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ABSTRACT
The clustering ratio is defined as the ratio between the correlation function and the
variance of the smoothed overdensity field. In ΛCDM cosmologies not accounting for
massive neutrinos, it has already been proved to be independent from bias and redshift
space distortions on a range of linear scales. It therefore allows for a direct comparison
of measurements (from galaxies in redshift space) to predictions (for matter in real
space). In this paper we first extend the applicability of such properties of the cluster-
ing ratio to cosmologies that include massive neutrinos, by performing tests against
simulated data. We then investigate the constraining power of the clustering ratio
when cosmological parameters such as the total neutrino mass Mν and the equation
of state of dark energy w are left free. We analyse the joint posterior distribution of
the parameters that must satisfy, at the same time, the measurements of the galaxy
clustering ratio in the SDSS DR12, and the angular power spectrum of temperature
and polarization anisotropies of the CMB measured by the Planck satellite. We find
the clustering ratio to be very sensitive to the CDM density parameter, but not very
much so to the total neutrino mass. Lastly, we forecast the constraining power the
clustering ratio will achieve with forthcoming surveys, predicting the amplitude of its
errors in a Euclid-like galaxy survey. In this case, we find it is expected to improve the
constraint at 95% level on the CDM density by 40% and on the total neutrino mass
by 14%.

Key words: bias, clustering, neutrinos

1 INTRODUCTION

Present-time as well as forthcoming galaxy surveys, while on
the one hand will allow us to reach unprecedented precision
on the measurement of the galaxy clustering in the universe,
on the other hand will challenge us to produce more accur-
ate and reliable predictions. The effect of massive neutrinos
on the clustering properties of galaxies, that in the past
has been either neglected or considered as a nuisance para-
meter, is nowadays regarded as one of the key points to be
included in the cosmological model in order for it to reach
the required accuracy. At the same time, while allowing for
more realistic predictions of cosmological observables, this
process also helps in shedding light on some open issues of
fundamental physics, such as the neutrino total mass or the
hierarchy of their mass splitting.

From the experiments measuring neutrino flavour oscil-
lations, particle physics has been able to draw a constraint
on the mass splitting of the massive eigenstates of neut-

rinos, and set a lower bound to the total neutrino mass,
Mν =

∑
mν,i & 0.06 eV at 95% level (Gonzalez-Garcia

et al. 2012, 2014; Forero et al. 2014; Esteban et al. 2017).

On the other hand, the absolute scale of magnitude of
neutrino masses is still an open issue. Beta decay experi-
ments such as the ones carried out in Mainz and Troitsk have
set as an upper limit at 95% level on the electron neutrino
mass of m(νe) < 2.2 eV (Kraus et al. 2005). While future
experiments like Katrin prospect much higher sensitivities,
of order 0.2 eV (Bonn et al. 2011), present day cosmology
can already intervene in the debate about neutrino mass.

Since neutrinos are light and weakly interacting, they
decouple from the background when still relativistic. There-
fore, even at late times they are characterised by large ran-
dom velocities that prevent them from clustering on small
scales. As a consequence, neutrinos introduce a character-
istic scale-dependent and redshift-dependent suppression of
the clustering, whose amplitude depends on the value of
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their mass. In fact, the presence of massive neutrinos influ-
ences the evolution of matter overdensities in the universe,
depending on their mass. Last years have seen a large num-
ber of works extensively studying the interplay between cos-
mology and neutrino physics (see, for instance, Lesgourgues
& Pastor 2006, 2012, 2014, and references therein).

As we aim to describe the clustering of galaxies in cos-
mologies with massive neutrinos, we have to cope with the
description of the galaxy-matter bias. As a matter of fact,
galaxies do not directly probe the matter distribution in the
universe, being in fact a discrete sampling of its highest dens-
ity peaks. We choose to describe galaxy clustering through
a recently introduced observable that, on sufficiently large
scales, does not depend on the galaxy-matter bias, the clus-
tering ratio (Bel & Marinoni 2014).

In standard ΛCDM cosmologies, this observable has
already been proved to be a reliable cosmological probe
for constraining cosmological parameters, being particularly
sensitive to the amount of matter in the universe, as shown
in Bel et al. (2014).

In this work we aim at studying how the clustering prop-
erties of galaxies are modified by the presence of neutrinos,
and in particular we want to extend the clustering ratio ap-
proach to cosmologies including massive neutrinos. By prov-
ing that this observable maintains its properties, we want to
exploit it to constrain the total neutrino mass.

This paper will be organized as follows. In Sec. 2 we
will introduce the statistical observable we are going to use,
the clustering ratio, and its properties. We will show why
this observable can be considered unaffected either by the
galaxy-matter bias on linear scales and redshift-space dis-
tortions, and we will introduce its estimators.

