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The interaction of point-defects with an external stress �eld or with other structural defects is
usually well described within continuum elasticity by the elastic dipole approximation. Extraction
of the elastic dipoles from atomistic simulations is therefore a fundamental step to connect an
atomistic description of the defect with continuum models. This can be done either by a �tting of
the point-defect displacement �eld, by a summation of the Kanzaki's forces or by a linking equation
to the residual stress. We perform here a detailed comparison of these di�erent available methods
to extract elastic dipoles, and show that they all lead to the same values when the supercell of the
atomistic simulations is large enough and when the anharmonic region around the point-defect is
correctly handled. But for small simulation cells compatible with ab initio calculations, only the
de�nition through the residual stress appears tractable. The approach is illustrated by considering
various point-defects (vacancy, self-interstitial and hydrogen solute atom) in zirconium, using both
empirical potentials and ab initio calculations.

I. INTRODUCTION

Point-defects in crystalline solids, such as vacancies,
self-interstitial atoms, solute atoms or their small clus-
ters, play a crucial role in controlling materials prop-
erties and their kinetic evolutions, particularly through
their interaction with other defects, like dislocations, sur-
faces, interfaces, grain boundaries and also other point-
defects. While ab initio calculations give an accurate
description of such interactions at short range, this mod-
eling approach is not tractable to characterize the long-
range part because of the inherent size limitation of these
simulations. For neutral defects, the long range inter-
action is elastic and elasticity theory appears therefore
as a natural modeling approach. A point-defect can be
described within elasticity theory through an equivalent
distribution of point forces.1{3 Of particular importance
is the elastic dipole, a second-rank tensor which corre-
sponds to the �rst moment of the force distribution, from
which one can determine the long range elastic �eld of the
point-defect and calculate its interaction with an external
strain �eld. Extraction of this elastic dipole from atom-
istic simulations, in particular ab initio calculations, al-
lows then to fully characterize and model the point-defect
within elasticity theory. This is essential for upscaling
approaches, where mesoscale techniques are required to
treat long-term evolutions and/or interactions of point-
defects with the complex elastic �elds of various struc-
tural defects, and that must include the necessary infor-
mation from the atomic scale. Accurate elastic dipole ex-
tractions thus allowed sucessful modeling of stress-driven
di�usion4,5 and more generally elasto-di�usion,6,7 or of
sink strength optimization of semi-coherent interfaces.8

Furthermore, their extraction enables to set up �nite-
size correction schemes to obtain the energy of an iso-

lated point-defect from ab initio calculations relying on
periodic boundary conditions.9 However, because of the
small size of ab initio simulations, computation of such
accurate values of elastic dipoles may be challenging.

There is a rather long history of extraction of elas-
tic dipoles from atomistic simulations, mainly using em-
pirical potentials. The Kanzaki method,1,10 based on
the measurement of the defect-induced forces, has been
widely used for vacancies in ionic crystals and various
point-defects in metals.11{16 This approach rely on the
harmonic approximation, which has been found to give
erroneous results for charged vacancy defects12 and/or
when distortions are large. When calculating the elastic
dipole from the Kanzaki forces, one thus needs to check
that these forces correspond to the harmonic regime
or the approach has to be extended to take care of
anharmonicity.13,14 On the other hand, Gillan17,18 popu-
larized the measurement of the elastic dipole components
from the strain derivatives of the point-defect formation
energy. Subsequent uses of this method or similar ones
are numerous, again for defects in both ionics crystals19

and metals.9,20{23 Finally, the elastic dipole value can
be obtained by extracting from atomistic simulations the
displacement �eld induced by the point-defect and by �t-
ting it by the corresponding continuum linear elasticity
solution.24

Most often in the context of ab initio simulations, mea-
surements of elastic dipoles or relaxation volumes employ
only one of the above methods.9,15,23,25{27 A recent paper
by Nazarov et al.28 shows nevertheless a comparison be-
tween the Kanzaki and strain derivatives methods for the
hydrogen impurity in hcp zirconium. The authors found
signi�cant di�erences between the methods, although the
H solute is a rather simple defect that is known to induce
small lattice distortions.29 Clari�cations on the applica-
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bility of the di�erent measurement methods in ab initio

calculations are thus required, even more importantly for
the study of defects creating large distortions, like self-
interstitial atoms. The convergence of the elastic dipole
components with the supercell size is also a point that is
not well established in the literature.

In this article, we �rst review the di�erent possible
approaches to extract elastic dipole tensors from atom-
istic simulations: strain derivatives of the energy, �tting
of the displacement �eld, and computation from Kan-
zaki forces. We then provide a systematic comparison
of the results obtained with these di�erent approaches.
Atomistic simulations relying on empirical potentials are
used for this thorough comparison, as they allow for very
large simulation sizes and high precision in energy, force
and relaxed atomic positions, which is required to as-
sess the conditions under which each approach must be
applied to get consistent results. This is done by consid-
ering the vacancy and various con�gurations of the self-
interstitial atom in hcp zirconium. We �nally discuss the
feasibility of the di�erent methods within ab initio cal-
culations, considering the same point-defects, and the H
impurity in hcp Zr as well. In particular, we show that
the strain derivative method, or conversely the residual
stress method, is the only one that would give a mean-
ingful result for point-defects involving large distortions.

