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Abstract

We present a new method for inverting ocean surface currents from beam-

forming HF radar data. In contrast with the classical method, which inverts

radial currents based on shifts of the main Bragg line in the radar Doppler spec-

trum, the method works in the temporal domain and inverts currents from the

amplitude modulation of the I and Q radar time series. Based on this principle,

we propose a Maximum Likelihood approach, which can be combined with a

Bayesian inference method assuming a prior current distribution, to infer values

of the radial surface currents. We assess the method performance by using syn-

thetic radar signal as well as field data, and systematically comparing results

with those of the Doppler method. The new method is found advantageous for

its robustness to noise at long range, its ability to accommodate shorter time

series, and the possibility to use a priori information to improve the estimates.

Limitations are related to current sign errors at far-ranges and biased estimates

for small current values and very short samples. We apply the new technique

to a data set from a typical 13.5 MHz WERA radar, acquired off of Vancouver

Island, BC, and show that it can potentially improve standard synoptic current

mapping.
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1. Introduction1

In the past four decades, High Frequency (HF) radars have routinely been2

used to monitor ocean surface currents in coastal regions (see, e.g., the reviews3

[1, 2]) and, more recently, to estimate other sea state parameters (see the re-4

cent review in [3, 4, 5]). HF radars take advantage of two specific physical5

mechanisms occurring in the HF electromagnetic (EM) wave regime, namely6

the over-the-horizon propagation of EM surface waves, for a vertically polarized7

electric field, and the dominance in the backscattered signal of a single resonant8

component of the ocean wave field, a process known as “Bragg scattering”. The9

estimation of ocean surface currents along the radar looking direction (referred10

to as “radial surface currents”) is typically based on identifying the frequency11

shift caused by the current in the backscattered Doppler spectrum to the well-12

defined Bragg frequency line. The performance of this estimation, in terms of13

accuracy, reliability, achievable range, and spatial resolution, depends on several14

parameters related to the radar system (e.g., carrier frequency, antenna system,15

integration time, emitted power), the environment (e.g., sea state, Radio Fre-16

quency Interferences (“RFI”), or a combination of both (signal-to-noise ratio17

(“SNR”) ).18

Even though the physics underlying the estimation of ocean surface cur-19

rents through Bragg scattering has been well understood for a long time, we20

show in this paper that the processing of the radar signal can still be improved.21

To this effect, we propose a new non-spectral estimator that can recover (or22

invert) radial currents from complex radar time series, based on a Maximum23

Likelihood Bayesian optimization approach. The main principle of the new esti-24

mator is that, in the HF regime, ocean surface currents cause a slow amplitude25

modulation of the real and imaginary parts of the backscattered radar signal26

which, depending on the level and nature of the environmental noise affect-27

ing the data, may in some cases be easier to identify than a shift in the main28

spectral peak in the Doppler spectrum. Additionally, the estimation based on29

the amplitude modulation can be improved by resorting to Bayesian inference,30
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in which an a posteriori probability distribution is derived for the estimated31

parameter (here the radial current), given the observations and some a priori32

information. The estimation then results from maximizing the likelihood of the33

a posteriori probability distribution (i.e., minimizing errors). The introduction34

of a priori information on radial surface currents reduces the undesirable oc-35

currence of outliers and the dispersion of the estimates. As a result, with the36

new estimator, shorter time series of radar signal can in principle be used to37

achieve a specified confidence interval on the inverted currents, than with the38

Doppler-based estimation. These properties of the new estimator will be made39

clear in the paper.40

In physical studies of ocean surface currents inverted from HF radar data41

based on the standard Doppler method, the time scales considered are typically42

on the order of 2 to 60 minutes, depending on radar frequency, the antenna sys-43

tem (compact antenna or large arrays), and signal-to-noise ratio. The selected44

observation time results from a trade-off between the conflicting requirements45

of using a large enough integration time to accurately compute the spectra46

and achieve sufficient resolution on the currents, and a short enough time to47

capture the temporal variability of mesoscale oceanic features. A number of48

studies of ocean surface currents at such spatial scales have shown that an in-49

tegration/observation time on the order of 20 minutes is in general adequate50

to characterize most classical patterns of background oceanic currents, such as51

rapidly evolving eddies, tidal and subtidal fluctuations, and the ocean response52

to a changing wind stress (see references in [3, 4]). However, for some emerging53

applications, such as the early detection of tsunamis (e.g. [6, 7, 8]) and particu-54

larly the non-seismic tsunamis (e.g., meteotsunamis, landslide tsunamis), which55

have shorter wavelengths, a shorter integration time is required to properly cap-56

ture the signature of such events in ocean surface currents, whose typical period57

is on the order of a few to a few tens of minutes [9]. Other applications such58

as the prediction of Lagrangian transport in oil spill tracking (e.g., [10]), the59

distribution of plankton blooms in ecological systems ([11]), or the identifica-60

tion of small-scale coherent structures (e.g. [12, 13]), while not restricted to,61
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would clearly benefit from a higher temporal resolution in the inverted surface62

currents. The reliable estimate of small magnitude surface currents varying at63

minute temporal scales would also make it possible observing infragravity waves,64

through the measurement of their orbital motion, which have a typical period65

of 30 sec to a few minutes ([14]). Such waves, which are generated and grow in66

parallel with large storm systems, are key contributors to the coastal flooding67

and erosion such storms cause upon landing.68

Estimating the Bragg frequency shift in the time domain is not new, and sev-69

eral attempts have been made in the literature to carry it out using non-spectral70

parametric methods (see [29] for a comprehensive review). Kahn [30] studied71

the rapid variations (at the sub-minute time scale) of oceanic HF backscattered72

signal in the context of target detection and sea clutter suppression. He ob-73

served amplitude modulations of the HF radar time signal (his Figs. 2 and74

3), which he attributed to velocity variations of ocean waves. He then pro-75

posed tracking short term variations of the main frequency around the Bragg76

line via an autoregressive, low-order linear, prediction model, which he showed77

predicted well the observed modulations of the radar signal. This made it pos-78

sible demodulating the radar signal and discriminating the target, by filtering79

out the rapid variations of the Bragg peak. An interesting application of this80

for surface current estimation at a rapid time scale is the interpretation of the81

shifted Bragg frequency in terms of the complex roots of the prediction-error82

filter on the unit circle. The idea of using an autoregressive approach in the83

time domain for improving the estimation of surface currents was later applied84

by [31]. An instantaneous Bragg frequency, calculated on short samples (25685

points), was obtained through the coefficient of the autoregressive model and86

the resulting estimated current was shown to be more realistic, in the sense that87

it did not suffer from rapid non-physical fluctuations in time, such as observed88

with the Doppler approach. This technique has no physical basis or constraint89

other than that the difference between the positive and negative Bragg peak90

frequencies must be twice the Bragg frequency. Another method dealing with91

instantaneous variations in the Bragg peak frequency was the Instantaneous-92
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Filtering technique proposed by [32], who used it to identify and remove the93

frequency modulation due to the ocean variability. Our probabilistic approach94

belongs to the same family of parametric non-spectral techniques, as it accu-95

rately estimates instantaneous frequencies. Its main difference in purpose with96

these earlier approaches, however, is that it is not based on a filtering techniques97

but instead constrains the signal to match a physical (albeit simplistic) analyt-98

ical model, namely the first-order Bragg theory, while other methods proposed99

earlier were entirely empirical. Another important feature of the new method100

is the possibility to incorporate a priori information in the current estimation.101

