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Extended Lagrangian approach for the defocusing Non-Linear
Schrodinger equation

F. Dhaouadi’ N. Favriel S. Gavrilyuk?
April 25, 2018

Abstract

We study the defocusing Non-Linear Schrédinger (NLS) equation written in hydrodynamic form
through the Madelung transform. From the mathematical point of view, the hydrodynamic form
can be seen as the Euler-Lagrange equations for a Lagrangian submitted to a differential constraint
corresponding to the mass conservation law. The dispersive nature of NLS equation poses some ma-
jor numerical challenges. The idea is to introduce a two-parameter family of extended Lagrangians,
depending on a greater number of variables, whose Euler-Lagrange equations are hyperbolic and ac-
curately approximate NLS equation in a certain limit. The corresponding hyperbolic equations are
studied and solved numerically using Godunov type methods. Comparison of exact and asymptotic
solutions to the NLS equation (‘grey’ solitons and dispersive shocks) and the corresponding numer-
ical solutions to the extended system was performed. A very good accuracy of such a hyperbolic
approximation was observed.

Keywords : Non-Linear Schrodinger equation, augmented Lagrangian, hyperbolic equations, Go-
dunov type methods

1 Introduction

In continuum mechanics, the most of dissipationless models can be derived from a constrained Lagrangian
that depends only on the instantaneous values of macroscopic variables and not on their derivatives. The
imposed constraints correspond to the conservation of main physical quantities (density, entropy,...).
However, it is often necessary to construct a Lagrangian that also depends on gradients of macroscopic
variables and (or) their material time derivatives. The mathematical nature of the corresponding Euler-
Lagrange equations completely changes : usually, we shift from a ‘hyperbolic’ system of equations to
a ‘dispersive’ one. The examples of dispersive models are numerous : shallow water equations (Serre-
Green-Naghdi (SGN) equations [1] or their generalization accounting for capillary effects [2]), bubbly
fluid flows [3], solid mechanics for gradient elasticity [4], non-linear optics [5]. For further examples, see
a review article [6]). Only few of them are integrable, so the problem of construction of analytical or
numerical solutions to the mathematical models is particularly challenging.

Currently, numerical methods used for dispersive systems of equations are extremely time-consuming.
For example, when treating the SGN equations, it is necessary at each time step to invert an elliptic
operator in the computational domain [7]. Also, it is not completely unclear how to impose the trans-
parent boundary conditions for general dispersive systems allowing us to avoid ‘parasitic reflection’ from
artificial numerical boundaries [8]. Recently, a new approach was developed for the SGN equations [9]
allowing us to avoid these problems. This approach is based on the formulation of an extended La-
grangian that allows us to transform the dispersive equations into a set of hyperbolic equations with
relaxation terms. The obtained equations become local and there is no more need to invert non-local
operators. In particular, this makes the computation time sharply reduced. Also, for hyperbolic systems
of equations the question about transparent boundary conditions can be answered as fully as possible at
least in linear approximation.
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We extend here the approach of [9] to the case where the dispersion is described by the gradients of
unknowns. Such models appear, in particular, in the study of capillary fluids [10], [11], [12], [13], [14],
[15] and quantum mechanics [16], [17], [18], [19], [6]. Here we will study the NLS equation (more exactly,
its hydrodynamic form through the Madelung transform [20]) which is mathematically equivalent to
capillary fluids. An additional advantage compared to the general dispersive systems whose Lagrangian
depends on the gradients of unknowns is that it is integrable [21]. It allows us, in particular, to have
a large family of exact solutions in order to quantify the accuracy of the approximation related to the
introduction of the extended Lagrangian.

In section 2, a short reminder of the defocusing NLS equation and the Madelung transform is pre-
sented. In section 3, the extended Lagrangian formulation of this equation is given. Section 4 covers
the main numerical resolution steps of the obtained equations. In section 5, we present two test cases.
First, we compare the accuracy of our approach in the case of a 1-D ‘grey’ soliton which is an exact
solution to NLS equation. Then, we compare our results for discontinuous initial data with solutions
of modulation equations to the NLS equation (Whitham’s equations) [22], [23], [5]. In both cases, a
very good agreement of numerical and analytical results is obtained. Technical details are given in the
Appendices.