II. METHODS TO EXTRACT ELASTIC

DIPOLES

In this section, we recall the necessary background of
anisotropic continuum linear elastic modeling of point-
defects, so as to introduce the concept of elastic dipole.
All along the theoretical progress, we detail the di�erent
possibilities for their determination into atomistic simu-
lations.

Within continuum elastic theory,1{3 a point-defect lo-
cated at the origin can be represented as a �nite distribu-
tion of point forces fFqg, acting at positions faqg. This
distribution is at mechanical equilibrium, meaning that
there is no force resultant and no net torque

X

q

F
q = 0 ;

X

q

F
q � aq = 0: (1)

The elastic displacement at continuous position R from
the defect is then given by

ueli (R) =
X

q

Gij (R� aq)F q
j ; (2)

where i; j are Cartesian indexes, and summation over
repeated indexes is implicit. Gij (R) is the continuum
anisotropic elastic Green's function of the matrix. For
large distance R, i.e. R = kRk � kaqk, a Taylor ex-
pansion of the Green's function can be performed with

respect to the faqg as:

ueli (R) =
X

q

[Gij (R)� Gij;k (R) a
q
k + o(kaqk)]F q

j ;

= � Gij;k (R)Pjk + o(kaqk); (3)

with Pjk =
X

q

F q
j a

q
k: (4)

The zeroth order term in Eq. 3 vanishes because there is
no force resultant (Eq. 1). The notation \; k" stands for
the operator @=@xk and Gij;k(R) is thus the �rst deriva-
tive of the Green's functions. The tensor Pjk is the elastic
dipole of the defect, de�ned as the �rst moment of the de-
fect force distribution (Eq. 4). This tensor is symmetric
since the defect has no net torque (Eq. 1). Higher order
terms in Eq. 3 would correspond to higher order mo-
ments of the defect force distribution (multipoles), and
are neglected here.
Eq. 3 provides a �rst way to determine the elastic

dipole tensor in atomistic simulations. After the struc-
tural relaxation in a point-defect calculation, the dif-
ference between �nal and initial atomic positions gives
atomistic values for the displacement �eld fuat(R)g at
any atomic position R. The �rst derivative of the
anisotropic elastic Green's functionGij;k (R) can be com-
puted from the elastic constants Cijkl of the bulk ma-
trix, e.g. following the numerical scheme provided by
Barnett.30 A �tting of the atomistic displacement �elds
using the elastic solution of Eq. 3 will thus allow for an
identi�cation of the defect elastic dipole. Such an ap-
proach has been followed within empirical potential sim-
ulations by Chen et al.,24 but with the additional con-
straint of isotropic elasticity for the computation of the
�rst derivative of the Green's function.
A second approach emerges when considering the in-

teraction energy between the point-defect located at the
origin, as represented by the �nite distribution of point
forces, and an external �eld of arbitrary source. This
interaction energy is given by31

Eint = �Pij "extij (0) + o(kaqk); (5)

after a Taylor expansion of the external displacement
�eld, and noting again that the force resultant is null.
"extij (0) is the external deformation �eld evaluated at
the defect position. This well-established expression al-
lows computing the interaction of a point-defect with the
strain produced by another defect or with an external ap-
plied strain. It also provides a route to identify the elastic
dipole tensor in atomistic simulations.9,22 Let us consider
a simulation box of volume V , the equilibrium volume of
the defect-free bulk material, containing one point-defect
and submitted to a homogeneous strain "ij . According
to linear elasticity, the energy of the simulation box is

E("ij) = E0 + ED +
V

2
Cijkl"ij"kl � Pij"ij ; (6)

with E0 the bulk reference energy and E
D the unstrained

defect excess energy. We are considering a simulation box
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with periodic boundary conditions to keep the volume V
�nite and to prohibit the presence of any surface. ED

contains therefore a contribution corresponding to the
interaction of the point-defect with its periodic images.
Within linear elasticity theory, this contribution does not
depend on the applied strain "ij . The average residual
stress on the simulation box is thus given by

h�iji = 1

V

@E

@"ij
= Cijkl"kl � Pij

V
: (7)

For simulations carried out with �xed periodicity vectors,
i.e. with "ij = 0, the elastic dipole is proportional to the
homogeneous residual stress

Pij = �V h�iji: (8)

This residual stress corresponds to the stress increase,
after atomic relaxation, due to the introduction of the
point-defect in the simulation box. Consequently, if the
perfect bulk simulation box experiences a non-zero homo-
geneous stress, this contribution must be subtracted from
the residual stress of the defective supercell to identify
the elastic dipole tensor. This is particularly important
for ab initio simulations, where �nite convergence criteria
may lead to non-null stresses for a perfect bulk material
at its equilibrium lattice parameters. Note that Eq. 8 is
to be related to the dipole tensor measurement �rst pro-
posed by Gillan,17,18 where the elastic dipole is equal to
the strain derivative of the formation energy, evaluated
at zero strain. This relation can also be derived by av-
eraging the stress �eld, as predicted by linear elasticity
theory, produced by the point-defect, taking explicitly
into account the periodic boundary conditions.32

Finally, a third numerical route is found if one focuses
on forces and atomic positions around the point-defect.
This corresponds to the Kanzaki force approach,10,13,33

which is a discrete elasticity approach. Kanzaki forces
are de�ned as the additional forces applied to the atoms
in the neighborhood of the defect, so as to produce the
same static displacement �eld as the defect. In the con-
tinuous limit and if the displacements are small, making
the harmonic approximation valid, we have an equiva-
lence between the �nite distribution of point forces fFqg
and Kanzaki's forces. Kanzaki's forces are obtained by
�rst relaxing the simulation cell containing the defect and
by then removing the defect and restoring the perfect
crystal in its vicinity. The Kanzaki's forces are the op-
posite of the atomic forces obtained in this second step,
when the system is kept frozen, i.e. without any relax-
ation. Eq. 4 can be used to compute the elastic dipole
tensor, with faqg the positions of the atoms experiencing
a force. Technical details for its application will be given
in the next section, when appropriate.