We did not yet perform a systematic comparison of our method with the earlier102

alternative methods for estimating radial surface currents; this task will be left103

out for future work.104

In this paper, in Section 2, we first review the classical spectral estimation105

method and summarize its main features and limitations. In Section 3 we in-106

troduce a key simplified representation of the radar signal, within the frame of107

first-order Bragg theory, which in Section 4 naturally leads to the formulation108

of the new estimator of radial surface currents. The general performance of the109

estimator is then assessed in Sections 5 and 6, first on the basis of synthetic110

radar data. In Section 7, the new method is finally applied to an actual data111

set of HF data, recently acquired by a WERA radar system installed in Tofino112

(BC, Canada) to monitor ocean surface currents off of Vancouver Island. Based113

on a few test cases, we show that the new method has the potential of both114

better capturing the variability of surface currents at short time scales and ex-115

tending the spatial coverage of standard synoptic current mapping. A critical116

discussion of the method is provided in Section 8, where its potential limitations117

and improvements are presented.118

2. A review of the classical estimation method119

Crombie [15] first identified the main principle underlying the estimation of120

ocean surface currents on the basis of HF radar data and, subsequently, Barrick121
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[16, 17, 18, 19] provided its theoretical foundation. The latter relies on Rayleigh-122

Rice’s perturbation theory for a scattered electromagnetic field, which is valid123

when the vertical scale of elevation is much smaller than the radar wavelength.124

In the context of ocean remote sensing, this theory is commonly referred to as125

“Bragg scattering”, due to its formal similarity with the diffraction mechanism126

occurring in crystalline solids.127

To the first-order in ocean wave steepness, the dominant contribution to the

backscattered radar field is associated with an ocean wave of specific wavelength,

of vector wavenumber KB , referred to as the “Bragg wave”. This wave is defined

by the resonant condition KB = −2K0, where K0 is the horizontal projection

of the EM wave vector. At grazing incidence, the Bragg wave has half the

radar EM wavelength and propagates in either direction along the radar looking

direction. The resulting backscattered temporal echo (i.e., the radar signal) is

affected by a Doppler frequency shift proportional to the celerity of the Bragg

wave. Assuming purely gravity waves in deep water, the resonant condition

yields the well-known expression of the Bragg (circular) frequency,

ωB = 2π

√
gf0
πc0

(2.1)

in which f0 denotes the radar frequency and c0 is the celerity of light in a128

vaccum.129

On this basis, the so-called backscattered Doppler spectrum σ(ω) is defined

as the average normalized radar cross-section per unit bandwidth. Within the

framework of first-order Bragg theory applied to a random sea surface, in the

absence of a current, Barrick [16, 17, 18, 19] derived its expression as,

σ(ω) = 26πK4
0

{
Sd(+KB) δ(ω − ωB) + Sd(−KB) δ(ω + ωB)

}
, (2.2)

where Sd is the directional (non-symmetrical) wave energy density spectrum and130

the Dirac δ functions represent two spectral lines at plus or minus the Bragg131

frequency.132

In the presence of a stationary surface current of velocity U , the two Bragg

lines are translated in frequency by a value ωc, resulting from the additional
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Doppler shift caused by the current advection in the radar looking direction.

Discarding the sign at this stage this is defined by,

ωc =
4π |Ur|
λo

, (2.3)

where Ur = U · R is the radial surface current, that is the component of the

current along the radar looking direction, and λo the radar wavelength. As was

shown in [20], this result is exact to the first-order in wave steepness when Ur

is the vertically-averaged current over a surface layer of thickness λo/(2π). The

first-order Doppler spectrum in the presence of a current therefore reads,

σ(ω) = 26πK4
0

{
Sd(+KB)δ(ω−ωB+εcωc)+Sd(−KB)δ(ω+ωB+εcωc)

}
, (2.4)

where εc = ±1 is the sign of the additional Doppler shift induced by the current,133

depending on whether it is flowing towards (εc = +1) or away (εc = −1) from134

the radar. Measuring the frequency shift ωc, between the actual and theoretical135

values of the Bragg lines in the radar Doppler spectrum, allows inverting for the136

algebraic value of the radial current Ur, using Eq.(2.3).137

As this is well-known and not the object of this paper, we will not bela-138

bor here the main steps of radar signal processing, which make it possible to139

transform the backscattered electromagnetic field on the antenna system into140

a complex electric signal resolved, in both range (R) and azimuth (Φ), over a141

grid of “radar cells” defined on the sea surface. We will refer to, e.g., [21] for a142

review of the main techniques underlying the operational use of HF radars and143

their features and limitations.144

In the following, s(t) refers to the complex time series of processed backscat-

tered radar signal measured in a given radar cell, located at a specific range R

and azimuth Φ. Within a calibration factor, the Doppler spectrum of this signal

is given by,

σ(ω) = lim
T→+∞

1

T
〈

∣∣∣∣∣
∫ +T/2

−T/2
eiωts(t) dt

∣∣∣∣∣
2

〉, (2.5)

where 〈·〉 denotes an ensemble average, which can be computed as the mean over145

successive incoherent samples. The Doppler spectrum is easily calculated via146
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a Fast Fourier Transform, which can be applied to the measured backscattered147

signal either before or after it has been processed in azimuth by a beam-forming.148

In the classical technique of estimating radial currents based on measuring the149

shift of the main Bragg lines, according to Eq. (2.4), the order in which these op-150

erations are performed is not important. However, for the new method proposed151

here, which is based on time series of range-azimuth resolved radar signal, it is152

necessary that the azimuthal processing occur first, that is before any Doppler153

processing. Note that this implies that the new method cannot be applied to154

data from compact radar systems, where the azimuthal resolution is achieved155

in the frequency domain, and its applicability is thus limited to radar systems156

using beam-forming techniques.157

Defining the accuracy of the radial current estimates is a delicate matter,158

which requires both physical and radar processing considerations. This accu-159

racy is usually related to the width of the Bragg peak, which is controlled by160

two main phenomena. The first one is the broadening of the main Bragg line161

du to signal modulations by long waves, resulting from induced orbital cur-162

rents. The second one is the effect of the finite integration time T used in Eq.163