In Sec. 3 we will describe the effects of massive neutri-
nos on the matter and galaxy clustering. We will introduce
the DEMNUni simulations, the set of cosmological simula-
tions we use to test the properties of the clustering ratio in a
cosmology with massive neutrinos. Finally we will show that
the properties of the clustering ratio hold as well in cosmo-
logies that include massive neutrinos, in particular confirm-
ing the independence of the clustering ratio from bias and
redshift-space distortions on linear scales in the DEMNUni
simulations.

Sec. 4 is devoted to presenting our results. We use a
measurements of the clustering ratio in the Sloan Digital
Sky Survey Data Release 7 and 12 to draw a constraint
on the total neutrino mass and on the equation of state
of dark energy. In particular we study the joint posterior
distribution of the parameters of the model, including Mν

and w, obtained from the clustering ratio measurement and
the latest cosmic microwave temperature and polarization
anisotropy data from the Planck satellite.

2 CLUSTERING RATIO

In order to describe the statistical properties of the matter
distribution in the universe, we introduce the overdensity
field

δ(x, t) =
ρ(x, t)

ρ̄(t)
− 1, (1)

where ρ(x, t) is the value of the matter density at each spa-
tial position, while ρ̄(t) represents the mean density of the
universe.

This is assumed to be a random field with null mean.
Information on the distribution must therefore be sought in
its higher order statistics, such as the variance σ2 = 〈δ2(x)〉c
and the 2-point autocorrelation function ξ(r) = 〈δ(x)δ(x +
r)〉c of the field. Here 〈·〉c denotes the cumulant moment, or
connected expectation value (Fry 1984).

In this work we will always consider the matter distribu-
tion smoothed on a certain scale R by evaluating the density
contrast in spherical cells, i.e.

δR(x) =

∫
δ(x′)W

(
|x− x′|

R

)
d3x′, (2)

where W is the spherical top-hat window function. As a
consequence, the variance and correlation function will be
smoothed on the same scale, and will be denoted σ2

R and
ξR(r).

An equivalent description of the statistical properties of
the matter field can be obtained in Fourier space in terms
of the matter power spectrum. Starting from the Fourier
transform of the matter overdensity field,

δ̂(k) =

∫
d3x

(2π)3
e−ik·x δ(x) , (3)

the matter density power spectrum is defined according to

〈δ̂(k1)δ̂(k2)〉 = δD(k1 + k2)P (k1) , (4)

while the adimensional power spectrum can be written as
∆2(k) = 4πP (k)k3. The variance and correlation function
of the matter field are linked to its power spectrum, repres-
enting in fact different ways of filtering it. The variance is
the integral over all the modes, modulated by the Fourier
transform of the filtering function Ŵ ,

σ2
R =

∫ ∞
0

∆2(k)Ŵ 2(kR) d ln k, (5)

and the correlation function is, in addition, modulated by
the zero-th order spherical Bessel function j0(x) = sin(x)/x,

ξR(r) =

∫ ∞
0

∆2(k)Ŵ 2(kR)j0(kr) d ln k. (6)

The explicit expression of Ŵ (kR) is

Ŵ (kR) =
3

kR
j1(kR) = 3

sin(kR)− kR cos(kR)

(kR)3
. (7)

However, in practice, we are not able to directly access the
matter power spectrum. The reason is that the galaxies
we observe do not directly probe the distribution of mat-
ter in the universe. In fact, they represent a discrete biased
sampling of the underlying matter density field and the bias-
ing function is, a priori, not known. A way to overcome this
problem is to refine the independent measurements of the
bias function through weak lensing surveys. Otherwise, one
can parametrise the bias adding additional nuisance para-
meters to the model and, consequently, marginalize over
them.

On the other hand, a completely different approach is
to seek new statistical observables, which can be considered
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Constraints from clustering ratio with neutrinos 3

to be unbiased by construction. This is the path followed by
Bel & Marinoni (2014) by introducing the clustering ratio,

ηR(r) ≡ ξR(r)

σ2
R

, (8)

that is the ratio of the correlation function over the variance
of the smoothed field.

We assume that the relation between the matter density
contrast and the galaxy (or halo) density field is a local and
deterministic mapping, which is enough regular to allow a
Taylor expansion (Fry & Gaztanaga 1993) as

δg,R = F (δR) '
N∑
i=1

bi
i!
δiR. (9)

Moreover we assume the growth of fluctuations to occur hier-
archically (see Bernardeau et al. 2002; Bel & Marinoni 2012),
so that each higher order cumulant moment can be expressed
according to powers of the variance and 2-point correlation
funtion,

〈δnR〉c = Snσ
2(n−1)
R ,

〈δni,Rδmj,R〉c = CnmξR(r)σ
2(n+m−2)
R ,

(10)

the former applying to the 1-point statistics and the latter
to the 2-point ones.