III. VALIDATION OF THE DIFFERENT

APPROACHES

We apply in this section the previously described ap-
proaches to obtain the elastic dipole tensors of various

point-defects, modeled through atomic simulations rely-
ing on empirical potentials. These energy models have a
low computational cost and a high precision in force and
atomic position determination, thus allowing for a de-
tailed study without any penalizing limitation on the size
of the system. We �rst present the investigated point-
defects, and then show and discuss the results obtained
with the di�erent de�nitions of the elastic dipole.

A. Studied defects and simulation details

We study here the vacancy and several con�gura-
tions of the self-interstitial atom (SIA) in hcp zirconium.
Both types of point-defects are created under irradia-
tion. Their long-range elastic interaction with the dif-
ferent sinks, in particular the dislocations, controls their
clustering and the kinetic evolution of the irradiation mi-
crostructure. It has thus macroscopic consequences like
irradiation hardening,34 irradiation creep35{38 or irradi-
ation growth.39{41 In this context, an accurate measure
of the elastic dipoles for both vacancy and SIA defects is
of interest. Various ab initio studies9,41{43 showed that
several SIA con�gurations with close energies coexist and
must be considered. The unrelaxed structures of the
studied defects are represented in Fig. 1: the vacancy
(V), and the three most stable SIA con�gurations, i.e.

the basal octahedral (BO), the octahedral (O), and the
basal split (BS) for which we consider the variant aligned
along the [2110] direction.The symmetry, which is con-
served here during structural relaxation, is hexagonal for
V and BO, trigonal for O, and orthorombic for BS. As a
consequence, only the diagonal components of the dipole
are non-null, with three independent components for BS,
and only two for V, BO and O for which P11 = P22 in
a coordinate system with e1 and e2 in the basal plane,
respectively parallel to the [2110] and [0110] directions,
and e3 along the [0001] direction. Those point-defects,
with various relaxation magnitudes and point symme-
tries, cover a wide range of situations.
We select two Embedded Atom Method (EAM) po-

tentials to model Zr, both developped by Mendelev and
Ackland44 and denoted as #2 and #3 in Ref. 44. A
Second Moment Approximation (SMA) potential devel-
opped by Willaime and Massobrio45 is also used and is
referred to as WM1 in the following. All potentials give
reasonable properties for bulk hcp Zr.46 The EAM #2
potential was originally designed to describe the hcp-bcc
transition, but also gives reasonable defect properties. It
accounts for the vacancy-vacancy binding but underesti-
mates stacking fault and surface energies.47 The EAM#3
potential is supposed to be well suited to study defects
in the hcp phase, as some stacking fault energies were
adjusted on ab initio calculations. It has been used for
the computation of the properties of vacancy, SIAs and
clusters.48 However, it does not account for the binding
between vacancies.47 The WM1 SMA potential was also
developed to describe the hcp-bcc transition. It has a
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Vacancy Basal Split

Basal Octahedral Octahedral

FIG. 1. Projection in the basal plane of the di�erent point-
defects investigated in hcp Zr: the vacancy and three SIA
con�gurations. The white spheres represent the bulk Zr atoms
at z = 0, the grey spheres the bulk Zr atoms at z = c=2. The
square represents the vacancy (V), the blue spheres are SIAs
at z = 0 (BO and BS con�gurations), and the yellow sphere
the SIA at z = c=4 (O con�guration).

lower cuto� radius than the two EAM potentials, and is
chosen for discussion purposes.
Atomistic simulations with these many-body poten-

tials are performed on supercells containing up to 12800
atomic sites (i.e. 20 � 20 � 16 hcp primitive unit cells),
which ensures well converged defect energetics and is
su�ciently large to de�ne well-converged elastic dipoles
with any of the previously introduced methods. Note
that periodicity vectors are kept �xed during the struc-
tural relaxations, and also in the eventual additional cal-
culations required for elastic dipole tensor computation.