(2.5), which results in a frequency resolution ∆ω ∼ 2π/T and a broadening164

by the same amount of the theoretical Dirac δ function for the Bragg spectral165

line. For short integration times, the second phenomenon, that is the finite166

frequency resolution, is the main limiting factor, yielding a principal resolution167

of the estimated radial currents of ∆Ur = λo/2T . In fact, when estimating the168

Bragg peak frequency by the centröıd method (i.e., taking the barycenter of the169

Doppler spectrum over a few points surrounding the maximal spectral line), one170

can achieve a somewhat better accuracy than the FFT frequency resolution. As171

was shown in [22] (see Eqs. (21-23) and the corresponding discussion), the rms172

error on the peak frequency is the result of a compromise between the frequency173

resolution ∆ω, the number of spectral lines within the half-power peak, and the174

number of incoherent samples used to form the Doppler spectrum. Another im-175

portant factor impacting the accuracy of current estimates is the noise level [23].176

In operational conditions, the observation time required to achieve the afore-177
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mentioned accuracy can be larger in order to produce a sufficient SNR (i.e.,178

the ratio of the main Bragg line peak power to the mean background power).179

However, the sample size cannot be taken arbitrary large as one must ensure180

stationarity of the sea state within the integration time (otherwise the accuracy181

could be reduced, e.g., by tidal variability). The choice of the observation time,182

hence, results from a compromise made between several conflicting requirements183

and corresponding parameters: update rate of the current estimation, effective184

accuracy, stationarity of sea state, and noise level.185

Commercial software available in modern radar systems, such as WERA’s,186

use complex and highly optimized algorithms to resolve the backscattered sig-187

nal as a function of range and azimuth, which eliminate RFIs, select the Bragg188

lines of the radar data, and apply variance reduction techniques to the Doppler189

spectrum calculation [24, 25, 26, 27, 28]. Such optimizations are specific to190

the implemented algorithms and, hence, it would be difficult to make a gen-191

eral comparison between the performance of the new proposed method and192

the best available operational surface current measurement systems based on193

a spectral approach. Therefore, in the context of this study, we will only per-194

form a theoretical comparison between the two signal processing methods using,195

for the spectral approach, a basic, non-optimized, algorithm, referred to as the196

“Doppler Method” (DM). In the DM, only the Bragg peaks in the radar spec-197

trum that are larger than some threshold SNR are retained for the estimation of198

the current-induced Doppler shift, ωc. In addition, an independently estimated199

maximum value of the radial current that can be reasonably expected to occur200

at the considered site is used to restrict the search domain for the shifted Bragg201

lines. These two conditions reduce the number of faulty estimates of the radial202

current, but usually yield incomplete current maps, having lacunary data at203

the most distant ranges. In the quantitative applications presented throughout204

this paper, the maximum current was set to 80 cm/s, unless stated otherwise;205

and the radial current magnitude was estimated from the mean position of the206

positive and negative maximal spectral lines (defined from a 3-point barycenter207

calculation around the maximal peak), whenever the two peaks have a SNR > 3208
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dB, or the most energetic peak otherwise.209

3. Approximate expression of the complex radar signal210

Applying first-order Bragg theory to the backscattered signal amplitude,

rather than to its Doppler spectrum, the complex radar signal can be approxi-

mated in each radar cell by,

s(t) = A−e−i(ωB−εcωc)te−iϕ
−

+A+e+i(ωB+εcωc)te−iϕ
+

, (3.6)

for some positive coefficients A± and random phase shifts ϕ±, with,

s(t) = s1(t) + i s2(t), (3.7)

where s1 and s2 denote the real and imaginary parts of the complex radar signal,211

originating from the “I” and “Q” channels of the receiver.212

Note that, in the following analysis, it will not be necessary to know the213

detailed expressions of coefficients A±, in terms of sea state, radar system, and214

coordinates of the considered radar cells, but instead only their ratio, A+/A−.215

It should be pointed out that the model (3.6), selected to represent the backscat-216

tered time series of radar signal, is highly idealized as it ignores some physical217

effects, such as second-order components in Bragg theory, and the variability218

of the surface current within each grid cell (which may become important at219

far-ranges, where the azimuthal extent of radar cells is larger). However, we220

will show in the following that this simplified model is sufficient to achieve a221

good estimation of radial surface currents and, in Section 8, we provide some222

justifications for why these effects can be ignored.223

We first illustrate the principle of the new current estimation method in a

simple way, by considering the particular case of, εc = 1, A+ = A− = A, and

ϕ+ = ϕ− = ϕ, which for instance occurs when the two Bragg lines are of equal

magnitude, yielding,

s1(t) = 2A cos(ωct− ϕ) cos(ωBt)

s2(t) = 2A sin(ωct− ϕ) cos(ωBt),
(3.8)

10



which represents periodic oscillations of the radar signal components at the224

known Bragg frequency, modulated in amplitude by another oscillation caused225

by the unknown Doppler frequency shift ωc. The principle of the new current226

estimation method is that the Doppler shift ωc can be inferred from this ampli-227

tude modulation, from which the radial current |Ur| can then be calculated with228

Eq. (2.3) without having to compute the radar Doppler spectrum. Hence, while229

the classical estimation of radial currents based on the Doppler spectrum takes230

place in the frequency space, requiring a spectral analysis, the new estimator231

proposed here detects the amplitude modulation of the radar signal directly in232

the time domain. Key advantages of this approach, as we shall see, are a shorter233

integration time than required to compute a meaningful Doppler spectrum and234

a greater robustness of the results (i.e., the inverted currents) to noise.235

Next, Eq. (3.8) is generalized, albeit in an approximate manner, to the case

of arbitrary amplitudes A± and phases ϕ±. As detailed in Appendix, whenever

ωc � ωB , the following are good approximations of s1 and s2 in the general

case,

s1(t) ' s̃1(t) = α cos(ωB(t− t1)) cos(ωc(t− t1))

s2(t) ' s̃2(t) = α cos(ωB(t− t2)) cos(ωc(t− t2))
(3.9)

where the reference times (t1, t2) and the amplitude α are defined as,

t1 = t(smax1 ), t2 = t(smax2 ), and

α = max(s1, s2), with smax1 = max(s1); smax2 = max(s2)
(3.10)

i.e., the time and magnitude of the maxima of s1 and s2, respectively.236

Eqs. (3.9) for the I and Q signals can be used to estimate the Doppler shift237

ωc and, in turn, the absolute value of the radial surface current, through the238

estimation of the amplitude α of an observed time series of complex backscat-239

tered signal s(t), by way of a Least Square Method (LSM); importantly, this240

estimation does not require a priori knowledge of any other parameter, since241

the reference phases (ωct1, ωct2) and α all follow from Eq. (3.10).242

We define the normalized discrepancy D between the actual signal s from
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Eq. (3.6) and its approximation s̃ = s̃1 + i s̃2 from Eq. (3.9) as,

