant to 
DDT, with a mortality rate of 62% (n = 108), after 45 min 
of exposure (Fig.  2). Anopheles gambiae s.l. showed full 
mortality with fenitrothion (n = 74) and a probable resist-
ance to pirimiphos-methyl with a mortality rate of 93.5% 
(n = 92) after 30  min. Full susceptibility (n = 100) was 
observed with bendiocarb (carbamate), after 30  min of 
exposure (Fig. 3). Globally, 205 control mosquitoes were 
used during the bioassays and no mortality was observed 
in control bottles.

Detection of detoxification enzymes with synergist
In the study, only EA (80 µg/bottle) which inhibits GSTs, 
was used as synergist for DDT-resistant mosquitoes. The 
prior exposure of mosquitoes to EA before testing with 
DDT increased significantly (χ2 = 4.6, df = 1, p = 0.03) 
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the mortality rate (87%, n = 113) compared to the control 
mosquitoes exposed to only DDT (60.97%, n = 97). How-
ever, the mortality rate after pre-exposure to EA was still 
below the resistance threshold (Fig. 4).

Species identification and detection of kdr‑w and kdr‑e 
mutations
A total of 280 An. gambiae s.l. females were analysed 
using IMPs-SNP PCR for species identification and 
detection of kdr-e and kdr-w alleles (Table  1). Results 
showed that 91.43% (IC 95 87.51–94.43%) of specimens 
were Anopheles arabiensis; 5.36% (IC 95 3.03–8.68%) 
were Anopheles coluzzii and 3.21% (IC 95 1.48–6.01%) 

were Anopheles gambiae sensu stricto (s.s.). No hybrid 
between An. gambiae s.s. and An. coluzzii was found.

The results of genotyping and kdr alleles are shown 
in Table  1. In An. gambiae s.s. population, only L1014F 
mutation was found, at a frequency of 0.1667. Both 
L1014F and L1014S alleles were found in An. arabiensis 
and An. coluzzii populations. The frequency of L1014F 
allele was 0.233 and 0.080 in An. coluzzii and An. ara-
biensis, respectively. However, the frequency of L1014S 
allele was higher in An. arabiensis (0.361) compared to 
An. coluzzii (0.133). Furthermore, individual mosquitoes 

Fig. 2  Mortality rates of Anopheles gambiae s.l. from Dielmo, after exposure to pyrethroids (alphacypermethrin 12.5 µg/bottle, deltamethrin 
12.5 µg/bottle, etofenprox 12.5 µg/bottle, lambdacyhalothrin 12.5 µg/bottle, permethrin 21.5 µg/bottle) and DDT 100 µg/bottle (organochlorine). 
Percentage mortality was plotted after exposure at DT of each insecticide. The horizontal line indicates a 90% resistance threshold according to 
WHO criteria. Pyrethroids are represented by blue bars and organochlorine by pink bars

Fig. 3  Mortality rates of Anopheles gambiae s.l. from Dielmo, 
after exposure to one carbamate (bendiocarb 12 µg/bottle) and 
organophosphorous insecticides (pirimiphos-methyl 20 µg/bottle 
and fenitrothion 50 µg/bottle). Percentage mortality was plotted 
after exposure at DT of each insecticide. The horizontal line indicates 
a 90% resistance threshold according to WHO criteria. Carbamate is 
represented by green bar and organophosphates by gold bars

Fig. 4  Effect of etacrynic acid (EA 80 µg/bottle) on DDT-resistant 
Anopheles gambiae s.l. from Dielmo. Mosquitoes from two separate 
batches were exposed to one acetone-coated bottle (no synergist) 
and to another EA-coated one (synergist) for 1 h, before being both 
tested with DDT-treated bottles for 45 min (DDT DT). Percentage 
mortality was plotted after exposure at DT of each insecticide. The 
horizontal line indicates a 90% resistance threshold according to 
WHO criteria
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were observed carrying both kdr-w and kdr-e mutations 
(F/S), with 7.42% (IC 95 4.47–11.22%) and 13.33% (IC 95 
1.66–4.05%) in An. arabiensis and An. coluzzii popula-
tions, respectively (Table 1).

