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Abstract

Jitter, in voice production applications, is a random phenomenon characterized
by the deviation of the glottal cycle length with respect to a mean value. Its
study can help in identifying pathologies related to the vocal folds according
to the values obtained through the different ways to measure it. This paper
aims to propose a stochastic model, considering three control parameters, to
generate jitter based on a deterministic one-mass model for the dynamics of the
vocal folds and to identify parameters from the stochastic model taking into
account real voice signals experimentally obtained. To solve the corresponding
stochastic inverse problem, the cost function used is based on the distance be-
tween probability density functions of the random variables associated with the
fundamental frequencies obtained by the experimental voices and the simulated
ones, and also on the distance between features extracted from the voice sig-
nals, simulated and experimental, to calculate jitter. The results obtained show
that the model proposed is valid and some samples of voices are synthesized
considering the identified parameters for normal and pathological cases. The
strategy adopted is also a novelty and mainly because a solution was obtained.
In addition to the use of three parameters to construct the model of jitter, is the
discussion of a parameter related to the bandwidth of the power spectral density
function of the stochastic process to measure the quality of the signal generated.
A study about the influence of all the main parameters is also performed. The
identification of the parameters of the model considering pathological cases is
maybe of all novelties introduced by the paper the most interesting.
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1. Introduction

The production of a voiced sound starts when the airflow coming from the
lungs is modified into the glottal signal, a quasi-periodic signal after passing
through the glottis, where the vocal folds are located. The main examples of
voiced sounds are the vowels and this paper is based on their production.

The acoustic pressure signal, after passing by the vocal folds, is filtered and
amplified by the vocal tract and then radiated by the mouth originating the
voice signal. As the vocal folds displacements are not exactly symmetric the
time intervals corresponding to the air pulses of the glottal signal have random
fluctuations, called jitter.

There are different ways to measure jitter and its study is important to
identify irregularities on the phonation. The values of jitter considered to a
normal voice is between 0.1% and, at the maximum, 1% in relation to the mean
of the time glottal intervals. Other acoustic measures can also be used, as
Shimmer and HNR (Ratio Harmonic-Noise), to help in identifying pathologies
on the vocal folds, vocal aging or even to help in problems of speaker recognition
or stress situations related to the voice. However, the main feature that should
be considered is jitter (Wong, 1991; Jiang et al., 2009; Dejonckerea et al., 2012;
Mongia and Sharma, 2014; Silva et al., 2016) and this paper is focused in its
generation.

Some models of jitter have been proposed but, in general, they do not con-
sider mechanical models, they are created directly on the voice signals, consid-
ering some perturbations as, for example, a controlled noise (Schoengten et al.
1997, 2013).

Some mechanical models of jitter have been proposed by the same authors
of this paper (Cataldo et al., 2012; Cataldo and Soize, 2016, 2017) and, now, a
new mechanical stochastic model is then proposed but considering three control
parameters, which gives more possibilities to generate jitter, including a way
to change the quality of the voice generated. A new parameter is introduced
to discuss this quality, related to the bandwidth of the power spectral density
function and, mainly, an inverse stochastic problem is solved to identify pa-
rameters and, consequently, to validate the model proposed. With these new
possibilities, specific pathologies of the vocal folds can be created and identified,
such as paralysis of the vocal folds.

The stochastic model proposed here has the origin based on the deterministic
model created by Flanagan and Landgraf (1968), known as the first model used
to generate voice using a nonlinear one-mass mechanical model. More complete
deterministic models were created (Ishizaka and Flanagan, 1972; Avanzini, 2008;
Zhang and Jiang, 2008; Pickup and Thomson, 2009; Cveticanin, L., 2012; Erath
and al., 2013; Pinheiro and Kerschen, 2013) even considering pathological cases
in the vocal folds (Gunter, 2004) or stress situation (Luzan et al., 2015) but the
idea here is to show that it is possible to generate jitter and voice signal with
quality from the primary model considering the stiffness as a stochastic process
and, mainly, validate the model proposed identifying parameters solving an
statistical inverse problem taking into account experimental normal voices and
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also with pathological characteristics.

2. Primary deterministic model

Figure. 1 illustrates a sketch of the model.

Figure 1: Sketch based on the Flanagan and Landgraf (1968) model.