D(s) =
‖s− s̃‖2

‖s‖2
, with ‖s‖2 =

1

T

∫ T

0

|s(t)|2 dt, (3.11)

the mean square norm of the radar signal over an integration time T . With this

normalization, D only depends on the ratio of amplitudes of the positive and

negative Bragg lines, i.e., parameter,

ρ =
min(A−, A+)

max(A−, A+)
(3.12)

and the relative phase shift,

ϕ = ϕ+ − ϕ− (3.13)

For given integration time T and Doppler frequency shift ωc, D can be243

evaluated in a systematic manner by inspecting the complete (ρ, ϕ) domain.244

One can numerically show that the quality of the approximation is excellent245

when the respective amplitudes of the positive and negative frequencies are246

close to each other (ρ ' 1) regardless of their relative phase ϕ, but deteriorates247

as the amplitude ratio becomes smaller. This is consistent with the fact that an248

amplitude modulation can only be generated by the interference of two opposite249

frequencies.250

In the presence of environmental noise, the evaluation of the amplitude pa-

rameter α with Eq. (3.10), through the maximum of the signal, becomes less

accurate as noise can cause arbitrary high spurious values in the radar signal.

In this case it becomes advantageous to rely on a time average over T , pro-

vided T � Tc = 2π/ωc. Indeed, since ωB and ωc have very different orders of

magnitude, their time-average (i.e., mean square norm) is simply,

1

T

∫ T

0

cos2(ωBt) cos2(ωct)dt '
1

4
, (3.14)

yielding,

α '
√

2 ‖s‖ . (3.15)

Fig. 1 shows an example of fitting the approximate Eq. (3.9) to idealized I251

and Q signals (Eq. 3.6), for 256 point samples (T = 66 s), in the presence of a252
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(a) (b)

Figure 1: Time series of I and Q radar signals over a T = 66 s duration sample, for U = 0.25

cm/s, ϕ = 2π/3, and: (a) A± = 1 (ρ = 1); (b) A+ = 2, A− = 0 (ρ = 0). The blue

curves are the actual signal form first-order Bragg formula (Eq. 3.6) and the green curves its

approximation (Eq. (3.9))

Ur = 0.25 cm/s current, for a relative phase shift ϕ = 2π/3 and two extreme253

values of the amplitude ratio: ρ = 1 (optimal case), and ρ = 0 (unfavorable254

case), in Figs. 1a,b, respectively. The optimal value of ωc is found by applying255

a standard LSM to the joint signals (s1, s2). The figures show, as expected,256

a perfect reconstruction in the first case but, even in the second case where257

there is no amplitude modulation, the model still captures well some of the258

main signal oscillations,which occur at the combined frequency ωB +ωc. This is259

made possible by the joint use of the I and Q signals, which imposes additional260

constraints on the relative phases and therefore on the value of ωc.261

The sign εc of the Doppler shift and, hence, the radial current direction

(towards or away from the radar) can also be recovered by combining the signal’s

real and imaginary part estimates. Rewriting the approximation s̃ = s̃1 + i s̃2

in terms of complex exponentials and comparing with the initial expression of

s in Eq. (3.6), we obtain a set of consistency relationships. Thus, for a positive

Doppler shift (εc = +1), the complex function s̃ should not contain any factor

13



e−iωct, which implies,

CA = A−e−i(ωB−ωc)t1 + iA+ e−i(ωB−ωc)t2 = 0

CB = A−ei(ωB+ωc)t1 + iA+ ei(ωB+ωc)t2 = 0
(3.16)

Likewise, for a negative Doppler shift (εc = −1), s̃ should not contain any factor

e+iωct, that is,

CC = A−e−i(ωB+ωc)t1 + iA+ e−i(ωB+ωc)t2 = 0

CD = A−ei(ωB−ωc)t1 + iA+ ei(ωB−ωc)t2 = 0
(3.17)

Hence, an estimator of the Doppler shift sign is obtained as,

εc = sign(|CD CC | − |CA CB |) (3.18)

which can also be calculated based on radar signal data (see below for examples).262

4. New estimators for the radial surface current263

A new estimator of the radial current Ur can now be defined based on Eq.

(3.9). Assuming the radar signal s(t) is measured at N times tn = n∆t (n =

1, ..., N), i.e., sn = s(tn), and representing it by Eq. (3.6) with the addition of

a complex Gaussian noise of standard deviation σN , we have,

sn = A−e−i(ωB−ωc)tne−iϕ
−

+A+e+i(ωB+ωc)tne−iϕ
+

+ σN (Xn + iYn), (4.19)

where Xn = N (0, 1) and Yn = N (0, 1) are normal random variables with zero

mean and unit standard deviation. We denote by s1,n and s2,n (for n = 1, ..., N)

the associated discrete time series of the signal real and imaginary parts, which

will be separately analyzed. To devise an estimator that is independent of any

calibration factor, we first recenter and renormalize these time series in such a

way that (in view of Eq. (3.15)),

1

N

N∑
n=1

s1,n =
1

N

N∑
n=1

s2,n = 0 (4.20)

and,

1

N

N∑
n=1

s21,n =
1

N

N∑
n=1

s22,n =
1

4
(4.21)
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Next, we use the approximate Eq. (3.9), which we assume to be exact, and

rewrite,

s1,n = s̃1(tn;ωc) + σNXn

s2,n = s̃2(tn;ωc) + σNYn

(4.22)

with,

s̃1(tn;ωc) = cos(ωB(tn − t1)) cos(ωc(tn − t1))

s̃2(tn;ωc) = cos(ωB(tn − t2)) cos(ωc(tn − t2)),
(4.23)

and t1 = t(smax1 ), t2 = t(smax2 ).264

According to this model, the Likelihood L(Ur|sn) of the absolute radial

current, Ur = λoωc/2, given the observations sn is given by,

L(Ur|sn) =
1

(2πσ2
N )N

exp

(
−D(Ur)

2σ2
N

)
(4.24)

where,

D(Ur) =

N∑
n=1

{
s̃1(tn;ω)− s1,n

}2

+

N∑
n=1

{
s̃2(tn;ω)− s2,n

}2

(4.25)

is the discrepancy, defined by Eq. (3.11), of the radar signal with respect to its

approximation, expressed by Eq. (4.23) in the discrete case, for a trial radial

current Ur. This leads to the classical Maximum (log) Likelihood Estimate

(MLE) for the absolute radial current,

Ûr = arg max

(
logL(Ur|sn)

)
= arg minD(sn;Ur) (4.26)