Among the 280 individuals genotyped, 70 were alive 
after exposure to insecticides. Of these 70 individuals, 5 
were exposed to pirimiphos-methyl and the 65 to pyre-
throids and DDT. The genotyping result of 65 individu-
als exposed was as follows: 95.4% (IC 95 87.10–99.04%) 
were An. arabiensis and 4.6% (IC 95 0.96–12.90%) were 
An. coluzzii. Of the three An. coluzzii alive only one was 
homozygous for L1014F-kdr while the two remaining 
individuals were L1014F and L1014S free. Out of 62 An. 

arabiensis individuals alive, 6.4% (IC 95 1.78–15.70%) 
were homozygous for L1014F-kdr (FF), but there were 
22.5% (IC 95 12.03–34.98%) homozygous (SS) and 19.3% 
(IC 95 10.42–31.37%) heterozygous (LS) individuals for 
L1014S-kdr. Finally, 4.8% (IC 95 1.01–13.50%) of An. ara-
biensis individuals alive were homozygous for both 1014F 
and 1014S alleles (FS), and 46.8% (IC 95 34.00–59.88%) 
were fully homozygous susceptible, e.g. L1014F and 
L1014S free (LL) (Fig. 5). Among An. arabiensis individu-
als alive after exposure to pyrethroids and DDT, some 
mosquitoes carried both L1014F and L1014S alleles in 
homozygous (FF, SS) and/or heterozygous (FS, LS) con-
ditions, while others were kdr-free individuals. For per-
methrin, all surviving An. arabiensis individuals were 
homozygous susceptible (LL) (Fig. 5). To get a clear idea 
of the involvement of kdr mutation in An. arabiensis sus-
ceptibility, an allelic association analysis was performed 
on 201 individuals, including alive and dead mosquitoes 
exposed to pyrethroids and DDT (Table 2). No significant 
correlation was observed, neither between 1014F allele 
and the resistance to pyrethroids [(OR = 1.17 (0.36–3.88); 
p = 0.78] and DDT [(OR = 1.09 (0.38-3.17); p = 0.95], nor 
between 1014S allele and the resistance to pyrethroids 
[(OR = 1.38 (0.58–3.30); p = 0.46] and DDT [(OR = 1.09 
(0.38–3.17); p = 0.87] (Table 2).

Discussion
In this study, the main issue was to determine insecticide 
resistance profile, as a backdrop to assessing LLIN vul-
nerability after a decade of use in Dielmo. In this study, 
the CDC bottle bioassays have been opted to establish a 
surveillance tool for detecting resistance to insecticides, 
but also for providing basic data for vector control rou-
tines in Dielmo. The choice for this tool was justified by 
its adaptability in the field [32], the good correlation of 
results with those collected from WHO standard assays 
[37] and its acknowledgement by WHO [35].
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Fig. 5  Distribution of susceptible and resistant alleles in Anopheles 
arabiensis individuals alive after exposure to pyrethroids and DDT. 
LL homozygous susceptible, LF heterozygous resistant for kdr-w, LS 
heterozygous resistant for kdr-e, FF homozygous resistant for kdr-w, 
SS homozygous resistant for kdr-e, FS heterozygous resistant for both 
kdr-w and kdr-e 

Table 2  Association of kdr alleles with pyrethroid and DDT resistance phenotype in Anopheles arabiensis in Dielmo

LL homozygous susceptible, LF heterozygous resistant for kdr-w, LS heterozygous resistant for kdr-e, FF homozygous resistant for kdr-w, SS homozygous resistant for 
kdr-e, FS heterozygous resistant for both kdr-w and kdr-e, L leucine, F phenylalanine, S serine

Insecticides (N) State Genotype counts Allelic association (additive model)

LL LF FF LS SS FS Fisher exact test (p) Odds ratio (95% CI)

L vs F L vs S L vs F L vs S

Pyrethroids (140) Alive 11 0 2 6 4 2 (0.787) (0.463) 1.17 (0.36–3.88) 1.38 (0.58–3.30)

Dead 64 2 3 8 27 11

DDT (61) Alive 20 0 2 6 10 2 (0.953) (0.873) 1.06 (0.18–6.30) 1.09 (0.38–3.17)

Dead 10 1 1 3 6 0
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From the bioassays, it was observed that An. gam-
biae s.l. was susceptible to lambdacyhalothrin whereas 
suspected resistance to other pyrethroids including 
permethrin, deltamethrin, etofenprox, and alphacy-
permethrin was observed. In Dielmo, LLIN univer-
sal coverage started in 2008 and was maintained with 
three general renewals, in 2011, 2014 and 2016. This 
long pyrethroid-based vector control could explain the 
reduced susceptibility to permethrin, deltamethrin, 
etofenprox, and alphacypermethrin. However, this situ-
ation does not appear to affect the downward trend in 
malaria incidence in Dielmo [29, 38]. In many sites of 
high or moderate pyrethroid resistance, the effective-
ness of LLINs in malaria control has been maintained 
[29, 38–43] even if this pattern differs from other stud-
ies that have shown the failure of LLINs to control pyre-
throid-resistant mosquitoes [4, 6, 44]. Also, in Dielmo, 
An. gambiae s.l. was resistant to DDT. Anopheles resist-
ance to DDT has often been linked to its historical 
use for vector-borne diseases and crop pest control. 
Despite having been abandoned, DDT could persist 
in the environment due to its decades of widespread 
use in public health and agriculture. Indeed, DDT was 
found in high concentrations in many western African 
plant species, such Mangifera indica [45–47], which 
is also abundant in Dielmo. On the other hand, the 
Dielmo villagers are engaged in traditional farming and 
market gardening which could involve use of commer-
cial pesticides comprising organophosphates, organo-
chlorine and pyrethroids. Therefore, selection pressure 
from agricultural activities, even with low amounts of 
insecticides, could trigger the development of mosquito 
resistance to DDT, pirimiphos-methyl and some pyre-
throids in Dielmo, as it was observed in many African 
countries [8, 48–50]. The susceptibility of An. gambiae 
s.l. to bendiocarb and fenitrothion is probably linked 
to the fact that these molecules are not used for vec-
tor control in Dielmo. In this area, the use of LLINs has 
been the main strategy for controlling malaria vectors 
for several years, and no IRS programme has been set 
up for public health purposes. Therefore, the low or 
almost non-existent selection pressure could explain 
the full susceptibility of mosquito populations to carba-
mates, some organophosphates and some pyrethroids.