B. Validation of the residual stress method

We �rst identify the elastic dipole from the residual
stress measured in the simulation box after introduction
of the point-defect and relaxation of the atomic positions
(Eq. 8) using the Virial stress49,50 given by the atomic
simulations. The values obtained for the di�erent point-
defects and using the di�erent empirical potentials are
given in Table I. These values are well converged: no dif-
ference larger than 5 � 10�3 eV is observed when going
from a simulation cell containing 1600 atoms to one with
12800 atoms. To validate the values thus obtained, we
compare the interaction energy of the point-defect with
an applied homogeneous strain, as predicted by the elas-
ticity theory (see Eq. 5) using this elastic dipole, with
the result given by direct atomistic calculations. In these
simulations, the interaction energy is de�ned as

Eint("ij) = EPD
"ij

� Ebulk
"ij

+ Ebulk
0 � EPD

0 ; (9)

with EPD
"ij

and Ebulk
"ij

the energies of the strained defective

and bulk supercells, and with EPD
0 and Ebulk

0 the energies
of the unstrained defective and bulk supercells, respec-
tively. Results of the comparison are shown in Fig. 2
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FIG. 2. Interaction energy between (a) V, (b) BO, (c) O and
(d) BS point-defects and homogeneous applied strains corre-
sponding either to dilatation or pure shear. Filled symbols
are the results of atomistic simulations and straight lines the
predictions of elasticity theory (Eq. 5) using the elastic dipole
deduced from the residual stress (Eq. 8). Data have been ob-
tained with the EAM #3 potential.

for two di�erent deformations: a dilatation ("ij = " �ij)
and a pure shear ("11 = �"33 = " with all other com-
ponents set to zero). A very good agreement is found
between elasticity theory and atomistic simulations for
all investigated defects. The interaction energy predicted
by atomistic simulations starts to deviate from the lin-
ear behavior predicted by elasticity theory only for the
dilatation when the applied strain gets too high, close
to �2%. This therefore validates the measurement of
the elastic dipole tensor from the defect-induced resid-
ual stress in the simulation box. Similar validations can
be found in Refs. 5 and 27. We will thus use the value
obtained from the residual stress as a reference for the
elastic dipole when comparing with other methods.
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C. Displacement �eld approach

We now consider the method identifying the elastic
dipole through the displacement �eld. The elastic dipole
components are obtained from the displacement �eld
fuat(R)g extracted from atomistic simulations through
a least-square �tting using the cost function

f(Pij) =
X

R

kRk>rexcl

R2
�
u
el(R)� uat(R)�2; (10)

with rexcl the radius of a small spherical zone around the
point-defect, so as to exclude from the �tting the atomic
positions where elasticity does not hold. The R2 factor
is meant to account for the scaling of the elastic displace-
ments with the distance R to the defect, i.e. to give a
similar weight to all atomic positions in the �tting. With-
out this R2 penalty, the obtained Pij values are entirely
�xed by the displacements at the neighbor shell bordering
the exclusion zone. Due to the periodic boundary condi-
tions used in atomic simulations, we need to include the
contribution of the defect periodic images into the elastic
displacements fuel(R)g, that are now given by

ueli (R) = �
X

n;m;p

Gij;k (R�Rnmp)Pjk; (11)

with Rnmp = nA1 + mA2 + pA3 the positions of the
supercell periodic images, with n, m and p 2 Z, and
A1, A2, and A3 the periodicity vectors of the super-
cell. Gij;k (R) is computed using Barnett's numerical
scheme.30 The summation involved in Eq. 11 is condi-
tionally convergent and is regularized using the proce-
dure of Cai et al.51 With this, the cost function f can
be accurately evaluated for any trial values of the elastic
dipole Pij and the �tting is realized. We have assumed
in Eqs. 10 and 11 that the point-defect is located at the
origin, but the exact position of the point-defect can also
be included in the cost function to be obtained then from
the least-square �tting.
The resulting elastic dipole tensor components for the

vacancy and the BO and O con�gurations of the SIA are
shown in Fig. 3 as a function of the exclusion zone radius
for the EAM #3 potential. Two di�erent simulation box
sizes are tested, a large one with 1600 atomic sites and a
smaller one with 200 sites. With the largest simulation
box, the choice of rexcl has almost no inuence on the
�nal value of the elastic dipole components, for all defect
types. Numerical values of the Pij for rexcl = 2a are given
in Table I for each defect. In fact, the number of atomic
positions included in the �t, and for which elasticity is
valid, is su�ciently high to avoid issues arising from the
defect core zone. On the other hand, for the smaller sim-
ulation box, the obtained elastic dipole components are
highly sensitive to rexcl, and their convergence with rexcl
cannot be reached. This is especially true for the SIAs,
because of the larger induced distortions. For this small
size of the simulation box, higher rexcl values cannot be
used, as the number of remaining atoms to be included
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FIG. 3. Elastic dipole components P11 and P33 for the va-
cancy, and the BO and O con�gurations of the SIA, obtained
through a �tting on the atomistic displacement, versus the
radius of the exclusion zone rexcl normalized by the lattice
parameter a. The horizontal lines indicate the values deduced
from the residual stress. The simulation boxes used for both
displacement �eld and residual stress approaches contain 1600
(left side) and 200 atoms (right side).

into the �t becomes too small to obtain a meaningful
value of the Pij tensor. This convergence issue prevent-
ing the determination of an appropriate rexcl will become
even more important for complex and larger defects, like
point-defect clusters. This disquali�es the use of this dis-
placement method to obtain elastic dipoles from ab initio

calculations, as the typical simulation box sizes are lim-
ited to a few hundred atoms.

D. Kanzaki force method

We now focus on the Kanzaki force method, that uses
Eq. 4 to obtain Pij . To compute the defect-induced
forces, we follow the procedure given in Refs. 14 and 16,
which is illustrated for a vacancy in Fig. 4. Starting
from the relaxed structure of the point-defect (Fig. 4b),
we restore the perfect lattice in the defect core - e.g. we
add back the suppressed atom for the vacancy case of
Fig. 4c - and then perform a static force computation on
all atoms of the obtained simulation cell. These forces
are used to compute the elastic dipole Pij =

P
q F

q
j a

q
k,
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(a) unrelaxed vacancy (b) relaxed vacancy

(c) zeroth order approx. (d) �rst order approx.

