

Electro-thermal Model of a Silicon Carbide Power MOSFET

K Frifita, Nk M'Sirdi, A Baghaz, M Naamane, M Boussak

To cite this version:

K Frifita, Nk M'Sirdi, A Baghaz, M Naamane, M Boussak. Electro-thermal Model of a Silicon Carbide Power MOSFET. International Conference on Electronic Engineering and Renewable Energy (ICEERE'2018), Apr 2018, Oujda, Morocco. hal-01779825

HAL Id: hal-01779825 <https://hal.science/hal-01779825v1>

Submitted on 27 Apr 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Electro-thermal Model of a Silicon Carbide Power MOSFET

K. Frifita . K. M'Sirdi, E. Baghaz, A. Naamane, and M. Boussak

Aix Marseille Univ, Universite de Toulon, CNRS, LIS, Marseille, France SASV group of LIS UMR CNRS 7020, e-mail: nacer.msirdi@univ-amu.fr

Abstract. This paper proposes an electro thermal model for power silicon carbide (SiC) MOSFET based on the EKV MOSFET structure. The thermal dissipation is modeled as an RC Network. The model is developed for the SiC MOSFET C2M0025120D CREE (1200V, 90A) and integrated in the Psim, Saber and Pspice simulation software libraries for prototyping. The simulation curves are compared with the manufacturers' data-sheet.

Keywords: SiC MOSFET, Electro-thermal Model, Psim, Saber, Pspice Model

1 Introduction

The use of a silicon carbide (SiC) for industrial manufacturing power components such as the MOSFET makes it possible to have high performance which satisfy advanced application problems (time response, environmental stresses, heating, power loss reduced). These constraints affect the electrical behavior of the electronic components by the coupling between the electrical and the thermal behaviors. In high power applications, Silicon (Si) circuits are more and more replaced by SiC MOSFET devices [1]. A first serie of such devices has been proposed by CREE, like the SiC MOSFET C2M0025120D (1200V, 90A) [2]. Simulations are very important in electric systems design. Therefore a good suitable simulation models is required in order to show the faisability of the complex systems [3, 4].

In this paper, we propose an electro-thermal model based on the EKV MOS-FET scheme [5,6] for a SiC MOSFET C2M0025120D (1200V, 90A) proposed by CREE. The model is implemented in Psim, Saber and Pspice softwares to allow easy development of applications. For validation, the simulation curves are compared to the manufacturers' experimental data (curves of data sheets). The results show that the proposed model is more precise compared to the literature existing models.

2 SiC MOSFET Electrothermal Model

2.1 Nomenclature

2.2 Electric Model

The electrical model of a SiC MOSFET $(25m\Omega, 1200V)$ and $90A)$ proposed here is based on the EKV's one. The power losses are analysed to estimate and take into account their effect as shown in the equivalent scheme of Fig. 1. V_S , V_G et V_D are respectively the Source, Gate and Drain voltages. It includes 3 parasitic inductances (connected in series with the transistor electrodes L_G , L_D , L_S) to describe the behaviour at high frequencies and the commutation losses. The resistance R_G estimates the gate losses. These inductances and the resistances are used to estimate the power losses during the switching [7–9]. The different variables and parameters $(V_{DS}, I_{DS}, R_{dson}, ...)$ of the model vary also in function of the junction temperature [10].

In this model, we used parameters from the datasheet and the others from an optimization (comparison) that was performed by Saber, Psim and PSpice. Fig. 1 shows the EKV deduced scheme for a SiC MOFET developed under the softwares. The EKV model is based on mathematical expressions which accounts for a MOSFET operation in three regions. It is composed of two current sources G1 and G2. For interpolation between these regions of operation, a linear combination of logarithmic functions is used by EKV.