In case of a weak SNR (or, equivalently, large σN ), the MLE can lead to

non-physical estimates of the radial current, due to the occurrence of spurious

maxima in the Likelihood function. This issue can partly be overcome by intro-

ducing a priori information on the distribution of radial currents and resorting

to a Bayesian analysis. In this case, the a posteriori probability P of radial

current, given the observations (which we simply denote by sn, which should be

understood as a generic term), is defined by,

P (Ur|sn) = L(Ur|sn)P0(Ur), (4.27)
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where P0 is the prior distribution, that is the a priori probability distribution

of the radial currents Ur in the absence of present observations. The knowledge

of the prior distribution may result from reasonable physical assumptions or

from prior measurements made over a long integration time. For instance, if

a reasonable estimate of the mean radial current Ur is known, together with

the maximum departure from this value, 2σUr , we may assume a normal prior

distribution,

P0(Ur) =
1√

2πσ2
Ur

exp

(
− (Ur − Ur)2

2σ2
Ur

)
, (4.28)

In this case, the absolute radial current Ur can again be estimated as the most

probable value,

Ûr = arg max (logP (Ur|sn)) = arg min

(
D(sn;Ur)

2σ2
N

+
(Ur − Ur)2

2σ2
Ur

)
(4.29)

Following the standard terminology we will henceforth refer to Eq. (4.29) as265

the “Maximum A Posteriori Probability Estimate” (MAPPE). In the absence266

of any a priori information (other than the maximum physical value Umaxr ), the267

prior distribution is assumed uniform and the MAPPE coincides with the MLE,268

given by Eq. (4.26) on the selected search interval.269

One difficulty of the Bayesian approach is that it requires knowledge of the

noise level standard deviation σN , which is a key parameter of the a posteriori

distribution. However, a good estimate of the noise level can be obtained by

differentiating the signal, which has the effect of damping its continuous deter-

ministic part and enhancing its white noise components. Defining the sequences

∆s1,n = s1,n+1 − s1,n and ∆s2,n = s2,n+1 − s2,n, we have from Eqs. (4.22) and

(4.23):

〈(∆s1,n)2〉 = 〈(∆s2,n)2〉 =
1

4
(ω2
B + ω2

c )∆t2 + 2σ2
N (4.30)

For a small sampling rate (
√
ω2
B + ω2

c∆t < 1 and a small SNR (σN > 1), this

yields the estimate:

σ2
N =

1

4
〈(∆s1,n)2 + (∆s2,n)2〉 (4.31)

Note that the devised MLE and MAPPE estimators from Eqs. (4.26) and270

(4.29), only predict the absolute value of the radial current and not its sign.271
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Hence, once an estimate of the former has been obtained, the corresponding272

sign is inferred from Eq. (3.18). This will be made clearer in applications.273

5. Performance assessment of the MLE274

In the following, we assess the performance of the MLE estimator with re-275

spect to the DM. We do this in a simplified manner since, as pointed out before,276

it is difficult to make a general comparison between these methods as this de-277

pends on many parameters, such as radial current magnitude Ur, integration278

time T , noise level σN , and amplitude ratio ρ. Thus, we only perform basic tests279

of the estimator, to verify that it satisfies some minimal requirements. Here, we280

do not consider the performance of MAPPE, as it very much depends on the281

choice of the prior distribution.282

We first investigated the MLE defined by Eq. (4.26) in the absence of noise

(σN = 0), using a large number N = 128 to 512 of (measured) signal real-

izations defined by Eq. (4.19), and sweeping a wide range of radial current

magnitude Ur, with random phases ϕ± and various amplitude ratios ρ. Us-

ing the characteristics of the Tofino WERA HF radar, we performed Monte

Carlo (MC) simulations to systematically investigate the current estimate bias,

∆Ur = 〈Ûr〉 − Ur, for time series of duration T = (i) 33 s (128 points); (ii) 66

s (256 points); and (iii) 133 s (512 points). This bias was found to have little

dependence on the value of ρ, to be approximatively linear for small currents,

∆Ur ' α(Ur0 − Ur), Ur ≤ Ur0, (5.32)

and nearly zero for large currents, ∆Ur ' 0, Ur ≥ Ur0, where Ur0 is some283

threshold, which is function of T . When Ur, Ur0, and ∆Ur are all expressed in284

cm/s, we found: (i) T = 33 s, Ur0 = 20, α = 0.23; (ii) T = 66 s, Ur0 = 13, α =285

0.55; and (iii) T = 133 s, Ur0 = 5, α = 2.5.286

Next, we systematically evaluated the MLE performance for different levels287

of noise σN , and the mean and standard deviation of the estimated current288

were calculated for each actual value of the current. Fig. 2 shows results of such289
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estimations, made using T = 33 s samples (128 points), of a Ur = 30 cm/s radial290

current in a reasearch interval [0− 100] cm/s, for 3 representative values of the291

amplitude ratio ρ = 0.1, 0.5 and 1, and a noise level σN = 0 to 3.5, compared to292

similar estimations made using the DM. Results show that the DM performance293

strongly depends on the amplitude ratio and drastically deteriorates for small294

values of the latter. The MLE, however, only weakly depends on the amplitude295

ratio and shows a comparable performance to the DM otherwise. Even though296

the MLE is less accurate than the DM in the optimal case (ρ = 1), it is in297

general much more reliable when the level of noise increases. Based on the same298

analysis including noise, for other cases not shown here, we also found that the299

MLE remains an unbiased estimator (∆Ur = 〈Ûr〉 − Ur ' 0) except when both300

the current magnitude and the sample size N are small.301

The quality of the estimation can be greatly improved when using a priori302

information, such as the probability distribution function of surface currents303

(prior distribution ), as is done using MAPPE. This prevents the occurrence of304

outliers and considerably reduces the dispersion of estimated values. However,305

this can also introduce a bias if the prior distribution is centered about an306

erroneous value. Therefore, the use of a priori information must be made with307

caution and rests on the availability of reliable observations (such as the mean308

current estimated in the recent past).309

6. Application of the MLE to synthetic HF radar data310

6.1. Rapidly changing current311

In this first application of the new MLE current estimator, we investigate its

ability to estimate variations of the radial surface current occurring over short

time scale (minutes), such as those induced by the propagation of very long

waves, like infragravity waves or tsunamis. To this aim, we consider a current

defined as a sinusoidal perturbation on top of a constant background current,

Ur(t) = 0.2 + 0.03 cos

{
2π

t

600

}
(m/s) (6.33)
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Figure 2: Standard deviation of radial surface current estimates using HF radar synthetic data

(T = 33 s; N = 128), based on the MLE (red lines) or the DM (blue lines), as a function of

noise level σN . The value of the radial surface current is Ur = 30 cm/s and, in the MLE, the

current is searched within a 0 to 100 cm/s interval; three values of ρ are considered: ρ = 0.1

(thin lines), ρ = 0.5 (medium thick lines) and ρ = 1 (thick lines).

with a period of 600 s, which is typical of infragravity waves or landslide

tsunamis [9]. We simulate the effect of this analytical current onto a synthetic

radar time series generated with the noisy first-order Bragg model of Eq. (4.19),

with A+ = 1 and A− = 0.25. Specifically, following the standard approach (e.g.,

[9]), the Doppler shift caused by this time varying current on the gravity wave

dispersion relationship is simulated by replacing the phase ωc t in Eq. (4.19) by

a current “memory term” taking the form of an integral, i.e.,

eiεcωct → eiεc
4π
λo

∫ t
0
Ur(τ)dτ , (6.34)

and calculating its discrete values for tn (n = 1, ..., N) in Eq. (4.19).312

Based on this synthetic radar signal time series, Fig. 3 shows results for313

the current estimation made with the MLE and the DM in a reasearch interval314

[0 − 80] cm/s, every ∆t = 33 s, by taking sliding intervals of N = 512 points315

(T = 133 s). Two levels of noise are tested for, σN = 0.1 (low noise level) or316

σN = 1.5 (high noise level), whose results are shown in Figs. 3a,b, respectively.317

Results show that the two methods perform equally well for the low noise level318
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(a) (b)

Figure 3: Time series of radial current magnitude estimated with: MLE (red lines), and DM

(black dashed lines); from synthetic HF radar data with: (a) low, and (b) high noise levels.

