C Eline Varvenne 
  
Emmanuel Clouet 
  
  
  
  
Elastic dipoles of point-defects from atomistic simulations

The interaction of point-defects with an external stress eld or with other structural defects is usually well described within continuum elasticity by the elastic dipole approximation. Extraction of the elastic dipoles from atomistic simulations is therefore a fundamental step to connect an atomistic description of the defect with continuum models. This can be done either by a tting of the point-defect displacement eld, by a summation of the Kanzaki's forces or by a linking equation to the residual stress. We perform here a detailed comparison of these dierent available methods to extract elastic dipoles, and show that they all lead to the same values when the supercell of the atomistic simulations is large enough and when the anharmonic region around the point-defect is correctly handled. But for small simulation cells compatible with ab initio calculations, only the denition through the residual stress appears tractable. The approach is illustrated by considering various point-defects (vacancy, self-interstitial and hydrogen solute atom) in zirconium, using both empirical potentials and ab initio calculations.

I. INTRODUCTION

Point-defects in crystalline solids, such as vacancies, self-interstitial atoms, solute atoms or their small clusters, play a crucial role in controlling materials properties and their kinetic evolutions, particularly through their interaction with other defects, like dislocations, surfaces, interfaces, grain boundaries and also other pointdefects. While ab initio calculations give an accurate description of such interactions at short range, this modeling approach is not tractable to characterize the longrange part because of the inherent size limitation of these simulations. For neutral defects, the long range interaction is elastic and elasticity theory appears therefore as a natural modeling approach. A point-defect can be described within elasticity theory through an equivalent distribution of point forces. 1{3 Of particular importance is the elastic dipole, a second-rank tensor which corresponds to the rst moment of the force distribution, from which one can determine the long range elastic eld of the point-defect and calculate its interaction with an external strain eld. Extraction of this elastic dipole from atomistic simulations, in particular ab initio calculations, allows then to fully characterize and model the point-defect within elasticity theory. This is essential for upscaling approaches, where mesoscale techniques are required to treat long-term evolutions and/or interactions of pointdefects with the complex elastic elds of various structural defects, and that must include the necessary information from the atomic scale. Accurate elastic dipole extractions thus allowed sucessful modeling of stress-driven diusion [START_REF] Veiga | [END_REF]5 and more generally elasto-diusion, 6,7 or of sink strength optimization of semi-coherent interfaces. 8 Furthermore, their extraction enables to set up nitesize correction schemes to obtain the energy of an iso-lated point-defect from ab initio calculations relying on periodic boundary conditions. 9 However, because of the small size of ab initio simulations, computation of such accurate values of elastic dipoles may be challenging.

There is a rather long history of extraction of elastic dipoles from atomistic simulations, mainly using empirical potentials. The Kanzaki method, [START_REF] Leibfried | Point Defects in Metals I[END_REF]10 based on the measurement of the defect-induced forces, has been widely used for vacancies in ionic crystals and various point-defects in metals. 11{16 This approach rely on the harmonic approximation, which has been found to give erroneous results for charged vacancy defects 12 and/or when distortions are large. When calculating the elastic dipole from the Kanzaki forces, one thus needs to check that these forces correspond to the harmonic regime or the approach has to be extended to take care of anharmonicity. 13,14 On the other hand, Gillan 17,18 popularized the measurement of the elastic dipole components from the strain derivatives of the point-defect formation energy. Subsequent uses of this method or similar ones are numerous, again for defects in both ionics crystals 19 and metals. 9,20{23 Finally, the elastic dipole value can be obtained by extracting from atomistic simulations the displacement eld induced by the point-defect and by tting it by the corresponding continuum linear elasticity solution. 24 Most often in the context of ab initio simulations, measurements of elastic dipoles or relaxation volumes employ only one of the above methods. 9,15,23,25{27 A recent paper by Nazarov et al. 28 shows nevertheless a comparison between the Kanzaki and strain derivatives methods for the hydrogen impurity in hcp zirconium. The authors found signicant dierences between the methods, although the H solute is a rather simple defect that is known to induce small lattice distortions. 29 Clarications on the applica-bility of the dierent measurement methods in ab initio calculations are thus required, even more importantly for the study of defects creating large distortions, like selfinterstitial atoms. The convergence of the elastic dipole components with the supercell size is also a point that is not well established in the literature.

In this article, we rst review the dierent possible approaches to extract elastic dipole tensors from atomistic simulations: strain derivatives of the energy, tting of the displacement eld, and computation from Kanzaki forces. We then provide a systematic comparison of the results obtained with these dierent approaches. Atomistic simulations relying on empirical potentials are used for this thorough comparison, as they allow for very large simulation sizes and high precision in energy, force and relaxed atomic positions, which is required to assess the conditions under which each approach must be applied to get consistent results. This is done by considering the vacancy and various congurations of the selfinterstitial atom in hcp zirconium. We nally discuss the feasibility of the dierent methods within ab initio calculations, considering the same point-defects, and the H impurity in hcp Zr as well. In particular, we show that the strain derivative method, or conversely the residual stress method, is the only one that would give a meaningful result for point-defects involving large distortions.