In this paper, we shall use bold lowercase letters for vectors and bold uppercase letters for any second

order tensor. For any vectors u and v, we shall denote u - v their scalar product and u ® v their tensor

0
product. For any scalar A and vector u we shall denote V) the gradient vector (column) of A, au the
X

jacobian matrix of u. The divergence of a second order tensor A is the vector div(A) such that for any
constant vector a:
div(A) - a = div(Aa).

In particular, for any vector fields u, v:

div(Au) = div(A) -u +tr (Ag:) ,

div (u®@ v) = vdiv (u) + g—;u.

Also, for any function f, the notation f means the material derivative of f along the velocity field u:

_8f
f*E+U'Vf.

2 Defocusing NLS equation

Non-linear Schrodinger’s equation (NLS) appears in a wide range of contexts, for example in non-linear
optics [24], surface gravity waves [25], quantum fluids [26], [17]. In general it serves as a fundamental
model for description of non-linear and dispersive phenomena. Integrability of the NLS equation in both
focusing (f'(p) < 0) and defocusing (f'(p) > 0) cases was shown in [21]. A general form of the NLS
equation can be written as:

. h?
ifpe + 5— A —mf ([9f?) ¢ = 0. (1)
m
Here, f is a function of |1p|2 that characterizes the non-linearity of the equation. If we consider the

parameter € = —, the NLS equation can be written as :
m

. €2 2
i€+ 5 A%~ [(w)p = 0. @)

In this equation, € acts only as a scaling factor. In fact, if we consider the transformed variables x = ex’
and t = et/, we can rewrite (2) in the new variables as :

e+ 30— f(9 =0, 3)

where A’ is the Laplacian with respect to the space coordinates x’. In the following we take the scaling
factor e = 1.



2.1 Madelung’s transform

Equation (2) can be rewritten in equivalent "hydrodynamic’ form. For this, let us consider Madelung’s

transform [20], [27] defined by :
V(x,t) = /p(x, t)e? b, (4)

Here, p > 0 and 6 are real valued functions of time and space. Plugging this expression into equation
(1) permits us to separate imaginary and real parts of the equation. This yields the following system:

pt +div(pu) =0
u;+ (u-V)u+V (f(p) - A(\/ﬁ)) =0

Here, the considered ’'velocity’ field u is defined as :

u=Vé (6)

()

It is important to note that under such a definition curl(u) = 0. This form is said to be "hydrodynamic’
due to its similarity with the Euler equations. We will only consider the defocusing NLS equation for
which the function f is given in a special form :

flp)=0p. (7)

In this case, system (5) can be rewritten as :
pt + div(pu) = 0,

(pu); +div (pu @ u +II) = 0,

with
m= (7 _a)\1d: Lvpev )
=5 74 L,VPeve

For such a set of equations, one can construct a Lagrangian, for which (8) are the Euler-Lagrange
equations [10], [11], [13], [12], [14], [15] :

ul* p* 1 |Vp/?
= — - == —— ]dQ. 1
£ /Q <p 2 2 dp 2 (10)
Equations (8) admit the energy conservation law of the form :
ok 1
E—&-div(Eu—l—Hu— ipr) =0 (11)

where ) )
u|® p* 1|V
E=p— o4 7
Py Yyt
Compared to classical models, for which the potential energy does not depend explicitly on Vp, we have
an additional term in the energy flux (—$pVp ) known as interstitial working [28].

(12)

2.2 Exact solutions
We are looking for traveling wave solutions :
plet) = p(€) : u@t)=ul§) ; E=a-Ut (13)

Under this assumption, successive integrations of (8) yield the following equations for the hydrodynamic
quantities p and u [5], [29]:

(dp>2—4( b)) (p—ba)p—bs) ; u=U+1
e = 4(p )P 2)\P 3) 3 = P

U?=by +by+bs ; ¢>=bibabs

(14)



In these expressions, b; are arbitrary constants. Without loss of generality, we can assume that b; >
by > bs > 0. One can obtain a solution of (8) in terms of the Jacobi elliptic function dn :

p=bi — (by — bs)dn? (\/b1 by (z — Ut),s) C u=U+ %. (15)
Here s is the parameter of the elliptic function satisfying the relation :
&2 by — b37
b1 — b3

0<s?<1, (16)

and
dn(v,s) = /1 — s2sn%(v,s), sn(v,s) = sin(p(v, s)),

where ¢(v, s) is obtained implicitly from the equation :

vi/#’ d
0 /11— s2sin2(0)