Fig. 1. Electric model of the SiC MOSFET (C2M0080120D) in Saber Software

The specific current is $I_{s_0} = 2.U_{th}^2.K_s.g_m$. The Drain-Source current (I_{DS}) , in the EKV MOSFET model [7,8], is defined by equation 4, as the difference beetwen the direct I_{G1} (2) and the reverse one I_{G2} (3) [6].

$$
I_M = I_{G1}(V_p - V_S) - I_{G2}(V_p - V_D)
$$
\n(1)

$$
I_{G1} = I_s \cdot g_m \cdot \left[Ln(1 + exp\frac{V_p - V_s}{2V_{DS}}) \right]^2 \tag{2}
$$

$$
I_{G2} = I_s. ft. \left[Ln(1 - exp\frac{V_p - V_D}{2}) \right]^2 \tag{3}
$$

$$
I_M = 2\lambda U_{th}^2 K_s g_m \left(\left(L_n \left(1 + e^{\frac{V_p - V_s}{2V_{DS}}} \right) \right)^2 - ft \left(L_n \left(1 - e^{\frac{V_p - V_D}{2}} \right) \right) \right) \tag{4}
$$

where g_m is the transconductance, K_s is the slope factor, $V_p = \frac{(V_G - U_{th})}{K_s}$ $\frac{t-U_{th}}{K_s}$ the pinch voltage with U_{th} the thermodynamic reference voltage and ft the internal thermal voltage. This model of Fig. (1) can then be used for simulation and prototyping of any application using this SiC MOSFET into softwares like Saber, Pspice, Psim (see section 3) or Matlab/Simulink (see [11]). The electric equivalent scheme can be completed by electric equations to allow any kind of its numerical simulation.

In a second step, we can consider and include, to this model, the parameters temperature dependance. The accuracy of the proposed model will be enhanced by modeling of the influence of temperature on electrical parameters.

The variation of the junction temperature, leads to parameters variation which can be described as follows, where $\vartheta = -8.5 mV$ ^oK. The variations included in the previous model show that the model is Non Linear and Time Varying (NLTV).

$$
V_{GS(th)}(T_J) = V_{GS(th)}(300^{\circ}C) + \vartheta \cdot (T_j - 300^{\circ}C)
$$

\n
$$
g_m(T_j) = g_{m(300^{\circ}C)}(\frac{T_j}{300})^{-1.5}
$$

\n
$$
R_{DSON}(T_j) = R_{DSON(300^{\circ}C)}(1 + \frac{\alpha}{100})^{(T_j - 300)}
$$
\n(5)

It remains now to describe the temperature variations by a dynamic model which takes into account the MOSFET operation and convert the power losses in heating the component. Thermal dynamic behaviour is obtained using the heat equation and the finite element method.

4 K. Frifita . K. M'Sirdi, E. Baghaz, A. Naamane, and M. Boussak

2.3 Thermal Model

The electro- thermal coupling between the electrical parts and the thermal parts is produced by the power losses P_P dissipated during normal operation. This power can be estimated by the following equations [8,9]:

$$
P_P = R_{DSon}(T).i_{DS}^2 + (0.25.\Delta t.F.V_{DS}.i_{DS})
$$
\n(6)

We have used the Finite Element Method (FEM) based on an RC Cauer network. As also used in Pspice simulation, we have considered 14 cells of (R, C) equivalent components (Fig.(2) [9]. It gives a very good global approximation of the thermal behaviour going from the MOSFET junction temperature T_i to the ambiant air temperature T_a (assumed to 25°C), through the case (T_c) (package and the thermal dissipation radiator, T_r) (see Fig.(2)).

Fig. 2. Thermal model of SiC MOSFET

The RC layers describing the heat flow has as input power loss to be dissipated as an equivalent current source and as second output the ambiant temperature T_a represented by voltage source (see Fig. 2). The ouptut of interest is of course the junction temperature T_i . A $V_a = 25V$ continuous voltage source correspond to the ambiant air temperature $T_a = 25^{\circ}C$. The flow of the dissipated power losses is represented by an input current source (P_P) . The junction temperature T_j is imposed trough the thermal impedance Z_{TH} between the MOSFET junction and the ambiant air and the dissipated power losses (P_P) by the heat transfer 14

equation
$$
Z_{TH} = \sum_{i=1} R_i * (1 - exp \frac{-t}{R_i C_i})
$$

 $T_j = T_a + P_P * Z_{TH}$ (7)