II. METHODS TO EXTRACT ELASTIC DIPOLES

In this section, we recall the necessary background of anisotropic continuum linear elastic modeling of pointdefects, so as to introduce the concept of elastic dipole. All along the theoretical progress, we detail the dierent possibilities for their determination into atomistic simulations.

Within continuum elastic theory, 1{3 a point-defect located at the origin can be represented as a nite distribution of point forces fF q g, acting at positions fa q g. This distribution is at mechanical equilibrium, meaning that there is no force resultant and no net torque q F q = 0 ; q F q ¢ a q = 0: (1) The elastic displacement at continuous position R from the defect is then given by

u el i (R) = q G ij (R a q ) F q j ;
(2) where i; j are Cartesian indexes, and summation over repeated indexes is implicit. G ij (R) is the continuum anisotropic elastic Green's function of the matrix. For large distance R, i.e. R = kRk ) ka q k, a Taylor expansion of the Green's function can be performed with respect to the fa q g as:

u el i (R) = q [G ij (R) G ij;k (R) a q k + o(ka q k)] F q j ;
= G ij;k (R) P jk + o(ka q k);

(3) with P jk = q F q j a q k : (4) The zeroth order term in Eq. 3 vanishes because there is no force resultant (Eq. 1). The notation \; k" stands for the operator @=@x k and G ij;k (R) is thus the rst derivative of the Green's functions. The tensor P jk is the elastic dipole of the defect, dened as the rst moment of the defect force distribution (Eq. 4). This tensor is symmetric since the defect has no net torque (Eq. 1). Higher order terms in Eq. 3 would correspond to higher order moments of the defect force distribution (multipoles), and are neglected here.

Eq. 3 provides a rst way to determine the elastic dipole tensor in atomistic simulations. After the structural relaxation in a point-defect calculation, the difference between nal and initial atomic positions gives atomistic values for the displacement eld fu at (R)g at any atomic position R. The rst derivative of the anisotropic elastic Green's function G ij;k (R) can be computed from the elastic constants C ijkl of the bulk matrix, e.g. following the numerical scheme provided by Barnett. 30 A tting of the atomistic displacement elds using the elastic solution of Eq. 3 will thus allow for an identication of the defect elastic dipole. Such an approach has been followed within empirical potential simulations by Chen et al., 24 but with the additional constraint of isotropic elasticity for the computation of the rst derivative of the Green's function.

A second approach emerges when considering the interaction energy between the point-defect located at the origin, as represented by the nite distribution of point forces, and an external eld of arbitrary source. This interaction energy is given by 31 E int = P ij " ext ij (0) + o(ka q k);

(5) after a Taylor expansion of the external displacement eld, and noting again that the force resultant is null.

" ext ij (0) is the external deformation eld evaluated at the defect position. This well-established expression allows computing the interaction of a point-defect with the strain produced by another defect or with an external applied strain. It also provides a route to identify the elastic dipole tensor in atomistic simulations. 9,22 Let us consider a simulation box of volume V , the equilibrium volume of the defect-free bulk material, containing one point-defect and submitted to a homogeneous strain " ij . According to linear elasticity, the energy of the simulation box is 6) with E 0 the bulk reference energy and E D the unstrained defect excess energy. We are considering a simulation box with periodic boundary conditions to keep the volume V nite and to prohibit the presence of any surface. E D contains therefore a contribution corresponding to the interaction of the point-defect with its periodic images. Within linear elasticity theory, this contribution does not depend on the applied strain " ij . The average residual stress on the simulation box is thus given by

E(" ij ) = E 0 + E D + V 2 C ijkl " ij " kl P ij " ij ; (
h ij i = 1 V @E @" ij = C ijkl " kl P ij V : (7) 
For simulations carried out with xed periodicity vectors, i.e. with " ij = 0, the elastic dipole is proportional to the homogeneous residual stress

P ij = V h ij i:
(8) This residual stress corresponds to the stress increase, after atomic relaxation, due to the introduction of the point-defect in the simulation box. Consequently, if the perfect bulk simulation box experiences a non-zero homogeneous stress, this contribution must be subtracted from the residual stress of the defective supercell to identify the elastic dipole tensor. This is particularly important for ab initio simulations, where nite convergence criteria may lead to non-null stresses for a perfect bulk material at its equilibrium lattice parameters. Note that Eq. 8 is to be related to the dipole tensor measurement rst proposed by Gillan, 17,18 where the elastic dipole is equal to the strain derivative of the formation energy, evaluated at zero strain. This relation can also be derived by averaging the stress eld, as predicted by linear elasticity theory, produced by the point-defect, taking explicitly into account the periodic boundary conditions. 32 Finally, a third numerical route is found if one focuses on forces and atomic positions around the point-defect. This corresponds to the Kanzaki force approach, 10,13,33 which is a discrete elasticity approach. Kanzaki forces are dened as the additional forces applied to the atoms in the neighborhood of the defect, so as to produce the same static displacement eld as the defect. In the continuous limit and if the displacements are small, making the harmonic approximation valid, we have an equivalence between the nite distribution of point forces fF q g and Kanzaki's forces. Kanzaki's forces are obtained by rst relaxing the simulation cell containing the defect and by then removing the defect and restoring the perfect crystal in its vicinity. The Kanzaki's forces are the opposite of the atomic forces obtained in this second step, when the system is kept frozen, i.e. without any relaxation. Eq. 4 can be used to compute the elastic dipole tensor, with fa q g the positions of the atoms experiencing a force. Technical details for its application will be given in the next section, when appropriate.