For each fixed value of 0 < s < 1, solution (15) is a periodic wave of amplitude a and wavenumber &
given by :
b2 — bg s 2a
a =

IR Ol (17)

Here K (s) is the complete elliptic integral of the first kind defined as :

K(s) = / S (18)
0 +/1— s%sin2(6)

For the limiting values s — 0 and s — 1, the oscillations vanish and two different behaviors are observed
for each limit. In the case s — 0, the amplitude of the oscillations vanishes. The wave number remains
at a finite value given by k — 2v/b; — bs. In the case s — 1, we get K(s) — oo and therefore the
oscillations vanish as their wavenumber & — 0. Since dn(v, s)|,_,; = 1/cosh(v) the solution behaves like
a soliton of amplitude (b1 — b3).

Below, we will present briefly some exact and asymptotic solutions to the NLS equation based on the
representation (15).

One-dimensional ‘grey’ soliton

The first case corresponds to the family of solutions obtained from (15) in the limit s — 1 :

by — b3 U — bi1v/bs
cosh? (Vb1 — b3 (z — Ut)) P
This family of solutions is called ‘grey’ solitons [16]. It consists of a localized wave pulse of amplitude

(by — b3) that propagates with a constant velocity U while maintaining its shape. The parameters b and
b3 define the limit values of the soliton such that :

p="b1—

(19)

li ) =b1 min = 03 ;i ) =U —+/bs ; min = U — ——.

The shape of the soliton is shown on Figure 1.
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Figure 1: Different shapes of the variables p and u for the ‘grey’ soliton solution, for different values of
the parameters b; and b3 at t =0

Dispersive shock waves

In classical hydrodynamics described by dispersionless hyperbolic Euler equations, shock waves (strong
discontinuities) can appear. In the case of dispersive hydrodynamics, these singularities are resolved by
the apparition of an oscillatory wave train in a region of space which expands over time. This is referred
to as a dispersive shock wave (DSW) [22], [23], [29], [30], [6]. The amplitude of the DSW is described by
Whitham’s modulation equations [31].

Let us consider the Riemann problem for NLS equation :

pley=pr x<0 u(z)=ur, <0 (21)
p

x>0 uwx)=ur x>0
Such an initial discontinuity gives rise to either a DSW or a rarefaction wave on each side. The evolution

of amplitude of the DSW is described in terms of the Riemann invariants r; (r1 > ro > r3 > r4) of the
corresponding Whitham’s averaged equations [32], [5] :

8T’i % 87"1'

a7 i—— =0, 1=1,2,3,4. 29
8t+ 9 0, ¢ 3 (22)

The characteristic velocities are given by:

k=t gt (1 00EG)
=v0)- g (- IR ES)
=00+ Jisro (1- 222E)
wﬂéw(l:i_:ziii%)*

where the complete elliptic integral of the second kind E(s) is defined as

s) = /’2’ \/1 — s2sin?(0)do
0



The variables b; and U are linked to the r; via the relations [32], [5] :

1

by =g (r+ra =g — 1), (23)
6
1

bZZE(T1+T3_T2_T4)2’ (24)
1

b3:f<7"1+’l”4—7“2—7“3)2, (25)
16
1

U:Z(rl—l—rg—i—rg—i—m), (26)

o _ (r—ra)(rs —r4)
(r1—7r3)(r2 —74)’

(27)

If we consider a self-similar evolution of the Riemann invariants, r; depend only on 7 = z/t and equations
(22) reduce to :
ri(Vi—71)=0 (28)

It means that one of the Riemann invariants, r; changes in space and time and its characteristic speed
is V; = 7 while the three other invariants are constants determined by the the initial conditions on
both sides of the initial discontinuity. Outside of the DSW region, it was shown in [5] that the Whitham
equations for the defocusing NLS degenerate into Euler equations for shallow water flows. This transition
occurs when two of the Riemann invariants r; merge together, leading to either s> = 0 or s2 = 1. The
two remaining invariants behave like Riemann invariants for the shallow water equations :

re =ut2p (29)