Each vocal fold is represented by a nonlinear mass-stiffness-damper system
and the complete model is composed by the subsystem of the vocal folds (source)
coupled by the glottal flow to the subsystem of the vocal tract (filter). To
generate jitter the stiffness will be considered as a stochastic process for which
a model is proposed.

3. Stochastic modeling of jitter

The stiffness k is modeled by a stochastic process {K(t), t ∈ R} with values
in R+. Consequently, the dynamical position of each vocal fold will be given
by a stochastic process, named X(t), coupled with the stochastic process asso-
ciated with the glottal flow (volume flow velocity), noted Ug(t). The stochastic
dynamics of the vocal folds is described by Eq. 1:

m
d2X(t)

dt2
+{c+c∗(X(t))} dX(t)

dt
+K(t)X(t)+a1 pB(X(t), Ug(t)) = a2 ps(t) ,

(1)

where a1 = 1.87 `d
2 and a2 = `d

2 , with ` the length of each vocal fold and d
the vocal fold thickness. The stochastic process X(t) is the displacement of the
mass m of one vocal fold, K(t) is its stiffness and c is its damping coefficient
when the glottis is opened; when the glottis is closed, there is an additional
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damping given by c∗(X(t)) described in the following, where the Bernoulli pres-
sure pB(X(t), Ug(t)) is also described.

• If X(t) ≥ x0 (the glottis is closed and x0 is a minimum value corresponding
to normal vocal folds when they are in relaxed position), then

c∗(X(t)) = 2α
√
mK(t) , pB(X(t), Ug(t)) = 0 , (2)

in which α > 0 is a given damping rate.

• If X(t) < x0 (the glottis is opened), then

c∗(X(t)) = 0 , pB(X(t), Ug(t)) =
(1/2) ρ |Ug(t)|2

(Ag0 + `X(t))2
. (3)

where ρ is the air density and Ag0 (the so-called neutral glottal area) is
such that the critical value x0 is written as x0 = −Ag0/` .

The stochastic process Ug(t) is the acoustic volume velocity through the
glottal orifice (the glottal flow). The air pressure that comes from the lungs
and forces the vocal folds is called the subglottal pressure and is denoted by
ps(t). The constant parameters have been discussed in the original paper about
the corresponding deterministic model (Flanagan and Landgraf, 1968). Some
information about values can also be found in (Cataldo and Soize, 2017).

In this paper, the stochastic process K = {K(t), t ∈ R}, indexed by R, is
constructed according to the properties defined as follows.

(i) For all t, 0 < k0 ≤ K(t) where k0 is a positive constant independent of t.

(ii) As the idea is to construct the jitter effect, modeled as a stochastic pertur-
bation of the corresponding periodic movement of the vocal folds produced when
k is a constant, stochastic process K(t) is assumed to be a stationary stochas-
tic process that cannot be Gaussian (because it is a positive-valued stochastic
process).

(iii) Denoting by E the mathematical expectation, {K(t), t ∈ R} is thus a
non-Gaussian stationary stochastic process such that E{K(t)2} < +∞ for all
t (second-order stochastic process), for which its mean function (that is inde-
pendent of t) is written as E{K(t)} = k > k0 > 0, and which is assumed to be
mean-square continuous in order to guaranty the existence of a power spectral
measure.

A representation of non-Gaussian stochastic process K(t) can be constructed
using Information Theory as explained in (Soize, 2017). Following such a con-
struction, we introduce a Gaussian second-order real-valued stochastic process,
Y = {Y (t), t ∈ R}, centered, mean-square continuous, stationary and ergodic,
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physically realizable. A representation of stochastic process K can then be
written as

K(t) = k0 + (k − k0)(y + Y (t))2 , ∀ t ∈ R , (4)

in which y is a parameter (that will be defined later) such that

E{(y + Y (t))2} = 1 , E{(y + Y (t))4} < +∞ . (5)

The conditions defined by Eq. (5) effectively yields, for all t, E{K(t)} = k
and E{K(t)2} < +∞. Let ω be the angular frequency in rad/s and f be the
circular frequency in Hz such that ω = 2πf . The Gaussian stochastic process
Y is constructed as the linear filtering, Y = h ∗ N∞, of the centered Gaussian
white noise N∞ (generalized stochastic process) whose power spectral density
function is written, for all real ω, as