III. VALIDATION OF THE DIFFERENT APPROACHES

We apply in this section the previously described approaches to obtain the elastic dipole tensors of various point-defects, modeled through atomic simulations relying on empirical potentials. These energy models have a low computational cost and a high precision in force and atomic position determination, thus allowing for a detailed study without any penalizing limitation on the size of the system. We rst present the investigated pointdefects, and then show and discuss the results obtained with the dierent denitions of the elastic dipole.

A. Studied defects and simulation details

We study here the vacancy and several congurations of the self-interstitial atom (SIA) in hcp zirconium. Both types of point-defects are created under irradiation. Their long-range elastic interaction with the different sinks, in particular the dislocations, controls their clustering and the kinetic evolution of the irradiation microstructure. It has thus macroscopic consequences like irradiation hardening, [START_REF] Onimus | Comprehensive Nuclear Materials[END_REF] irradiation creep 35{38 or irradiation growth. 39{41 In this context, an accurate measure of the elastic dipoles for both vacancy and SIA defects is of interest. Various ab initio studies 9,41{43 showed that several SIA congurations with close energies coexist and must be considered. The unrelaxed structures of the studied defects are represented in Fig. 1: the vacancy (V), and the three most stable SIA congurations, i.e. the basal octahedral (BO), the octahedral (O), and the basal split (BS) for which we consider the variant aligned along the [2110] direction.The symmetry, which is conserved here during structural relaxation, is hexagonal for V and BO, trigonal for O, and orthorombic for BS. As a consequence, only the diagonal components of the dipole are non-null, with three independent components for BS, and only two for V, BO and O for which P 11 = P 22 in a coordinate system with e 1 and e 2 in the basal plane, respectively parallel to the [2110] and [0110] directions, and e 3 along the [0001] direction. Those point-defects, with various relaxation magnitudes and point symmetries, cover a wide range of situations.

We select two Embedded Atom Method (EAM) potentials to model Zr, both developped by Mendelev and Ackland 44 and denoted as #2 and #3 in Ref. 44. A Second Moment Approximation (SMA) potential developped by Willaime and Massobrio 45 is also used and is referred to as WM1 in the following. All potentials give reasonable properties for bulk hcp Zr. 46 The EAM #2 potential was originally designed to describe the hcp-bcc transition, but also gives reasonable defect properties. It accounts for the vacancy-vacancy binding but underestimates stacking fault and surface energies. 47 The EAM #3 potential is supposed to be well suited to study defects in the hcp phase, as some stacking fault energies were adjusted on ab initio calculations. It has been used for the computation of the properties of vacancy, SIAs and clusters. 48 However, it does not account for the binding between vacancies. 47 The WM1 SMA potential was also developed to describe the hcp-bcc transition. It has a lower cuto radius than the two EAM potentials, and is chosen for discussion purposes. Atomistic simulations with these many-body potentials are performed on supercells containing up to 12800 atomic sites (i.e. 20 ¢ 20 ¢ 16 hcp primitive unit cells), which ensures well converged defect energetics and is suciently large to dene well-converged elastic dipoles with any of the previously introduced methods. Note that periodicity vectors are kept xed during the structural relaxations, and also in the eventual additional calculations required for elastic dipole tensor computation.

B. Validation of the residual stress method

We rst identify the elastic dipole from the residual stress measured in the simulation box after introduction of the point-defect and relaxation of the atomic positions (Eq. 8) using the Virial stress 49,50 given by the atomic simulations. The values obtained for the dierent pointdefects and using the dierent empirical potentials are given in Table I. These values are well converged: no difference larger than 5 ¢ 10 3 eV is observed when going from a simulation cell containing 1600 atoms to one with 12800 atoms. To validate the values thus obtained, we compare the interaction energy of the point-defect with an applied homogeneous strain, as predicted by the elasticity theory (see Eq. 5) using this elastic dipole, with the result given by direct atomistic calculations. In these simulations, the interaction energy is dened as

E int (" ij ) = E PD "ij E bulk "ij + E bulk 0 E PD 0 ; (9) with E PD
"ij and E bulk "ij the energies of the strained defective and bulk supercells, and with E PD for two dierent deformations: a dilatation (" ij = " ij ) and a pure shear (" 11 = " 33 = " with all other components set to zero). A very good agreement is found between elasticity theory and atomistic simulations for all investigated defects. The interaction energy predicted by atomistic simulations starts to deviate from the linear behavior predicted by elasticity theory only for the dilatation when the applied strain gets too high, close to ¦2%. This therefore validates the measurement of the elastic dipole tensor from the defect-induced residual stress in the simulation box. Similar validations can be found in Refs. 5 and 27. We will thus use the value obtained from the residual stress as a reference for the elastic dipole when comparing with other methods.