The solution is then determined via matching of the Riemann invariants at the DSW fronts [22],[5].
Since this procedure depends strongly on the structure of the flow, we will consider the case in which a
rarefaction wave on the left and a DSW on the right are created (see Figure 2). At the oscillatory front
(corresponding to the leading edge of the DSW, s? = 0) we get [29],[6]:

ri=ry, Vi=Va, r3=ry(R), ra=r_(R). (30)
At the soliton front (corresponding to the trailing edge of the DSW, s? = 1) we get :
o =T3, ‘/2 = ‘/Sa T = TJ,_(O), Ty = 7’_(0). (31)

Here, 74(0) and r4(R) are the values of the invariants 7y at the states ’0’ (the constant state found
solving the Riemann problem for the non-dispersive shallow water equations) and 'R’ (the state on the
right of the initial discontinuity). The profile of the solution is shown in Figure 2. The oscillatory part
of the solution is plotted according to the following algorithm :

1. Set the values of pr,, pr, ur, ug.
2. Calculate the values of pg ug, 1, T3, T4.

Calculate ro(s) = (r1(rg — r4) + s*(r1 — r3)ra)/(r3 — ra + (11 — r3)s?).

- W

Calculate the functions by (s), ba(s), bs(s), U(s).
5. Calculate 7(s) = Va(s).

6. Choose a time instant ¢. The DSW is shown as a parametric plot of (15) : p(s,t) = p(7(s),t),
0<s<1.

7. The low and upper boundaries of the oscillatory profile are described by :

Ping(s) = 03(8),  psup(s) = s2b1(s) + (1 — s%)bs(s).



Figure 2: Asymptotic profile of the solution to NLS equation (continuous line) for the Riemann problem
pr, =2, pr =1, ur, =ugr = 0. The boundaries 7;, i = 1,2, 3,4 delimit the DSW and the rarefaction
wave regions. The modulation of the DSW profile between 75 and 7 is described by the rarefaction wave
solution to the Whitham system (bold dashed line). The oscillatory profile is shown at ¢ = 70. The

8po — 8/ +
PO PoPR pR, T2 = UR + /Po;, T3 = Uo — +/Po0,
2\/Po — /PR

values of 7;, © = 1,2,3,4, are given by m = ur +

T4 = UL, — +/PL-

r.(0)

)] — -

> T=X/t

Figure 3: Asymptotic profile of invariant ro for Whitham’s system. In the DSW region 75 < 7 < 71, 72
(dashed line) varies while the other r; are constants.

3 Extended Lagrangian formulation

In this part, the extended Lagrangian formulation is given for the NLS equation. The Euler-Lagrange
equations and hyperbolicity study are given in Appendices A, B in a more general framwork, from which
the application to NLS equation can be easily retrieved. This general approach will allow us to apply
our method to other physical problems with the density gradient dependent energies.

Let us consider a new dual to p variable n The idea is to substitute Vp by Vn and to guarantee the
convergence of 77 to p in a certain limit. In order to do that, let us consider the extended Lagrangian :

Le :/ Le (u, p,n,1, V) dS2, (32)
Q¢



where a two-parameter family of local Lagrangians L¢ is given by :

. A B R U/ P B
L =p— = - —=p|==-1) .

(w, p,1,1, V) = p== + 5P =5 0 5P (33)

This extended Lagrangian is constructed from the original Lagrangian (10) by replacing Vp by Vn and
adding two terms :

2
e The first term %p (g — 1) is a penalization term. When A — oo, the difference (r/p— 1) vanishes.
e The second term g pn? is necessary in order to regularize the time evolution of 7 and to ensure the

hyperbolicity of the new governing equations. It can be perceived as a small micro-inertia term.

We can write now the extended Hamilton’s action:

t1 t1
a= / LEdt = / / L (u, p,n,w,p)dQ dt, (34)
to to Q

where
w=1, p=Vn
Applying a technique for variation of the functionals with differential constraints (in our case, this is the

mass conservation law) [33], one can obtain the following system of equations, written in conservative
form (for details, see Appendix A):

% + div(pu) = 0, (35)
Jdpu . 0? 1, 5 n 1
—— +d — - A1 —=) | Id+ — =
o 4 1v<pu®u+<2 CP -0 1d+ Spop) ~o. (36)
0
L+ div(pm) = pw, (37)
e (e ge) =5 (05)
—+div|lpwu—-—p|==(1—-], 38
ot PR 48P) T8\ ) (38)
0
8—1;’ +div((p-u—w)Id) =0; curl(p) = 0. (39)
This system admits the energy conservation law :
ok* 1
5 + div (Eeu + Pu-— 4pwp) =0,
where ) ) 5
B 5, P 1Ipl" A (7
Ee=pl 42 A e
R L A YR P S Yl W ’