FIG. 4. Schematic illustration of the procedure used for the
computation of the Kanzaki forces in the case of a vacancy
defect. The white spheres correspond to atoms at their perfect
bulk positions, i.e. before relaxation, the white square to the
vacancy defect, and the black spheres to the atoms at their
relaxed position around the defect.

where Fq is the force acting on atom located at aq, as-
suming the point-defect at the origin. The summation
is restricted to atoms located inside a sphere of radius
r1 (i.e. kaqk < r1). As the Kanzaki technique is valid
only in the harmonic approximation, one also needs to
check that the atomic forces entering the elastic dipole
de�nition are in the harmonic regime.14 This is done by
restoring larger and larger defect neighboring shells to
their perfect bulk positions, and computing the forces on
the obtained restored structures (Fig. 4c-d) before de�n-
ing the elastic dipole. The case where n defect neighbor
shells are restored is referred to as the nth order approx-
imation. As the restored zone becomes larger, the atoms
remaining at their relaxed positions are more likely to sit
in an harmonic region. The convergence of the resulting
elastic dipole components with respect to the restoration
zone radius thus enables to evaluate the harmonicity as-
pect.
We �rst consider the zeroth order approximation,

where only the atom corresponding to the point-defect
is restored. Fig. 5 provides the elastic dipole values ob-
tained with the EAM #3 potential for the vacancy and
the three con�gurations of the SIA. Results are shown as
a function of the cuto� radius r1 used for the summation.
This allows to determine the range of the defect induced
forces. For all defects, constant Pij values are reached
for r1 ' 2 - 2:5 a, which corresponds to � 10-13 defect
neighboring shells included in the Pij calculations. The
last forces entering the summation and needed to reach
a � 0:1 eV precision for the Pij elastic dipole are only a

few meV/�A, a small value that requires a high precision
in the force calculation. The rather long-range behavior
of the defect-induced forces is also observed with the two
other empirical potentials. In particular, although the
WM1 potential has a lower cuto� than EAM #2 and #3
potential, it leads to longer-range defect-induced forces.

    −6
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FIG. 5. Convergence of the elastic dipole components with the
cutting radius r1 of the force summation (Eq.4) for the Kan-
zaki method. The elastic dipoles are calculated in the zeroth
order approximation for the vacancy and the BO, O andBC
con�gurations of the SIA, using EAM #3 potential. The hor-
izontal lines indicate the values deduced from the residual
stress method.

This long-range nature of these forces is not speci�c to
hcp Zr as it has also been observed in the case of SIA
defect in bcc iron.16 Note �nally that the Pij values ob-
tained with this zeroth order approximation does not al-
ways correspond to the values obtained by the residual
stress method (Fig. 5): this is especially true for the O
and BS con�gurations of the SIA.

We study now the e�ect of anharmonicity by increasing
the size of the defect restoration zone, going thus beyond
this zeroth order approximation. We use, in the force
summation, a cuto� radius r1 high enough to ensure
convergence with respect to this parameter. The value
needed for this cuto� radius increases with the order n
of the approximation used for the restoration zone. As a
consequence, the precision on the atomic forces also needs
to be increased. As can be seen in Fig. 6a, the vacancy
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elastic dipole components are already well-converged for
the zeroth order approximation, meaning that the har-
monic approximation is valid very close to the defect po-
sition in this case. On the other hand, this is not true
for the di�erent con�gurations of the SIA (Fig. 6b-d).
Converged values are obtained only for restoration zones
extending a few lattice distances from the point-defect
(� 2a). The zeroth order approximation can be some-
times completely wrong. This is the case for instance
for the O con�guration for which the magnitude of the
elastic dipole components are � 50% o� as compared to
the converged values, and the relative magnitude of P11

and P33 is reversed. The BS con�guration presents an
interesting feature, as the size of the necessary restora-
tion zone is � 4a for P11, � 2a for P22 and � 3a for
P33. This thus de�nes the anisotropic dimensions of the
point-defect core zone, which, within an Eshelby's in-
clusion model,52 corresponds to the dimensions of the
principal axes of the ellipsoidal inclusion. Similar behav-
iors are found with the two other empirical potentials,
with a small anharmonicity for the vacancy with WM1
potential. When de�ning the elastic dipoles from Kan-
zaki forces, one therefore needs to adapt the restoration
zone to include the anharmonic region around the point-
defect. As this anharmonic region depends on the defect
and on the material, one cannot choose a priori an ap-
proximation order for the restoration zone, but one needs
to check the convergence of the elastic dipole with the size
of this restoration zone.