C. Displacement eld approach

We now consider the method identifying the elastic dipole through the displacement eld. The elastic dipole components are obtained from the displacement eld fu at (R)g extracted from atomistic simulations through a least-square tting using the cost function (10) with r excl the radius of a small spherical zone around the point-defect, so as to exclude from the tting the atomic positions where elasticity does not hold. The R 2 factor is meant to account for the scaling of the elastic displacements with the distance R to the defect, i.e. to give a similar weight to all atomic positions in the tting. Without this R 2 penalty, the obtained P ij values are entirely xed by the displacements at the neighbor shell bordering the exclusion zone. Due to the periodic boundary conditions used in atomic simulations, we need to include the contribution of the defect periodic images into the elastic displacements fu el (R)g, that are now given by (11) with R nmp = nA 1 + mA 2 + pA 3 the positions of the supercell periodic images, with n, m and p P Z, and A 1 , A 2 , and A 3 the periodicity vectors of the supercell. G ij;k (R) is computed using Barnett's numerical scheme. 30 The summation involved in Eq. 11 is conditionally convergent and is regularized using the procedure of Cai et al. 51 With this, the cost function f can be accurately evaluated for any trial values of the elastic dipole P ij and the tting is realized. We have assumed in Eqs. 10 and 11 that the point-defect is located at the origin, but the exact position of the point-defect can also be included in the cost function to be obtained then from the least-square tting.

f (P ij ) = R kRk>r excl R 2 ¢ u el (R) u at (R) £ 2 ;
u el i (R) = n;m;p G ij;k (R R nmp ) P jk ;
The resulting elastic dipole tensor components for the vacancy and the BO and O congurations of the SIA are shown in Fig. 3 as a function of the exclusion zone radius for the EAM #3 potential. Two dierent simulation box sizes are tested, a large one with 1600 atomic sites and a smaller one with 200 sites. With the largest simulation box, the choice of r excl has almost no inuence on the nal value of the elastic dipole components, for all defect types. Numerical values of the P ij for r excl = 2a are given in Table I for each defect. In fact, the number of atomic positions included in the t, and for which elasticity is valid, is suciently high to avoid issues arising from the defect core zone. On the other hand, for the smaller simulation box, the obtained elastic dipole components are highly sensitive to r excl , and their convergence with r excl cannot be reached. This is especially true for the SIAs, because of the larger induced distortions. For this small size of the simulation box, higher r excl values cannot be used, as the number of remaining atoms to be included into the t becomes too small to obtain a meaningful value of the P ij tensor. This convergence issue preventing the determination of an appropriate r excl will become even more important for complex and larger defects, like point-defect clusters. This disqualies the use of this displacement method to obtain elastic dipoles from ab initio calculations, as the typical simulation box sizes are limited to a few hundred atoms.

D. Kanzaki force method

We now focus on the Kanzaki force method, that uses Eq. 4 to obtain P ij . To compute the defect-induced forces, we follow the procedure given in Refs. 14 and 16, which is illustrated for a vacancy in Fig. 4. Starting from the relaxed structure of the point-defect (Fig. 4b), we restore the perfect lattice in the defect coree.g. we add back the suppressed atom for the vacancy case of Fig. 4c -and then perform a static force computation on all atoms of the obtained simulation cell. These forces are used to compute the elastic dipole P ij = q F q j a q k , where F q is the force acting on atom located at a q , assuming the point-defect at the origin. The summation is restricted to atoms located inside a sphere of radius r I (i.e. ka q k < r I ). As the Kanzaki technique is valid only in the harmonic approximation, one also needs to check that the atomic forces entering the elastic dipole denition are in the harmonic regime. 14 This is done by restoring larger and larger defect neighboring shells to their perfect bulk positions, and computing the forces on the obtained restored structures (Fig. 4c-d) before dening the elastic dipole. The case where n defect neighbor shells are restored is referred to as the n th order approximation. As the restored zone becomes larger, the atoms remaining at their relaxed positions are more likely to sit in an harmonic region. The convergence of the resulting elastic dipole components with respect to the restoration zone radius thus enables to evaluate the harmonicity aspect.