It has been shown by Bel & Marinoni (2012) that the
bias function only modifies the clustering ratio of galaxies
at the next order beyond the leading one and that it is not
sensitive to third order bias

ηg,R(r) ' ηR(r) +
1

2
c22ηR(r)ξR(r)

−
{

(S3,R − C12,R)c2 +
1

2
c22

}
ξR(r) (11)

where c2 ≡ b2/b1. By choosing a sufficiently large smooth-
ing scale, the higher order contribution in Eq. (11) becomes
negligible and we obtain

ηg,R(r) = ηR(r), (12)

meaning that in this case the clustering ratio of galaxies can
be directly compared to the clustering ratio predicted for
the matter distribution.

The local biasing model is not the best way of describ-
ing the bias function between matter and haloes/galaxies
(Mo & White 1996; Sheth & Lemson 1999; Somerville et al.
2001; Casas-Miranda et al. 2002). It can be improved by
introducing a non-local component depending on the tidal
field. However, it has been shown by Chan et al. (2012)
and by Bel et al. (2015) that, when dealing with statistical
quantities which are averaged over all possible orientations,
then the non-local component is degenerate with the second
order bias c2, thus expression (11) remains valid and we do
not consider non-local bias in our analysis.

On linear scales, the clustering ratio is expected to be
independent from redshift. Since, in a ΛCDM universe, we
can write (normalizing all quantities to the present time vari-
ance on the scale r8 = 8 h−1 Mpc, σ2

8(z = 0)) the evolution
of the variance and the correlation function as

σ2
R(z) = σ2

8(z = 0)D2(z)FR
ξR(r, z) = σ2

8(z = 0)D2(z)GR(r),
(13)

where D(z) is the linear growth factor of matter density
fluctuations and

FR =

∫∞
0

∆2(k)Ŵ 2(kR)d ln k∫∞
0

∆2(k)Ŵ 2(kr8)d ln k

GR(r) =

∫∞
0

∆2(k)Ŵ 2(kR)j0(kr)d ln k∫∞
0

∆2(k)Ŵ 2(kr8)d ln k
,

depend only on the shape of the power spectrum. Hence, the
clustering ratio ξR(r)/σ2

R = GR(r)/FR, does not depend on
D(z), which cancels outs.

In practice, we include weak nonlinearities which intro-
duce a small, but nevertheless detectable, redshift depend-
ence.

Not only measures of the clustering of galaxies are
biased with respect to predictions for the matter field, but
they also are affected by the peculiar motion of galaxies. This
motion introduces a spurious velocity component (along the
line-of-sight) that distorts the redshift assigned to galax-
ies. Since, for the clustering ratio, we are interested in large
smoothing scales and separations, we can focus on the linear
scales, where the only effect is due to the coherent motion of
infall of galaxies towards the overdense regions in the uni-
verse.

We can link the position of a galaxy (or dark matter
halo) in real space to its apparent position in redshift-space.
Let us denote r as the true comoving distance along the
line-of-sight; in redshift space it becomes

s = r +
vp‖ (1 + z)

H(z)
êr, (14)

where vp‖ is the line-of-sight component of the peculiar velo-
city and êr is the line-of-sight versor. Considering the Four-
ier space decomposition of the density contrast, the relation
linking its value in redshift space to the one in real space
(Kaiser 1987) is

δs(k) = (1 + fµ2)δ(k), (15)

where quantities in redshift space are expressed with the
superscript s and µ is the cosine of the angle between the
wavemode k and the line-of-sight. Here f is the so called
growth rate, defined as the logarithmic derivative of the
growth factor of structures with respect to the scale factor,
f ≡ d lnD/d ln a. Averaging over all angles ϑ, the variance
and the correlation function in redshift space result modified
by the same multiplicative factor

σs 2
R = Kσ2

R

ξsR(r) = KξR(r)
(16)

where K = 1 + 2f/3 + f2/5 is the Kaiser factor. As a con-
sequence, the clustering ratio is unaffected by redshift-space
distortions on linear scales. This argument allows us to re-
write the identity (12) as

ηsg,R(r) ≡ ηR(r), (17)

meaning that, by properly choosing the smoothing scale R
and the correlation length r, measures of the clustering ratio
from galaxies in redshift space can be directly compared to
predictions for the clustering ratio of matter in real space.

c© 0000 RAS, MNRAS 000, 000–000



4 M. Zennaro, J. Bel, J. Dossett, C. Carbone, L. Guzzo

2.1 Estimators

The clustering ratio can be estimated from count-in-cells,
where, under the assumption of ergodicity, all ensemble av-
erages become spatial averages. We follow the counting pro-
cess set up by Bel & Marinoni (2012), we define the discrete
density contrast as

δN,i =
Ni

N̄
− 1, (18)

where Ni is the number of objects in the i-th cell and N̄ is
the mean number of objects per cell. The estimator of the
variance is therefore

σ̂2
R =

1

p

p∑
i=1

δ2
i (19)

and the one of the correlation function is

ξ̂R(r) =
1

pq

p∑
i=1

q∑
j=1

δiδj (20)

leading to the definition of the estimator of the clustering
ratio as

η̂R(r) =
ξ̂R(r)

σ̂2
R

. (21)

Throughout this work we will often express the correlation
length r as a multiple of the smoothing scale, i.e. r = n R.