E. Discussion

Table I provides the elastic dipole components for all
studied point-defects, obtained with the three di�erent
empirical potentials, and measured by the di�erent tech-
niques. Kanzaki's method values correspond to those
converged with respect to the defect restoration zone size
and to the cuto� radius of the force summation. Dis-
placement �eld values are those obtained with the largest
simulation box, which is su�cient to provide Pij values
converged with respect to the supercell size, as tested by
the residual stress method. The three approaches give
the same results for the elastic dipole tensors of all point-
defects. This con�rms the coherence of the elastic dipole
de�nition and its link to the point-defect stress �eld and
energetics. As an aside, we note that comparison be-
tween the di�erent interatomic potentials for a given de-
fect shows important variations of the obtained elastic
dipoles, with di�erences of several eV and eventually dif-
ferent relative magnitudes between the di�erent dipole
components. Although some properties of the point-
defects were considered in the �tting of these empirical
potentials, they lead to completely di�erent pictures of
the long range elastic �eld induced by these point-defects.
It is therefore di�cult to rely on any of them, and this
motivates the need for ab initio computations to obtain
quantitative estimates of the Pij elastic dipoles.
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FIG. 6. Convergence of the elastic dipole components with the
radius of the defect restoration zone for the Kanzaki method.
The elastic dipoles are calculated for the vacancy and the
BO, O and BS con�gurations of the SIA, using EAM #3 po-
tential. The horizontal lines indicate the values deduced from
the residual stress method. The vertical gray tics indicate the
converged values of the defect restoration radii, corresponding
to the point-defect core zone dimensions.

We now discuss practical aspects of the di�erent meth-
ods which can be used to determine Pij . For the �tting
of the displacement �eld, one drawback is the necessity
to check the sensitivity of the result to the parameter
de�ning the exclusion zone around the defect, and also,
to a less extent, to the initial conditions. But most im-
portantly, the method is not operative for small super-
cells that are typically tractable in ab initio simulations.
On the other hand, the method o�ers the advantage that
the exact position of the point-defect does not need to be
known a priori, since it is determined through the �tting.
This is not true anymore when the elastic dipole is de-
�ned from the Kanzaki forces. The defect position must
then be known so as to properly restore the defect zone
and compute the atomic positions faqg entering in the
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TABLE I. Elastic dipoles of the vacancy (V), of the BO, O and BS con�gurations of the SIA, and of the H solute in tetrahedral
position in hcp Zr. In the chosen coordinate system, with e1 k [2110], e2 k [0110] and e3 k [0001], all tensors are diagonal.
The dipole components have been obtained either by a �tting of the displacement �eld, by the computation of the Kanzaki
forces, or from the residual stress. Results are given in eV, for di�erent empirical potentials, EAM #2 and #3 from Ref. 44,
and SMA WM1 from Ref. 45, and for ab initio calculations. Pij values are obtained using N = 12800 atoms supercells for
empirical potentials (except the displacement method, on 1600 atoms supercells), and from 1=N ! 0 extrapolation for ab initio
calculations.

V BO O BS H

Potential Method P11 P33 P11 P33 P11 P33 P11 P22 P33 P11 P33

EAM #2 Kanzaki �0:67 �0:79 13:8 5:85 11:5 8:30 13:5 14:8 6:6 �

Residual stress �0:65 �0:79 14:0 6:00 11:6 8:36 13:6 14:8 6:6 �

EAM #3 Displacement �5:45 �5:55 11:8 6:15 15:3 16:2 � �

Kanzaki �5:41 �5:51 11:8 6:35 15:6 16:5 13:6 11:6 8:2 �

Residual stress �5:43 �5:51 11:7 6:32 15:5 16:4 13:5 11:6 8:2 �

SMA WM1 Kanzaki �4:28 �4:34 30:2 16:8 24:4 29:3 31:1 29:9 15:5 �

Residual stress �4:27 �4:33 30:5 16:9 24:5 29:5 31:3 30:2 15:6 �

Ab initio Residual stress �5:14 �7:62 17:0 10:6 14:9 17:0 14:2 22:1 9:3 1:74 2:92

de�nition of the dipole. Knowing the defect position is
usually easy for high symmetry defects, but can be more
tricky for point-defects with lower symmetry, e.g. small
amorphous zones. Another drawback of the method is
that additional calculations are required to obtain the
Kanzaki forces and to check that the forces entering the
dipole de�nition are in the harmonic regime. The resid-
ual stress method appears therefore as the easiest and
fastest one to obtain accurate values of the elastic dipole.
It only uses the Virial stress on the simulation box, which
is a standard output from any atomistic code, either re-
lying on empirical potentials or ab initio, and the defect
position is not needed. With this method, no post treat-
ment nor additional calculations are required to obtain
an accurate value of the elastic dipole.

We �nally comment on additionnal point-defect char-
acteristics that are outcomes of some of the Pij extrac-
tion techniques. We �rst notice that the point-defect
higher order multipoles, corresponding to the higher or-
der terms in the expansion of Eq. 3, are accessible by
both Kanzaki's and displacement �eld methods53 but not
from the defect residual stress. Their contribution in
the interaction energy between the point-defect and an
external strain �eld involves successive gradients of the
strain. It is thus much shorter-range than the dipole
contribution,3,31 and direct atomistic calculations are
usually preferred to the use of these higher order elas-
ticity models. Secondly, and as pointed out in the previ-
ous section, Kanzaki's technique has the special feature
of providing a physically-founded determination of the
size and the shape of the defect core zone, based on the
analysis of anharmonicity. This could be valuable in the
context of Eshelby's inclusion models used for mesoscopic
simulations of amorphous plasticity,54 where a key step is
the atomic-scale identi�cation of the size of the inclusion
equivalent to each plastic event, and that would become
unambiguous by adapting Kanzaki's procedure.