2
pe 1 n 1
P=|——-— AM1—=) | Id+ — .
(5 - P+ ma-D)1as pop
It is interesting to note that, even for the extended system, the energy conservation equation always
contains, as in the case of original system (see (11)) the interstitial working term written here in the
1
form ——wp.
4p
The main point in using the approach of an extended Lagrangian is a possibility to replace the
original dispersive system by an approximate hyperbolic system of equations [9]. This will allow us to
use standard and rapid numerical methods for hyperbolic systems of equations. The system (35)—(39) is
hyperbolic (see proof in Appendix B). The characteristic speeds ¢ in a-direction are given by:

An? An?
me et - e o+

5 (40)

c=u, (c—u)i=

Linearizing the governing equations on the constant solution p = pg,u = 0,w = 0,p = 0,7 = pp and
looking for the solutions which are proportional to e*(¥*=«?)  where k is the wave number and w is the



frequency, one can obtain the dispersion relation expressed here in the form ¢, = c,(k), where ¢, = ¢ is
the phase velocity :

1 A 1 A\ A po + A
—— +pot+ A+ + ( +po+ A+ ) —4 ( - )
L, AT Bp2k? \/ 15 " " Bp3k? Bpok? " 4Bp2
() = 5 L ()

One can easily see that in the linear case the phase velocity approaches to the characteristic velocity in
the limit £ — oo.

3.1 Estimation of g and A

The extended Lagrangian approach (32) requires a choice of f and A. This choice can be based, for
example, on the fact that the dispersion relations for both extended and original systems must remain
close in a specific range of wave numbers. For the equilibrium state defined by p = pg,u = ug = 0, the
dispersion relation for the original Schrédinger equation is :

cp = po+ K /4. (42)

When (8,\) — (0,+00), the convergence of these dispersion relations is not uniform, that is, the curves
almost coincide for low wave numbers but start to stray away from each other starting from a certain
threshold wave number k4. (8,). This threshold wave number must be chosen such that the wave
numbers that may be present in the solution are contained in [0, kpaz]-

A

Cp %
O
O
6 <
AP
5 S

3 /)\=10

0 2 4 6 8 10 12 k

Figure 4: The dispersion relation (42) (continous line) and (41) for the extended Lagrangian (dashed
lines) for for B = 10~* and different values of \.

4 Numerical resolution

We consider the numerical resolution of equations (39) in the 1-D case. The system can be written as :

ou OF
—S 43
ot + ox ’ (43)
where U, F and S are respectively the vector of conservative variables, flux vector and source term given

by :

P L P 0
pu pu? + B +nA(1 - 1) 0
U= m |, F= pNU , S= pw
A
g — 20-2)

p pU—w 0



Due to a non-zero term source, a splitting strategy is applied [34], [9]. Hence, at each time step, the
numerical resolution is split into a hyperbolic part (no source terms) :

ouU OF
o 44
ot Tor (44)
and an ordinary differential equation (ODE) part :
dU
_g 45
=5 (45)

4.1 Hyperbolic step
Equation (44) is solved by using a classical Godunov type scheme for hyperbolic equations :

At
+1 _ * * .
Here N is the number of cells of uniform size Az, and At is the time step satisfying the Courant —
Friedrichs-Levy condition. The intercell fluxes F} 1 are computed using the HLL-Rusanov approximate
2

Riemann solver [34] :

FH% (Ui ) i+1) = ) (F( i+1) - F(U; )) - 5””% ( i1 — U ) ) (47)
where «7' , is obtained by using the Davis approximation [35] :

fir2 = max(le; (U], le; (U)D), (48)
where c; are the eigenvalues of the extended system.

4.2 ODE step

The source terms treatment is reduced to a second order ordinary differential equation with constant
coefficients which can be solved exactly in our case. The relaxation equations are given by :

do _
dt
dpu
=
dt

o _
dt

dpw A ( m
. p

0

Therefore, the exact solution is given by :

n+l _ -n n+l _ -n n+l _ —-n
P =p uttt =u P =p

"t = p" 4 (7" — p") cos(QAL) + % sin(QAt)
w"T = Q(p" — ™) sin(QAt) + w"cos (QAL)

where ) = -
p

5 Results

All numerical results of this section are obtained by the MUSCL-Hancock extension to the Godunov
scheme with MIN-MOD limiter [34].