Sliding intervals of N = 512 points (T = 133 s) are used in the estimation, every 33 sec. The

actual current from Eq. (6.33) is superimposed as blue lines.

(in fact there are little measurable differences between both), but for the high319

noise level, the DM exhibits erratic variations while the MLE keeps following320

the main trend of the actual oscillating current. Hence, in this first test case,321

even for very noisy data, the MLE is able to provide a fairly reliable estimate322

of a slowly varying current.323

6.2. Robustness to wide-band signals324

Here, we assess the robustness of the MLE approach for cases where the325

backscattered radar signal is perturbed by another deterministic broad band326

source. Let us assume for illustration that the available frequency band ([−2,+2]327

Hertz at a 0.26 s sampling rate) is entirely contaminated by a chirp originating328

from another radio source, so that the backscattered signal (4.19) includes an329

additional “noise” of the form n(t) = n0 exp {2iπ(−2t + 2t2/T)}, over an inte-330

gration time T . Such a deterministic signal strongly deteriorates the Doppler331

spectrum, particularly regarding the identification of shifted Bragg lines (Fig.332

4a). By contrast, the log-likelihood function computed with the MLE remains333

robust to this perturbation, showing a well-defined peak near the actual value334

of the radial surface current (Fig. 4b). In the example shown in Fig. 4, the335

signal was generated with A± = 1, σN = n0 = 5, with a radial current value336
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(a) (b)

Figure 4: Doppler spectra (a) and Log-likelihood functions (b) obtained when the backscat-

tered signal is contaminated by an external chirped source over the entire frequency band

([−2,+2] Hertz) for different sample sizes N = (magenta) 128 ; (cyan) 256 and (blue) 512.

The black dashed lines mark: (a) the position of the expected Bragg lines (including the shift

caused by the current); (b) the actual value of the radial current Ur = 0.25 m/s.

Ur = 25 cm/s, and different sample sizes (N=128 or T=33 sec; N=256 or T=66337

sec; N=512 or T=133 sec). The DM is unable to provide a relevant estima-338

tion of the radial current, while the MLE still provides an accurate estimation339

(Ur = 0.217 m/s with N=256 and 0.232 m/s with N=512).340

7. Application to the Tofino WERA HF radar data341

To mitigate the elevated tsunami hazard along the shores of Vancouver Is-342

land, BC (Canada), Ocean Networks Canada (ONC) has been developing a343

Tsunami Early Warning System combining instruments deployed on the seafloor,344

as part of their Neptune Observatory, and a shore-based WERA HF radar in-345

stalled near Tofino (BC) (operational since April 2016). This radar has a carrier346

frequency f0 = 13.5 MHz and can detect and estimate ocean radial currents up347

to a 85-110 km range, depending on sea state as propagation losses increase with348

sea surface roughness. The radar sweep area is outlined in Fig. 5 and is cov-349

ered by a grid of radar cells, within which the received radar signal is averaged.350

There are 70 available cells in the range direction, with a radial step ∆R = 1.5351

km, for 121 sectors in the azimuthal direction, with angular opening ∆φr = 1352

deg. The detection sector of the sweep area is 120 deg, implying that cells are353
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1.48 km wide at a 85 km range and narrower closer to the radar (cell area:354

∆S = R∆R∆φr increases with range). The orientation of the radar array of355

12 antennas (275 deg. from N, clockwise; centered at 49◦ 4’ 24.82” N, 125◦ 46’356

11.55” W) is such that one side of the sweep area boundary is nearly parallel to357

the coastline southeast of Tofino, and the array length (110 m) allows for an ap-358

proximately 12 degree azimuthal resolution in the center of the sweep area, with359

a coarser resolution of about 20 degree near the edges of the scanned sector. In360

the beam forming algorithm, since the radar signal is processed for overlapping361

angular windows, surface currents can be estimated in a larger number of radar362

cells, with a 1 deg step size in azimuth. The different azimuths will be referred363

to by their number starting from the East.364

We obtained a large amount of raw radar signal recorded by the Tofino365

HF radar system, at a sampling rate ∆t = 0.26 s, and processed it in range366

and azimuth using software provided by Helzel Messtechnik GmbH (the radar367

vendor), to produce time series of complex backscattered signal s(t) within each368

radar cell. No further processing was applied to the raw signal, in contrast369

with algorithms implemented in the WERA radar system, which is based on370

the spectral approach and applies a RFI elimination scheme in the spectrum371

computations. Within the available data set, a few complete days of records372

(referred to by their day number in year 2016) were processed, that represented373

different oceanic conditions; only a few generic examples are presented here. The374

basic recording format for the WERA coherent radar time series is the so-called375

“usort” file, which consists of a T = 33 sec duration sequence of N = 128 points376

at the said sampling rate. An example of 2 usort sequences (real and imaginary377

parts) is shown in Fig. 6. In the following examples, as in the previous section,378

we therefore consider integer multiples of these building blocks, by concatenating379

successive usort files (that is N = 128, 256, 512 points, etc).380

Figure 6 shows examples of directly fitting the approximate backscattering381

model of Eq. (3.9) to radar signal time series s(t) acquired at different ranges382

for short duration samples (T = 66 s). While a nearly perfect match is obtained383

at short range (gate 7; 10.5 km), the quality of the fit drastically deteriorates384
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Figure 5: Grid of radar cells covering the Tofino, BC, WERA HF radar sweep area. The

marked ray corresponds to azimuth 100 (40 degrees from boresight).