SN (ω) =
1

2π
, (6)

and where h = F−1{H} is the inverse Fourier transform of the complex-valued
frequency response function ω 7→ H(ω) that we defined, for all real ω, by

H(ω) =
a

−ω2 + 2iωξb+ b2
, (7)

in which, a, b, and ξ are three positive parameters that will be defined later.
Consequently, the power spectral density function SY (ω) of Gaussian sta-

tionary stochastic process Y is written, for all real ω, as

SY (ω) =
1

2π

a2

(b2 − ω2)2 + 4ξ2b2ω2
, a > 0 , b > 0 , ξ > 0 . (8)

From Eq. (8), it can be deduced that the mean-square derivative {Ẏ (t), t ∈ R}
of stochastic process {Y (t), t ∈ R} is a second-order stochastic process because∫
R ω

2 SY (ω) dω < +∞. Let {Z(t) = (Y (t), Ẏ (t)), t ≥ 0} be the stochastic
process with values in R2 solution of the following Itô stochastic differential
equation,

dZ = [α]Z dt+ β dW (t) , t > 0 , (9)

with the initial condition Z(0) = (0, 0), in which {W (t), t ≥ 0} is the real-valued
normalized Wiener stochastic process indexed by [0,+∞[, where [α] is the (2×2)
real matrix and β is the real vector such that

[α] =

[
0 1
−b2 −2ξb

]
, β =

[
0
a

]
. (10)

It can be proved (see for instance, Krée and Soize, 1986) that Eq. (9) has a
unique solution {Z(t), t ≥ 0} such that, for t0 → +∞, the stochastic process
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{Z(t), t ≥ t0} is asymptotically stationary and tends to the stationary Gaussian
stochastic process {(Y (t), Ẏ (t)), t ∈ R} in which Y = h∗N∞. The first condition
defined by Eq. (5) yields,

y2 +

∫ +∞

−∞
SY (ω)dω = 1 =⇒ y2 = 1− a2

4ξb3
. (11)

Consequently, the parameters must satisfied the following conditions,

0 < a2 < 4ξb3 , b > 0 , ξ > 0. (12)

In order to control the bandwidth of stationary stochastic process Y , we intro-
duce the parameter ε > 0 (Krée and Soize, 1986) that is defined by

ε =

√
1− m2

2

m0m4
, m2p =

∫
R
ω2p SY (ω) dω , p = 0, 1, 2 . (13)

Parameter ε is estimated using the simulated signals and is discussed in the
next section. It is important to say that the bandwidth is related to the quality
of the synthesized sounds (Rabiner and Schafer, 2011) and this is one of the
main reasons to introduce it in this paper, discussing the relation between the
presence of jitter and the quality of the voice.

4. Simulation

4.1. General ideas

The objective of this section is to generate voice signals with jitter using the
stochastic model proposed and to analyze the sensitivity of the stochastic model
with respect to parameters a, b, and ξ. As the main idea is to generate jitter,
a way to measure it will also be discussed. There are different ways to analyze
jitter effects (Mongia, 2014). At first, it is important to define the random
variable associated with the duration of the glottal cycle, which is defined as
the duration between two successive times, the first one corresponding to the
instant the vocal folds (glottis) opens and the second one the instant when
it closes completely. The corresponding random variable will be denoted by
Tfund. To calculate Tfund from X(t), it was used an algorithm based on an
implementation of the RAPT pitch tracker (Talkin, 1995). For each glottal
cycle k, a duration denoted by Tfund(θk) can be associated. Considering that
the set {Tfund(θk), k = 1, . . . , N} constitutes N realizations of random variable
Tfund (corresponding to all the glottal cycles of the voice signal), jitter can be
measured by the following equations.
(i) The absolute jitter, denoted by JitterAbs, is defined by

JitterAbs =
1

N − 1

N−1∑
k=1

|Tfund(θk+1)− Tfund(θk)| . (14)
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(ii) The relative jitter, denoted by JitterRel, is defined by

JitterRel =

1

N − 1

N−1∑
k=1

|Tfund(θk)− Tfund(θk+1)|

1

N − 1

N−1∑
k=1

Tfund(θk)

. (15)

(iii) The relative average perturbation, denoted by JitterRAP , is defined as the
average absolute difference between a period and the average of it and its two
neighbors, divided by the average period.
(iv) The five-point period perturbation quotient, denoted by JitterPPQ5, is de-
fined as the average absolute difference between a period and the average of it
and its four closest neighbors, divided by the average period.
(v) Another important way for verifying the jitter generation is to use the prob-
ability density function associated with the random variable Ffund = 1/Tfund,
which will be called the fundamental frequency.