IV. APPLICATION TO AB INITIO

COMPUTATIONS

We now consider extraction of elastic dipole tensors
from ab initio calculations, that are usually limited to a
few hundred atoms. As previously established using em-
pirical potentials, the displacement �eld method is not
reliable for these small supercells and is thus left out. We
study the same point-defects in hcp Zr as with empirical
potentials, plus the hydrogen solute, an interstitial impu-
rity occupying the tetrahedral sites,55,56 and that induces
smaller distortions than both the vacancy and the SIA.

A. Computational details

Our ab initio calculations are based on the Density
Functional Theory (DFT), as implemented in the Pwscf
code of theQuantum Espresso package.57 Calculations
are performed in the Generalized Gradient Approxima-
tion with the exchange-correlation functional of Perdew,
Burke and Ernzerhof.58 Valence electrons are described
with plane waves, using a cuto� of 28Ry. The pseudo-
potential approach is used to describe the electron-ion
interaction. For Zr and H, ultrasoft pseudo-potentials
of Vanderbilt type have been chosen, including 4s and
4p electrons as semicore in the case of Zr. The elec-
tronic density of states is broadened with the Methfessel-
Paxton function, with a broadening of 0:3 eV. The inte-
gration is performed on a regular grid of 14 � 14 � 8
k-points for the primitive cell and an equivalent density
of k-points for larger supercells. This choice of cuto�s, k-
mesh, GGA functional for the exchange-correlation and
pseudo-potential for Zr and H have already been val-
idated on the hcp bulk, on vacancy cluster properties
and on hydrogen-vacancy defect interactions in previous
studies.9,47,59,60
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To compare the Kanzaki and residual stress methods
for the various defects, we use supercells of 6 � 6 � 5
repeated hcp unit cells (i.e. 360 atoms), with full peri-
odic boundary conditions. Atomic relaxations are per-
formed at constant volume, using a conjugate gradient
algorithm. The force tolerance is 1:5meV.�A�1 for the H
solute, and 5meV.�A�1 for the vacancy and the SIA. Note
that in the Kanzaki force technique, all the measured
defect-induced forces that are lower than the tolerance
for ionic relaxation were set to zero for the elastic dipole
tensor calculation. When de�ning the dipole tensor from
the residual stress, we subtract from the stress of the de-
fective supercell the stress of the perfect crystal for the
same supercell. Although this last contribution should
be zero in theory for a relaxed crystal, a remaining stress
exists in the perfect crystal because of the wave function
basis incompleteness. Withdrawing this remaining stress
from the defective supercell allows compensating numer-
ical errors associated with ab initio calculations and ac-
counting only for the stress variation associated with the
introduction of the point-defect.

B. Kanzaki vs. residual stress method

Fig. 7 displays the elastic dipole tensors obtained ei-
ther from the Kanzaki forces or from the residual stress
for defects of increasing relaxation magnitudes: the H
impurity, the vacancy, and the O con�guration of the
SIA.
When the zeroth order approximation is used, i.e.

when the Kanzaki's forces are calculated after a simple
removal of the point-defect, the elastic dipole obtained
from the summation on the atomic forces converges to
the value deduced from the residual stress only for the H
impurity. The agreement between both methods is good
only for the P33 component for the vacancy defect, and
for none of the dipole components for the SIA. Going
to the �rst order approximation and restoring the �rst
nearest neighbors of the point-defect, the summation of
the Kanzaki's forces leads to an elastic dipole closer to
the value deduced from the residual stress for the SIA.
But it does not change the values for the vacancy and in-
deed worsen the agreement for the H impurity. With this
�rst order approximation, the convergence of the elastic
dipole with the range of the Kanzaki's forces, i.e. with the
truncation radius r1 of the force summation, is hardly
achieved. This is especially true for the P33 component,
whatever the point-defect. As previously underlined in
empirical potential calculations, the range of the defect-
induced forces increases with the radius of the restoration
zone, and the last force to sum up in the dipole calcu-
lation becomes smaller. This makes it di�cult to reach
a converged value with ab initio calculations because of
the small size of the supercell and of the �nite precision
which can be obtained on atomic forces. Consequently,
increasing further the size of the defect restoration zone
is not a practicable solution to get rid of anharmonicity
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FIG. 7. Convergence of the elastic dipole components ob-
tained from the Kanzaki forces with the cutting radius r1 of
the force summation (Eq. 4), for the H solute atom, the va-
cancy, and the O con�guration of the SIA, computed using ab
initio calculations. When computing the Kanzaki forces, only
the point-defect is restored in the left �gures (approximation
0), whereas the �rst neighbor shell is also restored in the right
�gures (approximation 1). The horizontal lines indicate the
values deduced from the residual stress and the vertical lines
the radius of the restoration zone.

and obtain well-converged values, even for very simple
point-defects like the H impurity and the vacancy. The
de�nition of the elastic dipole from the residual stress
appears therefore as the only method leading to reliable
values within ab initio calculations.