The thermal MOSFET behaviour, if we consider the thermal state vetor $X_T = [T_j, T_1, ..., T_{14}, T_r]^T$ can be expressed as

$$
\begin{cases}\nT_1 = T_j - R_1 \left(P_P - C_1 \frac{dT_J}{dt} \right) \\
T_2 = T_1 - R_2 \left(P_P - C_1 \frac{dT_J}{dt} - C_2 \frac{dT_1}{dt} \right) \\
T_3 = T_2 - R_3 \left(P_P - C_1 \frac{dT_J}{dt} - C_2 \frac{dT_1}{dt} - C_3 \frac{dT_2}{dt} \right) \\
T_4 = T_3 - R_4 \left(P_P - C_1 \frac{dT_J}{dt} - C_2 \frac{dT_1}{dt} - C_3 \frac{dT_2}{dt} - C_4 \frac{dT_3}{dt} \right) \\
\vdots \\
T_N = T_{N-1} - R_N \left(P_P - C_1 \frac{dT_J}{dt} - C_2 \frac{dT_1}{dt} - \dots - C_N \frac{dT_{N-1}}{dt} \right) \\
T_r = T_{N+1} = T_N - R_R \left(P_P - C_1 \frac{dT_J}{dt} - \dots - C_N \frac{dT_N}{dt} \right) \\
T_a = T_r - R \left(P_P - C_1 \frac{dT_J}{dt} - \dots - C_{N+1} \frac{dT_{N+1}}{dt} - C \frac{dT_r}{dt} \right)\n\end{cases} (8)
$$

3 Simulations Tests and Model Validation

The developed model has been implemented in Saber, Pspice and Psim softwares and compared to the experimental curves presented by the SiC MOSFET data sheet for its validation.

3.1 Saber Simulation Model

The proposed model is then implemented under Saber software (see Fig. 1). The use of Power MOSFET Tool and the Diode Tool proposed in Saber allow us to extract the SiC MOSFET parameters and get curves using fitting to optimize the estimation errors. The verification of the output characteristic $I_{DS} = f(V_{GS})$ with the Saber optimized simulation model, for $T_j = 25^{\circ}C$ and $T_j = 150^{\circ}C$ as proposed and developed in this work, is shown in Fig. 3.

Fig. 3. I_D current versus V_{ds}

The Fig. 3 compares the variation of the current I_{DS} as a function of the voltage V_{GS} for a voltage $V_{DS} = 20V$ and a junction temperature of 25 °C (left curve) and 150°C (right) to the curves got from the datasheet (dotted line).

Fig. 4. Id current in function of V_{DS} for different V_{GS} values

The Fig. 4 compares the variations of the current I_{DS} versus V_{DS} for different V_{GS} values and the same junction temperature of 25 °C (left curve) and 150°C (right) to the curves got from the datasheet (dotted line). Among this experiment we got respectively for 25[°]C and 150[°]C, a threshold voltage $V_{th} = 3.808V$ and $V_{th} = 2.313V$, Drain resistance $R_d = 0.1\Omega$ and $R_d = 0.0942\Omega$, Source resistance $R_s = 0.01033 \Omega$ and $R_s = 0.0173 \Omega$ and Gate resistance $R_g = 4.6 \Omega$ and $R_g = 4.6 \Omega$ (respectively).

Fig. 5. I-V Charasteristic for $T_j = 25^\circ C$ and $T_j = 150^\circ C$

The current versus output voltage (I-V) characteristics of the integrated diode has also been compared, using Diode Tools of Saber software. Results are represented in Fig. 5. The capacitance curves of datasheet have also been fitted to get the MOSFET model parameters. For two V_{DS} values V1 and V2 we got the parameters values summarized in Fig. 1.

Table 1. MOSFET estimated Parameters

A comparison of the Gate charge, Gate threshold voltage, ON-state resistance and transconductance are given in Table 6. We then got :

- A very good agreement between the simulations represented by continuous lines and those of datasheet represented by a points,

- For gate voltages V_{GS} lower than 3.8V, the MOSFET is switched OFF because the condition V_{GS} is not greater than or equal to that transistor threshold V_{th} . Beyond 3.8V, the MOSFET starts to operate and the current I_{DS} gradually increases.