as range, and hence noise, increases (e.g., range 27; 40.5 km). As we shall see,385

an accurate estimation of the current based on the signal amplitude modula-386

tion, which is still visible at large range, remains possible with the MAPPE387

method, even though the instantaneous variations of the signal are no longer388

well represented.389

The ability of the MLE and MAPPE methods to perform spatial current390

mapping over the entire Tofino HF radar sweep area is assessed next, and results391

are compared to those obtained with the DM of the optimized WERA radar392

system algorithms. For current spatial mapping using the MAPPE method, a393

priori information can be introduced in at least two ways: (i) using a long-time394

series, say 20 min, of radial currents evaluated in the recent past as a starting395

point for the updated estimation based on shorter time series; (ii) evaluating396

radial currents at increasing ranges and using results of a prior range n as input397

for the estimation at range n+ 1. We tested the latter method for several days398

of radar data representing different oceanic conditions, and found results to be399

similar for the different days. Hence, in the following, we only present one day400
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(a) (b)

Figure 6: Data and reconstruction (tilde) with approximate Eq. (3.9) of the real and

imaginary parts of the backscattered radar signal measured by the Tofino WERA HF radar

on August 25th, 2016, for T = 66 s time series (2 usort files; N = 256 points) acquired at

range: (a) 7 (10.5 km); (b) 27 (40.5 km).

of data, which can be considered as generic.401

Figure 7 shows maps of the radial current over the Tofino WERA radar402

sweep area, inverted from data acquired on October 19th, 2016 (around 01.15403

UTC). According to records made at the nearby NOAA buoy 460871, this was404

a day with low wind speed (3 m/s), but strong swell (2.36 m wave height and405

12.9 s dominant wave period). These maps were calculated for two different406

sample sizes: T = 33 s, N = 128 points (Figs. 7a,b) and T = 133 s, N = 512407

points (Figs. 7c,d). Figs. 7a,c show currents estimated with the MLE method408

while Figs. 7b,d show currents estimated with the MAPPE method. Fig. 7e,409

shows currents estimated with by the WERA system optimized software, based410

on the DM, and using the same 133 s sampling time. For MAPPE, values of411

the radial current were estimated by increasing both range and azimuth, us-412

ing a prior normal distribution. Thus, the estimation at range n and azimuths413

(m− 1,m,m+ 1) was used as the central value for the prior distribution when414

estimating the current at range n+1 and azimuth m, with an assumed standard415

1http : //www.ndbc.noaa.gov/station history.php?station = 46087
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(a) (b)

(c) (d)

(e)

Figure 7: Maps of radial surface current Ur (color scale; m/s) inverted from Tofino WERA

HF radar data acquired on Oct. 19th, 2016 (around 01:15 UTC), over the sweep area of Fig.

5, estimated with the: (a) MLE, 1 sample of T = 33 s (N = 128 points); (b) MAPPE, same

sample; (c) MLE, 1 sample of T = 133 s (N = 512 points); (d) MAPPE, same sample; (e)

optimized WERA’s system software based on DM, using 1 sample of T = 133 s (N = 512

points) (courtesy of Helzel Messtechnick GmbH). Black lines in (a,b,c,d) approximately outline

the area of available data in (e).
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deviation σUr = 0.1 m/s (dispersion parameter). The choice of the latter pa-416

rameter was driven by physical considerations on how much the time-averaged417

current (here, over 2 min) can be allowed to vary between two neighboring cells.418

To further reduce errors on estimated values, a moving average was applied,419

over 3 cells in range and azimuth, to the signed (i.e., not the absolute value) of420

the estimated current.421

Fig. 7 shows that, at short ranges, results of the MLE and MAPPE methods422

are consistent with each other, and also with WERA’s system software results.423

Using a short sample duration T = 33 s already yields a good current estima-424

tion with both the MLE and MAPPE methods. At far ranges, however, the425

MLE method yields unrealistic noisy patterns of radial currents, likely due to426

the frequent occurrence of outliers in the estimation. Obvious current sign er-427

rors can be seen in the rapidly alternating and very contrasted red/blue areas428

in the farther ranges. By contrast, the MAPPE method yields a much cleaner429

and more realistic current pattern, with still some obvious sign errors near the430

furthermost corners of the radar sweep area. Such sign errors are possibly re-431

lated to i) the increased antenna side lobes near these corners and the related432

increased currents variability; ii) a smaller SNR in these far ranges, which in-433

creases the dispersion in the estimation; iii) RFIs, which introduce spurious434

positive/negative Doppler frequencies . Since, unlike in the standard WERA435

system software, we did not perform any specific treatment to reduce noise and436

eliminate RFIs, we believe that there is great room for improvement of the prob-437

abilistic method by implementing similar techniques of RFI reduction as those438

used with the DM approach. This will be tested in future work.439

8. A critical discussion440

Based on the above results, we briefly discuss below some features of the441

proposed method, including issues and limitations. Any of these might warrant442

a more in-depth study, but these developments will be left out for forthcoming443

work and papers.444
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8.1. Accuracy445

An important concept in the framework of estimation is accuracy. In the446

classical Doppler-based (DM) estimation, the accuracy of estimated currents is447

characterized by the width of the first-order Bragg peak. With a probabilistic448

method, however, assessing the accuracy of current estimates is far less obvious449

and it is important to first properly define it. What would make sense with450

the proposed method is establishing a confidence interval (CI) of the estimated451

value, that is a given interval around it, with a certain high quantile of the distri-452

bution (for example, a 95% CI). However, in the present context, accuracy very453

much depends on noise level, as seen for instance in Fig. 2, which shows the evo-454

lution of the rms error (standard deviation) of the estimated radial current with455

noise level. Note, even with the DM, the theoretical accuracy of the estimation456

based on the Bragg peak centröıd only holds in the noise free case, while the457

actual resolution deteriorates with increasing noise, as can be seen for instance458

in Fig. 4. However, one point is clear from our results, namely that, similar to459

the DM, the accuracy of the probabilistic method increases with sample size (as460

long as the latter remains smaller than the temporal scale of ocean variability).461

This is illustrated in Fig. 8a, which shows an example of MLE log-likelihood462

function computed for a noise-free signal based on the first-order Bragg model463

Eq. (4.19), with Uc = 0.25 m/s. Here, the main peak of the distribution be-464

comes sharper and more pronounced as the number of samples N is increased465

from 64 to 1,024. Besides N , other parameters affect the accuracy, namely the466

noise level σN (here taken to be 3 times the signal amplitude in Eq. 4.19),467

which can widen and displace the main peak of the distribution, particularly468

for small N values (Fig. 8b), and the Bragg amplitude ratio ρ (the peak of the469

distribution being far less contrasted in the case of a single Bragg amplitude; see470

dashed lines in Figs. 8a,b). To summarize, the accuracy of the MLE method471

can only be rigorously defined as a CI, with respect to some quantile, which472

depends on integration time T (or sample size N), noise level σN , and Bragg473

amplitude ratio ρ. Such a CI can only be derived through a statistical anal-474

ysis, by performing Monte Carlo simulations over many samples covering the475
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(a) (b)

Figure 8: MLE log-likelihood function as a function of trial radial current, for a signal simu-

lated with first-order Bragg model Eq. (4.19): (a) without; and (b) with, noise. The colored

lines correspond to different sample sizes N = (magenta) 64; (cyan) 128; (blue) 512; and (red)