4.2. Sensitivity analysis with respect to the parameters of SY

The variations of parameters a, b, and ξ are taken into account and for each
triplet (a, b, ξ), the value of the relative jitter given by Eq. (15) is calculated.
Before showing the results obtained, and understanding what happens when the
ξ parameter varies, power spectral density function SY is calculated considering
different values for the parameters but emphasizing the variation of ξ. For
performing such a sensitivity analysis of SY with respect to its parameters,
we introduce the normalization factor, Sref

Y , defined as maxf SY (2πf ; a, b, ξ) =
a2/(8πb4ξ2(1 − ξ2)) in which a, b, and ξ are fixed to 10, 2π×180, and 0.1,
respectively.
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For a = 10 and b = 2πfp with fp = 180Hz, Fig. 2 shows the graph of the di-
mensionless and normalized power spectral density function
f 7→ SY (2πf ; a, b, ξ)/Sref

Y as a function of ξ ∈ {0.1, 0.15, 0.3, 0.7}.”The frequency
fp is chosen such that frequencies values of the voice will be around it, that is, its
value is near of the fundamental frequency.´´ The maximum of each curve hap-

Figure 2: For a = 10 and b = 2πfp with fp = 180Hz, graph of function f 7→
SY (2πf ; a, b, ξ)/Sref

Y as a function of ξ ∈ {0.1, 0.15, 0.3, 0.7}.

pens when the frequency is equal to
2πfp

√
1− 2ξ2. It is important to note that, as the value of ξ increases, the

bandwidth of SY becomes larger. For a = 10 and ξ = 0.1, Figure 3 shows
the graphf of the dimensionless and normalized power spectral density function
f 7→ SY (2πf ; a, b, ξ)/Sref

Y as a function of b = 2π cb fp in which fp = 180Hz
and where cb ∈ {1, 1.5, 2}. Again, it is important to note that the value of the

Figure 3: For a = 10 and ξ = 0.1, graph of function f 7→ SY (2πf ; a, b, ξ)/Sref
Y as a function of

b = 2π cb fp in which fp = 180Hz and where cb ∈ {1, 1.5, 2.

frequency corresponding to the maximum of each curve changes with the values
of b and as b increases, the curve shifts to the right. Therefore, it is possible
to change the frequency of the voice modifying this parameter although the
fundamental frequency is fixed.
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4.3. Cases simulated

During the simulations, the values of parameters a, b, and ξ, as well as
the mean of the fundamental frequency, will vary. All the other parameters
will be fixed and their values are ps(t) = 800Pa, m = 0.24×10−2 kg, c =
346.3m/s, k0 = 40N/m, k = 115N/m, a1 = 1.87 ` d/2 and a2 = ` d/2, with
` = 1.4 × 10−2m and d = 0.3 × 10−2m. The other parameters that are nec-
essary to produce the sounds, including values related to the vocal tract, are
given in (Cataldo and Soize, 2017). In particular, the parameter Ag0 and the air
density ρ are chosen such that Ag0 = 0.04×10−2m2 and ρ = 0.12 kg/m3. The
objective of this section is to perform a sensitivity analysis of the parameters
in order to better understand how to proceed to solve the inverse problem to
identify parameters of the model corresponding to experimental voice which will
be discussed further in the paper. Another important objective of this section
is to show that with these three parameters a, b and ξ, there are different possi-
bilities to generate jitter, but also to control the distribution of the fundamental
frequency. Although, jitter is a variation of the glottal cycle and consequently
this variation is related to the random variable FFund = 1/TFund, the shape of
the curve corresponding to the probability density function of FFund is not so
easily controlled with the variation of jitter. It means that, to identify param-
eters of the model, it is important to minimize the distance between measures
of jitter (from simulated and experimental signals) but also distance between
probability density functions of FFund (simulated and experimental). So, this
section will give the feeling of how to vary the parameters in order to better
minimize those distances. Thirteen cases were simulated. For each case sim-
ulated, the corresponding voice signal will be synthesized and available to be
heard following the link:
https://www.dropbox.com/sh/eo49b4usr1n4iz4/AADU8gI-JGWAeWqmxwE5u7nwa?dl=0 .
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All the values of the parameters considered and also the value calculated for
ε for all the simulations considered are summarized in Tab. 1.