We rst consider the zeroth order approximation, where only the atom corresponding to the point-defect is restored. Fig. 5 provides the elastic dipole values obtained with the EAM #3 potential for the vacancy and the three congurations of the SIA. Results are shown as a function of the cuto radius r I used for the summation. This allows to determine the range of the defect induced forces. For all defects, constant P ij values are reached for r I 9 2 -2:5 a, which corresponds to $ 10-13 defect neighboring shells included in the P ij calculations. The last forces entering the summation and needed to reach a $ 0:1 eV precision for the P ij elastic dipole are only a few meV/ A, a small value that requires a high precision in the force calculation. The rather long-range behavior of the defect-induced forces is also observed with the two other empirical potentials. In particular, although the WM1 potential has a lower cuto than EAM #2 and #3 potential, it leads to longer-range defect-induced forces. This long-range nature of these forces is not specic to hcp Zr as it has also been observed in the case of SIA defect in bcc iron. 16 Note nally that the P ij values obtained with this zeroth order approximation does not always correspond to the values obtained by the residual stress method (Fig. 5): this is especially true for the O and BS congurations of the SIA.

We study now the eect of anharmonicity by increasing the size of the defect restoration zone, going thus beyond this zeroth order approximation. We use, in the force summation, a cuto radius r I high enough to ensure convergence with respect to this parameter. The value needed for this cuto radius increases with the order n of the approximation used for the restoration zone. As a consequence, the precision on the atomic forces also needs to be increased. As can be seen in Fig. 6a, the vacancy elastic dipole components are already well-converged for the zeroth order approximation, meaning that the harmonic approximation is valid very close to the defect position in this case. On the other hand, this is not true for the dierent congurations of the SIA (Fig. 6b-d). Converged values are obtained only for restoration zones extending a few lattice distances from the point-defect (! 2a). The zeroth order approximation can be sometimes completely wrong. This is the case for instance for the O conguration for which the magnitude of the elastic dipole components are $ 50% o as compared to the converged values, and the relative magnitude of P 11 and P 33 is reversed. The BS conguration presents an interesting feature, as the size of the necessary restoration zone is $ 4a for P 11 , $ 2a for P 22 and $ 3a for P 33 . This thus denes the anisotropic dimensions of the point-defect core zone, which, within an Eshelby's inclusion model, 52 corresponds to the dimensions of the principal axes of the ellipsoidal inclusion. Similar behaviors are found with the two other empirical potentials, with a small anharmonicity for the vacancy with WM1 potential. When dening the elastic dipoles from Kanzaki forces, one therefore needs to adapt the restoration zone to include the anharmonic region around the pointdefect. As this anharmonic region depends on the defect and on the material, one cannot choose a priori an approximation order for the restoration zone, but one needs to check the convergence of the elastic dipole with the size of this restoration zone.

E. Discussion

Table I provides the elastic dipole components for all studied point-defects, obtained with the three dierent empirical potentials, and measured by the dierent techniques. Kanzaki's method values correspond to those converged with respect to the defect restoration zone size and to the cuto radius of the force summation. Displacement eld values are those obtained with the largest simulation box, which is sucient to provide P ij values converged with respect to the supercell size, as tested by the residual stress method. The three approaches give the same results for the elastic dipole tensors of all pointdefects. This conrms the coherence of the elastic dipole denition and its link to the point-defect stress eld and energetics. As an aside, we note that comparison between the dierent interatomic potentials for a given defect shows important variations of the obtained elastic dipoles, with dierences of several eV and eventually different relative magnitudes between the dierent dipole components. Although some properties of the pointdefects were considered in the tting of these empirical potentials, they lead to completely dierent pictures of the long range elastic eld induced by these point-defects. It is therefore dicult to rely on any of them, and this motivates the need for ab initio computations to obtain quantitative estimates of the P ij elastic dipoles. We now discuss practical aspects of the dierent methods which can be used to determine P ij . For the tting of the displacement eld, one drawback is the necessity to check the sensitivity of the result to the parameter dening the exclusion zone around the defect, and also, to a less extent, to the initial conditions. But most importantly, the method is not operative for small supercells that are typically tractable in ab initio simulations. On the other hand, the method oers the advantage that the exact position of the point-defect does not need to be known a priori, since it is determined through the tting. This is not true anymore when the elastic dipole is dened from the Kanzaki forces. The defect position must then be known so as to properly restore the defect zone and compute the atomic positions fa q g entering in the denition of the dipole. Knowing the defect position is usually easy for high symmetry defects, but can be more tricky for point-defects with lower symmetry, e.g. small amorphous zones. Another drawback of the method is that additional calculations are required to obtain the Kanzaki forces and to check that the forces entering the dipole denition are in the harmonic regime. The residual stress method appears therefore as the easiest and fastest one to obtain accurate values of the elastic dipole. It only uses the Virial stress on the simulation box, which is a standard output from any atomistic code, either relying on empirical potentials or ab initio, and the defect position is not needed. With this method, no post treatment nor additional calculations are required to obtain an accurate value of the elastic dipole.