3.2 PSpice simulation Model Validation

Several simulation results obtained, using the model implemented under the Pspice software, were compared with those of the datasheet of the CREE's

Fig. 6. Comparative results and the Psim model

MOSFET [9]. The model scheme is given in Fig. 7 with the parameters estimated (under Pspice tests) from datasheet. We can note that the resistances R_d and R_s are small and have been neglected.

Fig. 7. Pspice Sic MOSFET C2M0080120D and Parameters

The Fig. (8) below show good behaviour of the electrothermal model proposed in this work. Fig. 8 represents the variation of the Drain-Source current (I_{DS}) as a function of the voltage at the output of the SiCMOSFET (V_{DS}) for different Grid-Source voltage values (V_{GS}) and a temperature of 25°C. It appears that there is a very good agreement between the simulation results, represented by lines, and those of datasheet, represented by poinctual bars.

Fig. 8. Variation of I_{DS} current versus V_{DS} for different values of V_{GS} and Drain-Source current Ids versus \mathcal{V}_{GS}

8 K. Frifita . K. M'Sirdi, E. Baghaz, A. Naamane, and M. Boussak

Fig. 8 the variation of the current I_{DS} as a function of the voltage V_{GS} for a voltage $V_{DS} = 20V$ and a temperature of 25 ° C. We can note a very good agreement between the simulation results represented by continuous lines and those of detasheet represented by dotted bars. For voltages $V_{GS} < 4V$, the MOSFET is not controlled because the condition $V_{GS} < V_{th}$, the treshold condition is not verified. Beyond 4V, the transistor start to operate and the current I_{DS} gradually increases. Fig. 9 show the thermal effect on the Drain-Source resistance (R_{DSon}) compared to the datasheet characteristic, for $I_{DS} = 50A$ and $V_{GS} = 20V$. It appears that the electro thermal model developed in this work has a high accuracy and is close to actual operating (datasheet) up to very high temperatures (150°C).

Fig. 9. R_{DSon} Variations in function of the junction temperature

In summary, the electric model developed, under Pspice, during this work has considerable precision. This allows us subsequently to use this simulation model in the power electronics to clearly show these performance and advantages over silicon transistors. Although the CREE model fairly accurately represents the evolution of R_{DSon} in function of the junction temperature, it has some discrepancy with the datasheet. However, with our simulation model, it is easy to see a better superposition between the two curves by adjusting the coefficients mentioned in Table 1.

3.3 Psim simulation Model Validation

The proposed model is implemented in Psim software as described by the Fig. (6). The improvements in the simulation model need additional adjustments of the device characteristics and computation parameters such as variable simulation step size which is used for the convergence rapidity. For our SiC MOSFET, we use the parameters that have been extracted from the data sheet (see table 7). The Drain and Source resistances have been neglected. The Fig. 10 shows the variation of I_{DS} in function of the drain-source voltage V_{DS} . It compares the Drain-Source current (I_{DS}) versus the MOSFET output voltage (V_{DS}) for several Gate-Source voltages (V_{GS}) under a temperature of 25°C. The simulated characteristics are then compared to the data sheet values and curves. Simulation results (continuous lines) are in good agreement with the data sheet values (dots).

The Fig. 10 shows the variation of I_{DS} in function of the Gate-Source voltage V_{GS} for the junction temperatures of 25°C and 150°V. We can note that for

Fig. 10. I_{DS} versus V_{DS} for different V_{GS} values and I_{DS} versus V_{GS} for T_i 25°C and 150°C

 V_{GS} values less than 4V, the MOSFET is not controlled because the threshold voltage V_{th} is not reached. When the MOSFET start operation $V_{GS} > V_{th} > 4V$, and then the current I_{DS} increases gradually with V_{GS} . The results are in good agreement.