PCR-based identification of species revealed that An. 
arabiensis was the predominant species within An. gam-
biae complex. The other sibling species, An. coluzzii and 
An. gambiae s.s. were found at low levels. This finding is 
in line with the Dielmo species composition described 
nearly 20  years ago [51] and recently confirmed despite 
the implementation of LLINs in this study area [52]. In 
this study, both 1014F and 1014S alleles were found in 
An. arabiensis and An. coluzzii populations while in An. 

gambiae s.s. only1014F was found. This confirms the 
recent findings on the co-occurrence of these alleles in 
An. arabiensis in Senegal [14] and reinforces the percep-
tion that the distribution of kdr alleles should no longer 
be considered as being confined to some specific geo-
graphical areas [13, 53]. This is the first report of 1014S 
(kdr-e) allele in An. coluzzii from Senegal. However, 
1014F and 1014S alleles are carried essentially by An. 
arabiensis, which is the principal vector in the study area. 
In An. arabiensis, the frequency of 1014S allele (36%) is in 
same range as those described in this species from Dakar 
urban area [14]. The high level of 1014S allele frequency 
being recorded in Dielmo could mean that the circulation 
of this allele has been overlooked or underestimated as it 
was considered until recently that this mutation is absent 
in western African region. The lack of historical data 
does not allow estimating when this allele has emerged 
in Dielmo. However, one cannot rule out that the wide-
spread implementation of LLINs since 2008 has fostered 
the emergence of kdr-e mutation. Indeed, it is known that 
Anopheles insecticide resistance can increase consider-
ably over a relatively short period [54].

Furthermore, the frequency of L1014F (kdr-w) allele 
in An. arabiensis (8%) was relatively low compared to 
many West African countries [55–59]. All the same, a 
similar trend was found in An. arabiensis population 
from an area close to Dielmo [60]. Particular attention 
should be paid to the dynamics of these two alleles as 
they have not yet approached fixation in the Anophe-
les population and some individuals are carrying both 
alleles. However, although present in Anopheles popu-
lations, kdr mutation was not strongly associated with 
phenotype resistance, neither to pyrethroids nor to 
DDT. Indeed, half of the dead individuals exposed to 
pyrethroids and DDT were positively genotyped for 
kdr mutation. This indicates that the occurrence of 
kdr mutation is not fully predictive of the resistance to 
pyrethroids and DDT in An. gambiae s.l. from Dielmo. 
It is thus likely that other mechanisms, in addition to 
kdr mutation, are involved in mosquito resistance to 
pyrethroids and DDT. This hypothesis was confirmed 
by use of the synergist EA, implicating GSTs in DDT 
resistance. Indeed, GST-based resistance is considered 
the major mechanism of DDT resistance in anopheline 
species [9, 15, 61, 62] and has been reported in African 
An. arabiensis populations [15, 62]. However, the EA 
did not fully restore the susceptibility of mosquitoes to 
DDT; it is therefore likely that additional mechanisms, 
other than target site (kdr) and GSTs, are involved in 
DDT resistance. It would be relevant to measure ester-
ases and P450s activities, as well as cuticular resistance, 
to clarify this point.
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Conclusion
In Dielmo, despite a long period of LLIN coverage, 
the level of pyrethroid resistance in An. gambiae s.l. 
population was still low compared to some malaria-
endemic regions in West Africa. Furthermore, to man-
age insecticide resistance in Dielmo, it is recommended 
to implement a second line of vector control based on 
non-pyrethroid/DDT insecticides. However, molecular 
and biochemical monitoring is needed to better eluci-
date the different mechanisms involved in insecticide 
resistance in Anopheles populations in Dielmo.
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