We nally comment on additionnal point-defect characteristics that are outcomes of some of the P ij extraction techniques. We rst notice that the point-defect higher order multipoles, corresponding to the higher order terms in the expansion of Eq. 3, are accessible by both Kanzaki's and displacement eld methods [START_REF]and positions values after getting rid of anharmonicity for the Kanzaki's technique[END_REF] but not from the defect residual stress. Their contribution in the interaction energy between the point-defect and an external strain eld involves successive gradients of the strain. It is thus much shorter-range than the dipole contribution, [START_REF] Teodosiu | Elastic Models of Crystal Defects[END_REF]31 and direct atomistic calculations are usually preferred to the use of these higher order elasticity models. Secondly, and as pointed out in the previous section, Kanzaki's technique has the special feature of providing a physically-founded determination of the size and the shape of the defect core zone, based on the analysis of anharmonicity. This could be valuable in the context of Eshelby's inclusion models used for mesoscopic simulations of amorphous plasticity, [START_REF] Albaret | [END_REF] where a key step is the atomic-scale identication of the size of the inclusion equivalent to each plastic event, and that would become unambiguous by adapting Kanzaki's procedure.

IV. APPLICATION TO AB INITIO

COMPUTATIONS

We now consider extraction of elastic dipole tensors from ab initio calculations, that are usually limited to a few hundred atoms. As previously established using empirical potentials, the displacement eld method is not reliable for these small supercells and is thus left out. We study the same point-defects in hcp Zr as with empirical potentials, plus the hydrogen solute, an interstitial impurity occupying the tetrahedral sites, 55,56 and that induces smaller distortions than both the vacancy and the SIA.

A. Computational details Our ab initio calculations are based on the Density Functional Theory (DFT), as implemented in the Pwscf code of the Quantum Espresso package. 57 Calculations are performed in the Generalized Gradient Approximation with the exchange-correlation functional of Perdew, Burke and Ernzerhof. 58 Valence electrons are described with plane waves, using a cuto of 28 Ry. The pseudopotential approach is used to describe the electron-ion interaction. For Zr and H, ultrasoft pseudo-potentials of Vanderbilt type have been chosen, including 4s and 4p electrons as semicore in the case of Zr. The electronic density of states is broadened with the Methfessel-Paxton function, with a broadening of 0:3 eV. The integration is performed on a regular grid of 14 ¢ 14 ¢ 8 k-points for the primitive cell and an equivalent density of k-points for larger supercells. This choice of cutos, kmesh, GGA functional for the exchange-correlation and pseudo-potential for Zr and H have already been validated on the hcp bulk, on vacancy cluster properties and on hydrogen-vacancy defect interactions in previous studies. 9,47,59,60 To compare the Kanzaki and residual stress methods for the various defects, we use supercells of 6 ¢ 6 ¢ 5 repeated hcp unit cells (i.e. 360 atoms), with full periodic boundary conditions. Atomic relaxations are performed at constant volume, using a conjugate gradient algorithm. The force tolerance is 1:5 meV. A 1 for the H solute, and 5 meV. A 1 for the vacancy and the SIA. Note that in the Kanzaki force technique, all the measured defect-induced forces that are lower than the tolerance for ionic relaxation were set to zero for the elastic dipole tensor calculation. When dening the dipole tensor from the residual stress, we subtract from the stress of the defective supercell the stress of the perfect crystal for the same supercell. Although this last contribution should be zero in theory for a relaxed crystal, a remaining stress exists in the perfect crystal because of the wave function basis incompleteness. Withdrawing this remaining stress from the defective supercell allows compensating numerical errors associated with ab initio calculations and accounting only for the stress variation associated with the introduction of the point-defect.

B. Kanzaki vs. residual stress method Fig. 7 displays the elastic dipole tensors obtained either from the Kanzaki forces or from the residual stress for defects of increasing relaxation magnitudes: the H impurity, the vacancy, and the O conguration of the SIA.