1024, with solid lines corresponding to a Bragg ratio ρ = 1 and dashed lines to a ρ = 0. Black

vertical dashed lines mark the location of the actual current value (0.25 m/s). The maximum

log-likelihood values have been normalized to zero.

range of parameter values; hence, there is no a priori simple estimation of the476

method accuracy. Assessing such accuracy can thus only be achieved through a477

comparison with other instrument measurements and any kind of sea-truthing.478

8.2. Current sign479

A weakness of the MLE method is the more frequent occurrence of sign480

errors in the radial surface current estimates, as the noise level increases. This481

is illustrated by the spotty aspect of the maps of Fig. 7 in the far-ranges and482

can partly be compensated by averaging the sign other several cells, to prevent483

from unrealistic sign changes from one cell to another. Hence, when estimating484

the current in the far-ranges, it is useful to complement the map of algebraic485

radial current by a map of the absolute value of radial currents, which is more486

robust to noise. This shortcoming of the method is one point to be addressed in487

future work and we have some hope that this can be improved upon by applying488

an adequate RFI processing.489

8.3. Second-order spectrum490

The MLE method is solely based on first-order Bragg theory, with second-491

order effects being ignored. It is well known that such effects may become492
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important for higher frequency radars, and in higher sea states (i.e., steeper493

waves). In the Doppler spectrum, second-order effects can produce swell peaks,494

which in some cases can be very close to, and thus contaminate, the main Bragg495

lines. They can also broaden the first-order peaks if the Doppler resolution is496

insufficient. Hence, second-order effects can be an additional source of error in497

the model and thus deserve a specific study, which is left out for further work. In498

the meantime, our preliminary numerical tests, based on numerical simulations,499

indicate that the MLE method is robust to the presence of swell peaks.500

8.4. CPU time501

The estimation of the radial surface currents with the DM is numerically effi-502

cient, as it is based on FFTs which require an O(N log(N)) CPU time, where N503

is the time series length. The probabilistic MLE method requires the evaluation504

of a cost function for every trial current and therefore has a computational cost505

in O(N×Nc), where Nc is the number of trial values used for the surface current506

estimation. The CPU time of the new method, hence, strongly depends on the507

latter, which is related to the accuracy of the estimation, since increasing Nc508

allows better resolving the main peak of the log-likelihood function. However,509

our experience is that Nc can be kept fairly low in practice, so that computa-510

tional time with the MLE remains small, even though it is found slightly larger511

than for the DM (although it only takes a few seconds to generate an entire512

current map on a laptop). Moreover, a good a priori knowledge of the surface513

current search interval helps dramatically reduce the required number of trial514

values and thus greatly accelerate the estimation.515

8.5. Radar types516

As already mentioned, this non-spectral method requires that the range-517

azimuth resolved radar signal be available in the time domain. This precludes518

using data from compact radar systems, where the azimuthal discrimination is519

performed in the frequency domain via a direction finding algorithm.520
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9. Conclusions521

We presented a new probabilistic method to process HF radar data for es-522

timating oceanic radial surface currents, which provides an alternative to the523

Doppler-based method that has been in use for more than four decades. This524

new method is based on identifying an amplitude modulation of the Bragg fre-525

quency in the real and imaginary parts of the complex backscattered radar526

signal. The absolute radial current, which is responsible for this modulation,527

is found using a Maximum Likelihood approach, for a simplified radar signal528

model based on first-order Bragg theory. A refined estimation can be obtained529

with a Bayesian analysis, which uses an a posterior probability distribution of530

the absolute radial current, based on a reasonable prior distribution, with pa-531

rameters estimated from earlier current observations or physical assumptions on532

its range and variability in the considered region. Our investigations so far have533

shown that this probabilistic approach can be a useful complementary method534

for estimating the radial surface currents, particularly in cases of weak SNR535

or for a rapid temporal variability of the current, requiring shorter observation536

times to be captured. Some limitations of the method have been identified, such537

as errors occurring in the estimation of the radial current sign in the most dis-538

tant ranges and biased estimates for small current values. However, we believe539

that this new approach has a promising range of potential applications and thus540

deserves further validation, particularly on the basis of independently measured541

surface currents. This will be the object of future work.542
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10. Appendix551

In the following, we derive the approximate Eq. (3.9) of the radar signal.

Starting from Eq. (3.6) and using some elementary trigonometric relationships,

we can recast s1 and s2 in the form,

s1(t) = α+ cos(ωBt) cos(ωct− ψ+) + α− sin(ωBt) cos(ωct− ψ−)

s2(t) = α+ cos(ωBt) sin(ωct− ψ+) + α− sin(ωBt) sin(ωct− ψ−),
(10.35)

with,

α± =
√

(A−)2 + (A+)2 ± 2A−A+ cos(ϕ+ − ϕ−)

tanψ+ =
A− sinϕ− +A+ sinϕ+

A− cosϕ− +A+ cosϕ+

tanψ− =
−A− cosϕ− +A+ cosϕ+

A− sinϕ− −A+ sinϕ+

(10.36)

If the time series is long enough it is always possible to find some t±1 and t±2

values such that,

ωBt
+
1 = ωBt

+
2 = 0 mod 2π

ωBt
−
1 = ωBt

−
2 = π/2 mod 2π

ωct
±
1 = ψ± mod 2π

ωct
±
2 = ψ± + π/2 mod 2π

(10.37)

and therefore rewrite Eq. (10.35) as,

s1(t) = α+ cos(ωB(t− t+1 ))) cos(ωc(t− t+1 )) + α− cos(ωB(t− t−1 )) cos(ωc(t− t−1 )))

s2(t) = α+ cos(ωB(t− t+2 )) cos(ωc(t− t+2 )) + α− cos(ωB(t− t−2 )) cos(ωc(t− t−2 )),

(10.38)

Eq. (3.9) is exactly recovered whenever α− = 0 or α+ = 0; otherwise, it is

only an approximation that can be used with,

α ' max(α−, α+) =
√

(A−)2 + (A+)2 + 2A−A+ |cos(ϕ+ − ϕ−)| (10.39)

and (t1, t2) = (t+1 , t
+
2 ) if α = α+ or (t1, t2) = (t−1 , t

−
2 ) if α = α−. For

this approximate parametric identification to hold, one needs to verify that
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max(s1) ' max(s2) ' max(α−, α+) and that (t±1 , t
±
2 ) are the actual times of

the maxima of (s1, s2). This has been numerically assessed by verifying that,

∆α = 1− max(α−, α+)

max(s1)
, (10.40)

computed as a function of ϕ = ϕ+ − ϕ− and ρ = min(A−, A+)/max(A−, A+)

is small, and that the product,

P = cos(ωBt1) cos(ωct− ψ+) or P = sin(ωBt1) cos(ωct− ψ−), (10.41)

depending on whether, α = α+ or α = α−, is close to 1.552
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