10



5.1 One-dimensional grey soliton

We consider the initial conditions corresponding to the solitary wave solutions of NLS equation :
b — by b1v/bs

cosh? (Vb1 — b3 ) p(z,0)’

n(x,0) = p(z,0), w(x,0) = —p(x,0)us(x,0), p(x,0) = pz(,0).

We use periodic boundary conditions in the computational domain. Thus we impose the following
relation between numerical fluxes in the first and last numerical cells:

p(x,0) =by — u(z,0) =U — (49)

=T, = F (U3, U7). (50)

It means that when the soliton passes through one of the boundaries, it continuously reappears on the
other side. This permits us to run simulations for a longer time without having to use large domains.
The period of such a configuration is the required time for the soliton to reach back its initial position.
The results are shown on Figure 5:

p A u A
1.5 1
1.4 0.9
1.3 0.8
1.2 0.7
1.1 0.6
t=0 -~ — - t=0 - — -
1r | ot=2T ] 05 | ot=2T ]
-20 -10 0 10 X -20 -10 0 10 X

Figure 5: Numerical profiles of p (left) and u (right) for the grey soliton at ¢ = 0 (dot-dashed line) and
at t = 2T (continuous line). The used domain is L = [-20,20] with Az = 0.0002, the period is T =
D/U = 20. Parameters used for the simulation are by = 1.5, b3 =1, U =2, e =1, f=10"%, X = 500.

One can see that the shape and the position of the simulated soliton are in perfect agreement with
the exact solution. Furthermore, Figure 6 shows the solution for different mesh sizes Az = 0.004,
Az = 0.002, Az = 0.0008 and Az = 0.0002, with a focus on the soliton peak. We can see that for more
refined meshes, we get more accurate values for the soliton position and amplitude, which highlights the
convergence of the scheme.

p ;
1.04 | N
1.03 | N
1.02 | N
101 | S

0.99 r
0.98

0.6 0.4 0.2 0 0.2 0.4 X

Figure 6: Magnified view on the numerical ‘grey’ soliton peak, for different mesh sizes, at t = 27". The
theoretical amplitude and position are p = 1 and = = 0. Parameters used for the simulation are the
same as in figure (5).
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5.2 Dispersive Riemann problem

We present here the results for dispersive Riemann problem. In order to get the case where a DSW
propagates to the right and a rarefaction wave to the left, the initial values must satisfy the condition
[29] :

ry(L) >ry(R)>r_(R) >r_(L) (51)
From the numerical point of view, the initial step function induces an infinite gradient which causes
spurious effects to appear near the initial discontinuity. Hence, we will use a rather regular step-like
function defined by :

o) = PL'|2‘PR N (m;;m) tanh (;) (52)
uo(z) = L& ;“R + <“L 5 “R> tanh (%) : (53)

This spreads the abrupt discontinuity over the region [—24, 26] as shown in Figure (7) :

pﬂ
smoothed step ———
& theoretical step ------ i
Pr

25 0 25 X

Figure 7: Magnified view over the smoothed step (continuous line) for § = 0.1, Az = 0.000667.

Now, given this ‘prepared’ initial condition, we investigate the long time behavior of the solution.
We plot the quantities p and u, obtained numerically, as functions of the auto-similar variable z/t. The
results are shown in figure (8) :

12



numeriéal simulation
N — A Whitham envelope
Po
Pr U UHVWU” "]
Ty 13 L) T X/t
ul

- T - -
numerical simulation
Whitham envelope

UL s AN MAMAAANAS/ Vn ‘ VWWNWWNMWWWMWWWWW Ur

Figure 8: Comparison of the numerical results (thin line) with the Whitham modulational profile of the
DSW (thick line) at ¢t = 70. The upper figure shows p = f(x/t) and the lower figure shows u = f(z/t).
The displayed 7; are the theoretical boundaries of the DSW and the rarefaction wave. The values of pg
and ug are the theoretical values in the central plateau given by po = +(\/pr +/pr + 3 (ur, —ur))?* and
Uy = %(uL+uR)+\/p7Lf\/;TR. The initial values used for this simulation are pr, = 2, pgp = 1,ur, = ug = 0.
The parameters are: = 2.107°, A = 300, Az = 0.000667.