When the zeroth order approximation is used, i.e. when the Kanzaki's forces are calculated after a simple removal of the point-defect, the elastic dipole obtained from the summation on the atomic forces converges to the value deduced from the residual stress only for the H impurity. The agreement between both methods is good only for the P 33 component for the vacancy defect, and for none of the dipole components for the SIA. Going to the rst order approximation and restoring the rst nearest neighbors of the point-defect, the summation of the Kanzaki's forces leads to an elastic dipole closer to the value deduced from the residual stress for the SIA. But it does not change the values for the vacancy and indeed worsen the agreement for the H impurity. With this rst order approximation, the convergence of the elastic dipole with the range of the Kanzaki's forces, i.e. with the truncation radius r I of the force summation, is hardly achieved. This is especially true for the P 33 component, whatever the point-defect. As previously underlined in empirical potential calculations, the range of the defectinduced forces increases with the radius of the restoration zone, and the last force to sum up in the dipole calculation becomes smaller. This makes it dicult to reach a converged value with ab initio calculations because of the small size of the supercell and of the nite precision which can be obtained on atomic forces. Consequently, increasing further the size of the defect restoration zone is not a practicable solution to get rid of anharmonicity O 7. Convergence of the elastic dipole components obtained from the Kanzaki forces with the cutting radius rI of the force summation (Eq. 4), for the H solute atom, the vacancy, and the O conguration of the SIA, computed using ab initio calculations. When computing the Kanzaki forces, only the point-defect is restored in the left gures (approximation 0), whereas the rst neighbor shell is also restored in the right gures (approximation 1). The horizontal lines indicate the values deduced from the residual stress and the vertical lines the radius of the restoration zone. and obtain well-converged values, even for very simple point-defects like the H impurity and the vacancy. The denition of the elastic dipole from the residual stress appears therefore as the only method leading to reliable values within ab initio calculations.
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C. Variation with supercell size One remaining question is how sensitive is the elastic dipole to the size of the supercell. Dening now the elastic dipole only from the residual stress, we study its variations with the supercell size for the H impurity, the vacancy, and the three congurations of the SIA. As shown in Fig. 8, important variations are seen between the smallest supercell which contains only 32 lattice sites and the larger ones. But the obtained values are quite constant above a given size, above 96 lattice sites for the defect inducing small relaxations (H and V) and above 200 lattice sites for the SIA. Such a variation of the elas-tic dipole at the small sizes arises from the interaction of the point-defect with its periodic images. Because of the polarizability of the point-defect, 61{63 its elastic dipole may depend on the strain seen by the point-defect, and thus on the strain created by its periodic images. As the strain created by a point-defect is varying as 1=r [START_REF] Teodosiu | Elastic Models of Crystal Defects[END_REF] , the polarizability associated with the periodic boundary conditions leads to a value of the elastic dipole which converges with the inverse of the supercell volume. 23,64 This corresponds to the behavior observed in our simulations (see insets in Fig. 8), and taking the limit 1=N 3 0 with N the number of atoms in the supercell { or similarly 1=V 3 0 { leads to a converged value of the elastic dipole (see Table I for numerical values).

Regarding nally the largest supercell size for the H impurity and the vacancy, a decrease of the P ij values is seen. For these defects with small elastic dipoles, the residual stress needed to compute the elastic dipole becomes very small for the 360 atoms supercell, less than 40 MPa for the smallest component of the elastic dipole (P 11 9 1:5 eV for H). Obtaining a higher precision on the stress places high requirement in convergence criterion for the electronic density and in the tolerance on forces for ionic relaxation. This would then result in an important increase of computational time for these defect computations. A compromise needs therefore to be found to limit the polarizability inuence observed at small sizes and the stress precision problem inherent to large sizes.

D. H solute: comparison with experiments

As already noted by Domain et al. 29 and by Nazarov et al., 28 the elastic dipole for H impurity deduced from ab initio calculations only partly agrees with experiments. Mac Ewen et al. 65 observed in Zr an anisotropic expansion varying linearly with the hydrogen atomic fraction x H and characterized by the two coecients a = 1 a @a @x H and c = 1 c @c @x H :

They measured a = (3:17¦0:38)¢10 66 and the lattice parameters measured at 700 K, 67 our ab initio values of the elastic dipole for H determined at 0 K (P 11 = 1:74 and P 33 = 2:92 eV) lead to a = 2:4 ¢ 10 2 and c = 11:2¢10 2 . Like previous ab initio studies, 28,29 we obtain a reasonable agreement for the dilatation in the hai direction and overestimate the dilatation in the hci direction. As mentioned by Nazarov et al., 28 part of the discrepancy may arise from limitations of the GGA functional to describe interaction between Zr and H atoms. A variation with the temperature of the elastic dipole components, deviating from their 0 K value, is also possible. Finally, one should not forget that these theoretical values have been obtained by assuming that H atoms only occupy the tetrahedral interstitial sites, in agreement with neutron diraction experiments performed at room temperature 55 and inelastic neutron scattering performed at 873 K. 56 But recent ab initio calculations 47,68 have shown that the dierence in energy between the tetrahedral and octahedral (O) interstitial sites is small enough to allow for a non negligible occupation also of the O sites at nite temperature. A proper description of the variations with temperature of the H concentrations in the dierent possible insertion sites necessitates to include vibrations. The harmonic approximation is not suciently precise for this purpose 47 , making dicult their computation. The experimental values of the lattice expansion induced by H solute atoms measured at 727 and 777 K could therefore hardly be compared to 0 K static ab initio calculations in the case of H solute.

V. CONCLUSIONS

The dierent possible methods to extract elastic dipoles of point-defects from atomistic simulations have been compared. These elastic dipoles can be obtained from a tting of the displacement eld, a summation of the Kanzaki's forces or directly from the residual stress. Using various empirical potentials, we established that, as long as they are carefully applied, i.e. in a context where the harmonic approximation is valid and with large enough supercells, all methods lead to the same elastic dipole values, and this for all the investigated defects. The denition of the elastic dipole from the residual stress appears nevertheless as the most convenient one, as it does not require any additional calculations and does not need to know the defect position. Besides, it leads to quantitative estimates of the elastic dipoles even in small supercells compatible with ab initio calculations, in contrast to the methods based on the displacement eld or the Kanzaki's forces which are not tractable for such small supercells. The denition from the residual stress appears therefore as the best way to extract the elastic dipole from atomistic simulations, in particular from ab initio calculations. By doing such calculations for dierent applied strains, one can also easily study the variation of this elastic dipole with the applied strain and thus extract the diaelastic polarizability of the pointdefect, 61,62,[START_REF] Kr Oner | Theory of crystal defects[END_REF] another key quantity, useful for instance to describe physical phenomena involving the point defect and a coupling between the strain elds originating from two dierent sources.
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 1 FIG.1. Projection in the basal plane of the dierent pointdefects investigated in hcp Zr: the vacancy and three SIA congurations. The white spheres represent the bulk Zr atoms at z = 0, the grey spheres the bulk Zr atoms at z = c=2. The square represents the vacancy (V), the blue spheres are SIAs at z = 0 (BO and BS congurations), and the yellow sphere the SIA at z = c=4 (O conguration).