C. Variation with supercell size

One remaining question is how sensitive is the elas-
tic dipole to the size of the supercell. De�ning now
the elastic dipole only from the residual stress, we study
its variations with the supercell size for the H impurity,
the vacancy, and the three con�gurations of the SIA. As
shown in Fig. 8, important variations are seen between
the smallest supercell which contains only 32 lattice sites
and the larger ones. But the obtained values are quite
constant above a given size, above 96 lattice sites for the
defect inducing small relaxations (H and V) and above
200 lattice sites for the SIA. Such a variation of the elas-
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tic dipole at the small sizes arises from the interaction of
the point-defect with its periodic images. Because of the
polarizability of the point-defect,61{63 its elastic dipole
may depend on the strain seen by the point-defect, and
thus on the strain created by its periodic images. As
the strain created by a point-defect is varying as 1=r3,
the polarizability associated with the periodic boundary
conditions leads to a value of the elastic dipole which
converges with the inverse of the supercell volume.23,64

This corresponds to the behavior observed in our simula-
tions (see insets in Fig. 8), and taking the limit 1=N ! 0
with N the number of atoms in the supercell { or simi-
larly 1=V ! 0 { leads to a converged value of the elastic
dipole (see Table I for numerical values).
Regarding �nally the largest supercell size for the H

impurity and the vacancy, a decrease of the Pij values
is seen. For these defects with small elastic dipoles, the
residual stress needed to compute the elastic dipole be-
comes very small for the 360 atoms supercell, less than
40MPa for the smallest component of the elastic dipole
(P11 ' 1:5 eV for H). Obtaining a higher precision on the
stress places high requirement in convergence criterion for
the electronic density and in the tolerance on forces for
ionic relaxation. This would then result in an important
increase of computational time for these defect compu-
tations. A compromise needs therefore to be found to
limit the polarizability inuence observed at small sizes
and the stress precision problem inherent to large sizes.

D. H solute: comparison with experiments

As already noted by Domain et al.29 and by Nazarov
et al.,28 the elastic dipole for H impurity deduced from ab

initio calculations only partly agrees with experiments.
Mac Ewen et al.65 observed in Zr an anisotropic expan-
sion varying linearly with the hydrogen atomic fraction
xH and characterized by the two coe�cients

�a =
1

a

@a

@xH
and �c =

1

c

@c

@xH
:

They measured �a = (3:17�0:38)�10�2 and �c = (5:19�
0:46) � 10�2 at 727K, and close values at 777K. These
two coe�cients are simply related to the elastic dipoles
as

�a =
1




C33P11 � C13P33

(C11 + C12)C33 � 2C13
2
;

�c =
1




�2C13P11 + (C11 + C12)P33

(C11 + C12)C33 � 2C13
2

;

where 
 =
p
3a2c=4 is the atomic volume. Using the

experimental elastic constants measured at 723K66 and
the lattice parameters measured at 700K,67 our ab ini-

tio values of the elastic dipole for H determined at 0K
(P11 = 1:74 and P33 = 2:92 eV) lead to �a = 2:4 � 10�2

and �c = 11:2�10�2. Like previous ab initio studies,28,29

we obtain a reasonable agreement for the dilatation in the
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the 1=N interpolation.
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hai direction and overestimate the dilatation in the hci
direction. As mentioned by Nazarov et al.,28 part of the
discrepancy may arise from limitations of the GGA func-
tional to describe interaction between Zr and H atoms.
A variation with the temperature of the elastic dipole
components, deviating from their 0K value, is also pos-
sible. Finally, one should not forget that these theoreti-
cal values have been obtained by assuming that H atoms
only occupy the tetrahedral interstitial sites, in agree-
ment with neutron di�raction experiments performed at
room temperature55 and inelastic neutron scattering per-
formed at 873K.56 But recent ab initio calculations47,68

have shown that the di�erence in energy between the
tetrahedral and octahedral (O) interstitial sites is small
enough to allow for a non negligible occupation also of
the O sites at �nite temperature. A proper description
of the variations with temperature of the H concentra-
tions in the di�erent possible insertion sites necessitates
to include vibrations. The harmonic approximation is
not su�ciently precise for this purpose47, making di�-
cult their computation. The experimental values of the
lattice expansion induced by H solute atoms measured
at 727 and 777K could therefore hardly be compared to
0K static ab initio calculations in the case of H solute.

V. CONCLUSIONS

The di�erent possible methods to extract elastic
dipoles of point-defects from atomistic simulations have
been compared. These elastic dipoles can be obtained
from a �tting of the displacement �eld, a summation of

the Kanzaki's forces or directly from the residual stress.
Using various empirical potentials, we established that,
as long as they are carefully applied, i.e. in a context
where the harmonic approximation is valid and with large
enough supercells, all methods lead to the same elastic
dipole values, and this for all the investigated defects.
The de�nition of the elastic dipole from the residual
stress appears nevertheless as the most convenient one, as
it does not require any additional calculations and does
not need to know the defect position. Besides, it leads
to quantitative estimates of the elastic dipoles even in
small supercells compatible with ab initio calculations,
in contrast to the methods based on the displacement
�eld or the Kanzaki's forces which are not tractable for
such small supercells. The de�nition from the residual
stress appears therefore as the best way to extract the
elastic dipole from atomistic simulations, in particular
from ab initio calculations. By doing such calculations
for di�erent applied strains, one can also easily study
the variation of this elastic dipole with the applied strain
and thus extract the diaelastic polarizability of the point-
defect,61,62,69 another key quantity, useful for instance to
describe physical phenomena involving the point defect
and a coupling between the strain �elds originating from
two di�erent sources.
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