Clearly, the overall structure of the solution complies with the asymptotic one shown on Figure 2.
The amplitude of the oscillations shows a very good agreement with the asymptotic DSW profile from
Whitham’s theory of modulations. The oscillations develop in both regions: 7 > 71 and 7 < 77. These
oscillations are part of the solution but they do not appear in the asymptotic (in time) limit because
they vanish when ¢ — 0o as their amplitude decreases with time as a oc t~1/2 [23]. This behavior is also
displayed with the same power law in our results. By measuring the amplitude a of the first oscillation
at the vicinity of 74, we could plot the function f(t) = at3/? (see Figure (9) . The plot shows that f(t)
is a linear function of time which implies that av/t is constant.
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Figure 9: Vanishing oscillations at the vicinity of the singular point 7 = 74. The figure on the left shows
that these oscillations decrease in time. The figure on the right shows that the amplitude of the first
oscillation @ is such that at3/2 is linear. This implies the power law a oc t~1/2,

Another important detail is to check the position of the soliton which arises at the vicinity of 7 = 7.
Let 74(t) be the soliton position at time t. We will compare 7,(t) with the theoretical position 5. The
relative error is given by :

Ts(t) — 72

T2 ’

errpos(t) = (54)

The time evolution of this error is shown on Figure (10) :

pos‘{tion error

0.24
0.22

0.2
0.18
0.16
0.14
0.12

0.1
0.08
0.06
0.04
0.02

Figure 10: Relative error on the position of the first soliton plotted as function of time.

14



6 Conclusions and perspectives

In order to solve the NLS equation, a new numerical method based on the formulation of the ‘extended
Lagrangian’ approach was developed. The Euler-Lagrange equations corresponding to this extended La-
grangian are hyperbolic and approximate the NLS equation with a good accuracy, when it was compared
with exact and approximate solutions to the NLS equations.

The equations being hyperbolic grants the possibility of developing classical Godunov type schemes
which makes computational time reasonable and opens a possibility to extend this work to the multi-
dimensional case. Indeed, the extended model is hyperbolic, the equations are local and the scheme
could be parallelized very efficiently using domain decomposition. This property may also simplify the
development of ‘transparent’ boundary conditions which prevent the reflection of oscillations and small
perturbations that reach the boundaries.
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A Extended Lagrangian

Let us consider Hamilton’s action : .
1

a= | cdt (55)

to
where L€ is a generic extended Lagrangian given by :

2
|u|

ﬁe:/ (p; —W(p,n,ﬁ,vn)> dQdt. (56)
o

Here [tg, t1] is the time interval, €2; is the material volume, and W is a generic potential. In particular,
for the approximation of the Schrédinger equation it will be chosen as :

2 2 2
. pF L IVnl® A Bp .o
Wip,n,n,Vn) ==+ — — | =-=1) — =7~ 57
(p.m.1,Vn) 5t 2 T2\ 5 (57)
However, in the following we will consider a generic function W because the calculations are less cum-
bersome in a general case. The variation of Hamilton’s action is submitted to the constraint which is
the mass conservation law :

p
E—i_dw( u) = 0. (58)

Two types of variations will be considered : one corresponds to the variation of 7 as independent variable
(and will be denoted by d7), and the second one corresponds to the virtual displacement of the continuum,
respecting the mass conservation law (this variation will be denoted by dx). In particular, in the last
case the Eulerian variations of the density, velocity and 7 are related to dx as (see for details [33]):

op = —div (pdx), bu= (6x)— g—uéx, o1y = du - V. (59)
X
Here ‘hat’ means to the variation at fixed Eulerian variables, and ‘dot’ denotes the material derivative.