Fig. 11. Variation of R_{DSon} versus the temperature T_j

The Fig. 11 shows the simulated and the actual Drain-Source resistance (R_{DSon}) in function of the temperature variation T_i , for a current equal to $I_{DS} = 50A$ and voltage $V_{GS} = 20V$. The obtained curves are very close in a wide temperature range (up to $T=150^{\circ}$ C). We observe that the result obtained is similar to the datasheet, particularly in the interval $[0^{\circ}C, 150^{\circ}C]$.

4 Conclusion

A new model of SiC Power MOSFET is proposed in this paper. This model is implemented successfully under Psim, Pspice and Saber softwares and then have been tested and optimized for numerical circuit design and simulation. The Characteristics of the MOSFET simulation models (on-state resistance, threshold voltage, and transconductance, etc...) has been compared to actual characteristics given by manufacturer's data sheet in Psim, PSpice and Saber.

The proposed electrothermal model is very accurate and able to describe the dynamic behavior of the SiC MOSFET with a very good precision. Owing to our last results, it is shown that the electrothermal model developed on Psim, Pspice

an Saber has a high accuracy and is close to the optimum operating conditions presented in the datasheet. This simulation model of SiC power MOSFET is easy to use in numerical design and prototyping of electric circuits and simulations. The future work of our staff will be on nonlinear and robust control of a power circuit including the SiC MOSFETs.

Acknowlegment

This research is activity is held by the SASV group of the LSIS- UMR CNRS 7296 and co funded by the BPI in an FUI project. Special aknowledgements are addressed to all the PFC Ranger project partners. The authors (member R22190) would like to thanks also Europractice (http://www.europractice.stfc.ac.uk/)

References

- 1. H. C. Foong, Y. Zheng, Y. K. Tan, and M. T. Tan, "Fast transient integrated digital DC DC converter with predictive and feedforward control," vol. 59. 1
- 2. N. Bejoy, N. Pushpakaran, B. Stephen, B. Bayne, G. Wang, and J. Mookken, "Fast and accurate electro-thermal behavioral model of a commercial sic 1200v, 80 mohm power mosfet," *IEEE Transactions on Electron Devices*, january 2015. 1
- 3. B. Pushpakaran, S. Bayne, G. Wang, and J. Mookken, "Fast and accurate electrothermal behavioral model of a commercial sic 1200v 80 mohms," *IEEE Pulsed Power Conference (PPC)*, December 2015. 1
- 4. B. Wang and Y. Ma, "Research on the passivitybased control strategy of buck-boost converters with a wide input power supply range," *n Power Electr. for Distrib. Generat. Syst*, vol. 13, 2010. 1
- 5. E. Vittoz, C. C. Enz, and F. Krummenacher, "A thermal characterization of power transistors semiconductor," vol. 11. 1
- 6. Stefanović, Danica, and M. Kayal, "Bsim to ekv conversion," 01 Bsim To Ekv Conversion. 1
- 7. L. Juejing, K. Sun, W. Hongfei, Y. Xing, and L. Huang, "Modeling of sic mosfet with temperature dependent parameters and its applications," in *Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition*, A. 2013, Ed., 2013, pp. 540–544. 2.2, 2.2
- 8. F. Bilbao, B.Argenis, and L.Stephen, "Pspice modeling of silicon carbide mosf ets and device parameter extraction," in *IEEE InternationalPower Modulator and High Voltage Conference,*. PMHVC 2012, 3-7 June 2012, pp. 776–779. 2.2, 2.2, 2.3
- 9. CREE, "Sic power mosfet cmf20120d datas-sheet and application note," *http://www. cree. com/products/pdf/CMF20120D. pdf*, 2015. 2.2, 2.3, 2.3, 3.2
- 10. T. M. Nutt, A. Hefner, H. Mantooth, J. Dultiere, D. Berning, and R. Singh, "Parameter extraction sequence for silicon carbide schottky, merged pin schottky and pin power diode models," *Power Electronics Specialists Conference*, vol. 3, February 2002. 2.2
- 11. N. K. M'Sirdi, A. Naamane, K. Frifita, M. Boussak, and E. Baghaz, "State space models nltv for electro-thermal behaviour of a power sic mosfet," submitted to ICEERE2018, Saidia Oujda Morroco, April 2018. 2.2