Case a cb ξ Relative jitter ε
I 10 1 0.01 0.16% 0.43
II 200 1 0.01 0.32% 0.43
III 600 1 0.01 0.77% 0.43
IV 1200 1 0.01 3.48% 0.43
V 10 1 0.2 0.09% 0.9
VI 600 1 0.2 0.48% 0.9
VII 1800 1 0.2 1.43% 0.9
VIII 3000 1 0.2 2.51% 0.9
IX 10 1 0.5 0.09% 0.96
X 1000 1 0.5 0.80% 0.96
XI 3000 1 0.5 2.23% 0.96
XII 3000 1.5 0.5 0.90% 0.93
XIII 3000 2 0.5 0.64% 0.92

Table 1: Value of bandwidth parameter ε of stationary stochastic process Y for all the simu-
lation cases.

As the idea is to discuss the sensitivity of the parameters with the specific
objective of solving the inverse stochastic problem, some of these cases will be
selected and the graphs showed and discussed. Graphs of the probability den-
sity function will be constructed for some cases. To construct the probability
density function of the random variable FFund = 1/TFund, related to the vari-
ation of the fundamental frequency, it is necessary to calculate the glottal time
interval, for each glottal cycle. It means the evaluation of the realizations of
the random variable TFund. the case X is used to illustrate a piece of the voice
signal generated and the corresponding graph of the normalized output pressure
is shown, with five glottal time intervals highlighted, in Fig. 4. The correspond-

Figure 4: Piece of a voice signal: normalized output pressure.

ing values for the glottal time intervals evaluated in this case are: 0.005543 s,
0.005574 s, 0.005612 s, 0.005687 s and 0.005515 s. And the corresponding fre-
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quencies: 180.40Hz, 179.37Hz, 178.18Hz, 175.83Hz and 181.33Hz. These
are five realizations of the random variables TFund and FFund, respectively.
From Tab. 1, cases VIII, X, XI and XII will be chosen to be discussed and
compared. At first, comparing case X with case XI, it can be observed a large
variation of the parameter a, and the other parameters are fixed. Consequently,
the level of jitter was much increased, passing from a case without characteris-
tic of pathology (jitter less than 1%) to a case with pathological characteristics.
Comparing case XI with case XII, the parameter cb increases and it is interesting
to note that the level of jitter decreases, maintaining all the other parameters
fixed. And, finally, the reason for using the case VIII is that the parameter ξ
is decreased, in relation to the other cases (X, XI and XII), with all the other
parameters fixed. Then, the bandwidth of the power spectral density of the
stochastic process is decreased, but the level of jitter is increased. So, the dis-
tribution of the fundamental frequency has to be analyzed when one wants to
compare two voice signals, and not only the level of jitter can be compared.
Although jitter is, in some way, directly related to the frequency variation, the
distribution of the frequencies give some kind of information which cannot be
perceived through verifying only the level of jitter. In summary, the probability
density functions of the random variable FFund = 1/TFund related to the cases
VIII, X, XI and XII are constructed and shown together in Fig. 5. The impor-

Figure 5: Probability density functions corresponding to cases VIII, X, XI, and XII(from the
highest to the lowest).

tance of these cases is to compare the shape of the probability density functions
even with different values of jitter. An important general observation is that,
with different combination of the parameters a, b, and ξ, the same values of
jitter can be obtained. However, the quality of the voice generated is not the
same, because it also depends on the bandwidth of stationary stochastic process
Y , which is defined by Eq. 13. This is one of the main reasons for calculating
the bandwidth parameter ε and also to put it inside the Tab. 1. It is important
to hear the synthesized sounds to better understand what it means.
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5. Statistical inverse problem

In order to validate the model proposed, parameters a, b, and ξ are identi-
fied using experimental voice signals. This identification is carried out by intro-
ducing a cost function that is constructed writing that the probability density
function associated with the simulated voice is close to the probability density
function of the experimental voice and also, the jitter obtained for the simulated
voice is close to the jitter of the experimental voice. The four measures of jitter
are used. The cost function, denoted by Jcost(a, b, ξ), is then defined by