  0 and E bulk 0 the energies of the unstrained defective and bulk supercells, respectively. Results of the comparison are shown in Fig.2

FIG. 2 .

 2 FIG. 2. Interaction energy between (a) V, (b) BO, (c) O and(d) BS point-defects and homogeneous applied strains corresponding either to dilatation or pure shear. Filled symbols are the results of atomistic simulations and straight lines the predictions of elasticity theory (Eq. 5) using the elastic dipole deduced from the residual stress (Eq. 8). Data have been obtained with the EAM #3 potential.

FIG. 3 .

 3 FIG. 3. Elastic dipole components P11 and P33 for the vacancy, and the BO and O congurations of the SIA, obtained through a tting on the atomistic displacement, versus the radius of the exclusion zone r excl normalized by the lattice parameter a. The horizontal lines indicate the values deduced from the residual stress. The simulation boxes used for both displacement eld and residual stress approaches contain 1600 (left side) and 200 atoms (right side).

FIG. 4 .

 4 FIG.4. Schematic illustration of the procedure used for the computation of the Kanzaki forces in the case of a vacancy defect. The white spheres correspond to atoms at their perfect bulk positions, i.e. before relaxation, the white square to the vacancy defect, and the black spheres to the atoms at their relaxed position around the defect.

FIG. 5 .

 5 FIG.5. Convergence of the elastic dipole components with the cutting radius rI of the force summation (Eq.4) for the Kanzaki method. The elastic dipoles are calculated in the zeroth order approximation for the vacancy and the BO, O andBC congurations of the SIA, using EAM #3 potential. The horizontal lines indicate the values deduced from the residual stress method.

FIG. 6 .

 6 FIG.6. Convergence of the elastic dipole components with the radius of the defect restoration zone for the Kanzaki method. The elastic dipoles are calculated for the vacancy and the BO, O and BS congurations of the SIA, using EAM #3 potential. The horizontal lines indicate the values deduced from the residual stress method. The vertical gray tics indicate the converged values of the defect restoration radii, corresponding to the point-defect core zone dimensions.

FIG. 8 .

 8 FIG. 8. Convergence of the elastic dipole components deduced from the residual stress computed by DFT with N the number of atoms in the supercell for (a) the H impurity, (b) the vacancy, and (c) the BO, (d) O and (e) BS congurations of the SIA. The insets show the variation of the elastic dipoles with the inverse of N , with the straight line corresponding to the 1=N interpolation.

TABLE I .

 I Elastic dipoles of the vacancy (V), of the BO, O and BS congurations of the SIA, and of the H solute in tetrahedral position in hcp Zr. In the chosen coordinate system, with e1 k [2110], e2 k [0110] and e3 k [0001], all tensors are diagonal.The dipole components have been obtained either by a tting of the displacement eld, by the computation of the Kanzaki forces, or from the residual stress. Results are given in eV, for dierent empirical potentials, EAM #2 and #3 from Ref.44, and SMA WM1 from Ref.45, and for ab initio calculations. Pij values are obtained using N = 12800 atoms supercells for empirical potentials (except the displacement method, on 1600 atoms supercells), and from 1=N 3 0 extrapolation for ab initio

	calculations.						
			V		BO	O	BS	H
	Potential Method	P11	P33	P11 P33	P11 P33	P11 P22 P33	P11 P33
	EAM #2 Kanzaki	0:67 0:79 13:8 5:85 11:5 8:30 13:5 14:8 6:6
		Residual stress 0:65 0:79 14:0 6:00 11:6 8:36 13:6 14:8 6:6
	EAM #3 Displacement	5:45 5:55 11:8 6:15 15:3 16:2	
		Kanzaki	5:41 5:51 11:8 6:35 15:6 16:5 13:6 11:6 8:2
		Residual stress 5:43 5:51 11:7 6:32 15:5 16:4 13:5 11:6 8:2
	SMA WM1 Kanzaki	4:28 4:34 30:2 16:8 24:4 29:3 31:1 29:9 15:5
		Residual stress 4:27 4:33 30:5 16:9 24:5 29:5 31:3 30:2 15:6
	Ab initio	Residual stress 5:14 7:62 17:0 10:6 14:9 17:0 14:2 22:1 9:3	1:74 2:92
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