Both variations are vanishing at the boundary of [tg, t1] x ;. We consider first the variation of Hamilton’s
action with respect to 7. We need to express the variation of 7 :

an
(5—5(8>+u ovn. (60)
Schwarz’s theorem allows us to interchange the order of derivatives :
on aén
0l =) =—, dVn=V(n). 1
<8t> 5 OV =V(mn) (61)

Hence :

/ /Q oy (P - W(p,m, mvn)) ddt
f ow ow ow
/75 /Qt (5 + 67(5)—5- v 5V77) dQdt

f aW aW on oW
—_— Qdt.
/0 /Q, ( + 5 (a(at)ﬂ w) o Wn)d at

Using the Gauss-Ostrogradski’s theorem and taking into account the fact that the variation dn is van-
ishing on the boundary of [tg,t1] X ¢, we finally obtain :

! oW ow (oW
5a—/ /< <3n>+dv<8n )+dw<0V77>)5ndet_0’ for any dn.

This yields classical Euler-Lagrange equation for 7:
ow o0 (oW ow ow
- div [ — div| —— ) =0. 62
oy i (o) o () = (e, (62)
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Now, we consider the variation of Hamilton’s action with respect to dz. Using (59) and Gauss-Ostrogradski’s
formula, we will arrive to :

t1
Sa = —/ / 909 iy (pueut (P2 —w)ta+ 2% o vn)) - oxdadt — 0, for any ox.
to Ja, \ Ot dp oV

This implies :
Opu ) ow ow B

Thus we have the following system of equations :

I . _
% +div(pu) =0

0 (N (00N (Y oW
ot \ on on ovVn on
dpu

ow ow
—— +div +lp=—-W)Id+ — &V =
di (pu@u (,0 ) v ® 17) 0

Adding the new variables :

w=1n=2 +u-Vy, p=V, (64)
we can rewrite the governing equations in the form :
% + div(pu) = (65)
apu+div(pu®u+<pW)Id+®p)0 (66)
ot P
% fu- Vi =w (67)
o (OW ow ow oW
=~ (== div [ = — | -===0 68
8t(8w>+ W(aw'” 8p> on (68)
op Op ou\" . _
e + 7 + <8x> p—Vw=0, curl(p)=0. (69)
In the particular case (57), we obtain :
% + div(pu) =0 (70)
Jdpu ) 02 1, 4 n 1
ot L 1-M)1d+ — - 1
o —|—d1v<pu®u—|—<2 4,0|p\ +nA( p) +4pp®p 0 (71)
0
% + div(pnu) = pw (72)
dpw . ( 1 ) A ( r])
—— +div|{pvu——p|=—-1-—= 73
ot PO 4B A (73)
aa—lt) +div((p-u—w)Id) =0; curl(p) =0. (74)

B Hyperbolicity of the extended Lagrangian model

We consider the 1D case where all the variables are functions of only (z,t) instead of (x = (z,y,2)7, ).
The velocity field u and the gradient p of w will be denoted by w and p, respectively. The governing
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equations for the extended Lagrangian model can be rewritten as :

dp 9p 8u_
ot T r TP =0

8u+ ou 8p+)\< 28p < 77)17)
ot oxr ' Ox p? Ox p )0
8w+u0w_1<13p pﬂ) A(
ot dxr  4Bp \ pOx 20 B

Op Op ou Ow

)

b\d

ot Yor Por " aw 0
on On _
3t+ or

In order to study the hyperbolicity of this system, we write it in quasi-linear form :

ou ou
o A(U)% =4q (75)
where:
P U p 0 0 0 0
u 1+ w0 0 2 (1 - 27’7) 0
— — — IA(1_n
U=| w AU =1 £ 0 v —g 0 q= gp( p)
p 0 p —1 u 0 0
n 0 0 O 0 U w

The eigenvalues ¢ of the matrix A are :

1 An? 1 a2\ 2
, (w+p+p@)i\/(—4ap2+ﬁp@>
c=u, (c—u)i = 5 .

The right-hand side of (76) is always positive. However, the roots can be multiple if

1 An?

—p+ L
appr =P 2

One can easily prove that even in the case of multiple roots one always has five linear independent
eigenvectors. So, the system is always hyperbolic.

Linearizing the governing equations on the constant solution p = pg,u = 0,w = 0,p = 0,7 = py and
looking for the solutions which are proportional to e!(**=«t) where k is the wave number and w is the
frequency, one can obtain the dispersion relation expressed here in the form ¢, = ¢, (k), where ¢, = ¢ is
the phase velocity :

A P0+)\)

A 1 A\
5 +po+ A+ + +po+ A+ -4 +
iy 4/3 po Bo2k? \/(4ﬁp po ﬁ2k2> (5,00762 182
(c2)? = 5 .

19