Jcost(a, b, ξ) =
1

2
Distdens(a, b, ξ) +

1

4
JitterReldist(a, b, ξ)

+
1

4
JitterAbsdist(a, b, ξ) +

1

4
JitterRAPdist(a, b, ξ)

+
1

4
JitterPPQ5dist(a, b, ξ) ,

(16)

in which, each quantity appearing in the right-hand side member is defined
hereinafter.
(i) Let f 7→ fS(f ; a, b, ξ) be the probability density function on [0 ,+∞[ of
random variable Ffund(a, b, ξ) associated with the simulated voice and f 7→ fR(f)
be the probability density function on [0 ,+∞[ of the random variable associated
with the experimental voice. The distance between these two probability density
functions is written as

Distdens(a, b, ξ) =
1

2

∫ +∞

0

| fS(f ; a, b)− fR(f) | df . (17)

The probability density functions are estimated by using the Gaussian kernel
estimation method from the nonparametric statistics (Bowman and Azzalini,
1997). For each value of (a, b, ξ), probability density function fS(.; a, b, ξ) of
Ffund(a, b, ξ) is estimated using the realization of the stochastic process corre-
sponding to the glottal flow computed with the stochastic model and probability
density function fR of Ffund is estimated using the realization of the experi-
mental glottal signal obtained through a filtering inverse algorithm (PSIAIF)
(Pavo,1992) of the experimental voice.

(ii) For each given value of vector (a, b, ξ), N realizations {θk, k = 1, . . . , N} of
the voice signal are computed, which allows for computing the jitter quantities
defined in Section 4.1. Let Jittersim represent one of these four jitter quantities:
JitterRelsim, JitterAbssim, JitterRAPsim, or JitterPPQ5sim. Let Jitterexp be the jitter cal-
culated with the experimental signal. Then, a distance between Jittersim and
Jitterexp can be defined by

Jitterdist =
|Jittersim − Jitterexp|

Jitterexp
. (18)
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The optimal values aopt, bopt , and ξopt are then computed by solving the
following optimization problem,

(aopt, bopt, ξopt) = arg min
(a,b,ξ)∈C

Jcost(a, b, ξ) , (19)

in which the admissible set C is defined, using Eq. (12), by

C = {(a, b, ξ) ∈ R3 such that 0 < a2 < 4ξb3 , b > 0 , ξ > 0} . (20)

The values of the fixed parameters considered for the corresponding determin-
istic model are the same as considered for the simulations. The first case to
be taken into account is a voice signal from a woman producing an /e/ vowel.
The parameters corresponding to the mean value k of K is considered in a
way that the mean of the random variable associated with the fundamental fre-
quency simulated is very near of the one for the real voices. Then, the optimal
values aopt, bopt and ξopt of parameters a, b and ξ are identified by solving the
optimization problem defined by Eq. (19).

5.1. Algorithm used

• Step 1: From the experimental voice signal obtained with the vowel pro-
duced all the values corresponding to the random variable Ffund = 1/Tfund
are obtained using the algorithm (Talkin, 1995) and the probability den-
sity function f 7→ FR(f) associated is estimated. The mean value of
random variable Ffund is calculated and is used in the other steps. From
this signal, the four measures of jitter are obtained: JitterRelexp, JitterAbsexp,
JitterRAPexp, and JitterPPQ5exp.

• Step 2: Using the model proposed, one signal is simulated in a way that the
mean of random variable Ffund of this signal was near from the mean value
calculated in step 1. It is not difficult to generate this signal because
there are parameters in the model directly related to the fundamental
frequency as, for example, fp. However, some essays are necessary in order
to obtain a mean value near the one wished. At the same time, values
for a, b, and ξ have been calculated so that the estimated probability
density function of random variable Ffund for the simulated voice signal is
near from the probability density function estimated in step 1. This step 2
takes some time because it is a step of essays. Values are obtained and they
will serve as start for the grid variation of the values of the fundamental
frequency and also of the parameters a, b, and ξ, consequently four loops
are constructed.

• Step 3: For each value of the fundamental frequency and of the triplet
(a, b, ξ), the Monte Carlo Method is used for the estimation of the proba-
bility density functions and the computation of cost function Jcost(a, b, ξ).

• Step 4: The minimum value of the cost function estimated in Step 3 is the
objective that has to be reached.
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5.2. Identifying parameters

5.2.1. The first experimental voice signal considered is a female production of a
vowel /e/.

After solving the inverse stochastic problem, the optimal values obtained
were: aopt = 200, bopt = (1/2)πfp, fp = 200Hz and ξopt = 0.9. Table 2 shows
the values of jitter calculated for the experimental voice and for the simulated
voice, after solving the inverse problem. The value obtained for the bandwidth
parameter is ε = 0.98. As we have already discussed, not only the measures of

Jitter Experimental Simulated
JitterRel 0.48% 0.52%
JitterAbs 2.37e− 05 s 2.54e− 05 s
JitterRAP 0.26% 0.30%

JitterPPQ5 0.29% 0.32%

Table 2: Jitter values for a female production of a vowel /a/, without pathological character-
istics

.

jitter have to be taken into account but also the distance between the probability
density functions fS(. ; aopt, bopt, ξopt) and fR (simulated and experimental) shown
in Fig. 6.

Figure 6: pdf of the random fundamental frequency corresponding to a real voice (solid line)
and corresponding to the simulated for the optimal values of the parameters (dotted line) in
the case without pathological characteristics.
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It is important to say that if the distance between the pdfs was not taken
into consideration inside the cost function, the values obtained to the jitter mea-
sures would be: JitterRel = 0.50%, JitterAbs = 2.4404e − 05 s, JitterRAP = 0.30%
and JitterPPQ55 = 0.31% and in this case the distance between the pdfs would
be a little bit greater. As a way to verify what happens when a sound is synthe-
sized considering these optimal values of the parameters, a voice signal has been
simulated with the optimal values of the parameters. The experimental signal
(exper1.wav) and the corresponding optimal simulated one (simulated1.wav),
in the same link presented before for all simulations.

5.2.2. The second case considered is a voice signal from a woman with paralysis
of the vocal folds.

After solving the inverse stochastic problem, the optimal values obtained
were: aopt = 1050, bopt = (1.5πfp, fp = 226Hz and ξopt = 0.4. Table 3 shows
the values of jitter calculated for the real voice and for the simulated voice, after
solving the inverse problem. In this case, the value obtained for the bandwidth
parameter is ε = 0.96.

Jitter Experimental Simulated
JitterRel 3.24% 3.40%
JitterAbs 1.44e− 04 s 1.42e− 04 s
JitterRAP 2.03% 2.00%

JitterPPQ5 2.05% 2.45%

Table 3: Jitter values for a female production of a vowel /a/, with a pathology

.

Figure 7 shows probability density functions fS(. ; aopt, bopt, ξopt) and fR (sim-
ulated and experimental). It is important to note the difference between the
values obtained for jitter, but mainly showing that it is possible to solve the
inverse stochastic problem even considering a pathological case.

15



In this case, the pathological one, the results are better for the distance
between the values of jitter for the experimental and simulated signals than
those obtained for the normal voice.

Figure 7: pdf of the random fundamental frequency corresponding to a real voice (solid line)
and corresponding to the simulated for the optimal values of the parameters (dotted line) in
the case without pathological characteristics.

In the normal case or in the pathological case, the value of ε is high. It
shows that it is not directly related to the pathology, but to the quality of the
synthesized sound.

6. Conclusions

A stochastic model has been proposed using three control parameters for
generating jitter considering a mechanical model for producing voiced sounds.
Some pathological cases have been generated and the model has been validated
considering an inverse stochastic problem to identify the parameters. With three
control parameters more possibilities of different sound are obtained, including
different levels of jitter and, mainly, it is possible to control the quality of the
synthesized voice. The inverse stochastic problem that is solved to identify pa-
rameters of the model uses different measures of jitter and also the distance
between probability density functions, showing that with more measured fea-
tures the voices synthesized are more similar of the corresponding experimental
voices. A pathological case caused by an unilateral paralysis of the vocal folds
has been considered and, even in this case, the parameters of the model has been
identified. The bandwidth parameter has been used as a measure of quality of
the synthesized voice and it has also been considered when the inverse problem
has been solved.
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