Since we are dealing with a discrete counting process,
the shot noise needs to be properly accounted for. We fol-
low the approach of Bel & Marinoni (2012) and correct the
estimator of the variance according to

σ̂2
R = 〈δ2

n(x)〉 − 1

N̄
=

1

p

p∑
i=1

δ2
i −

1

N̄
, (22)

where N̄ is the mean number of objects per cell. On the
other hand, the correlation function needs no correction, as
long as the spheres do not overlap.

2.2 Effects of massive neutrinos

We introduce massive neutrinos as a subdominant dark mat-
ter component. For simplicity, we consider three degener-
ate massive neutrinos, with total mass Mν =

∑
imν,i and

present-day neutrino energy density in units of the critical
density of the universe Ων,0h

2 = Mν/(93.14 eV). The neut-
rino fraction is usually expressed with respect to the total
matter as fν = Ων/Ωm. For a more complete treatment of
neutrinos in cosmology, we refer the reader to Lesgourgues
& Pastor (2006, 2012, 2014).

Neutrinos of sub-eV mass, which seem to be the most
likely candidates both from particle physics experiments
and cosmology, decouple from the primeval plasma when
the weak interaction rate drops below the expansion rate
of the universe, at a time when the background temperat-
ure is around T ' 1 MeV. This corresponds to a redshift
1 + zdec ∼ 109. Since the redshift of their non-relativistic
transition, obtained equating their rest-mass energy and
their thermal energy, is given by

1 + znr ' 1890
mν,i

1 eV
, (23)

when neutrinos decouple, they are still relativistic. As a con-
sequence, since the momentum distribution of any species is
frozen at the time of decoupling, neutrino momenta keep
following a Fermi-Dirac distribution even after their non-
relativistic transition, and neutrinos end up being character-
ised by a large velocity dispersion. An effective description
of the evolution of neutrinos can be achieved employing a
fluid approximation (Shoji & Komatsu 2010). In this frame-
work we can define a neutrino pressure, pν = wνρνc

2, com-
puted integrating the momentum distribution. Such pres-
sure is characterised by an effective adiabatic speed of sound
(Blas et al. 2014)

cs,i = 134.423 (1 + z)
1eV

mν,i
km s−1, (24)

that represents the speed of propagation of neutrino dens-
ity perturbations. Such speed of sound defines the min-
imum scale under which neutrino perturbations cannot
grow, called the free streaming scale. It corresponds to a
wavenumber

kFS(z) =

[
4πGρ̄a2

c2s

]1/2

=

[
3

2

H2Ωm(z)

(1 + z)2c2s

]1/2

, (25)

or a proper wavelength

λFS = 2πa/kFS . (26)

At each redshift, neutrino density fluctuations of wavelength
smaller than the free streaming scale are suppressed, their
gravitational collapse being contrasted by the fluid pressure
support. As a consequence, neutrinos do not cluster on small
scales and remain more diffuse compared to the cold matter
component.

Neutrino free streaming does not only affect the evolu-
tion of neutrino perturbations, in fact it affects the evolution
of all matter density fluctuations. We can model the growth
of matter fluctuations employing a two-fluid approach (Blas
et al. 2014; Zennaro et al. 2017). In this case, the solution
of the equations of growth for the neutrino and cold matter
fluids are coupled,


δ̈cb +Hδ̇cb −

3

2
H2Ωm {fνδν + (1− fν)δcb} = 0

δ̈ν +Hδ̇ν −
3

2
H2Ωm

{[
fν −

k2

k2
FS

]
δν + (1− fν)δcb

}
= 0,

(27)
where derivatives are taken with respect to conformal time,
dτ = dt/a, and both the Hubble function and the matter
density parameter are functions of time, H = H(τ) and
Ωm = Ωm(τ).

The coupling of these equations requires the evolution
of the CDM density contrast to be scale dependent, unlike
in standard ΛCDM cosmologies. We therefore expect to find
an observable suppression even in the CDM+baryon power
spectrum, starting from the mode corresponding to the size
of the free-streaming scale at the time of the neutrino non-
relativistic transition, knr = kFS(znr), and affecting all the
scales smaller than this one.

c© 0000 RAS, MNRAS 000, 000–000



Constraints from clustering ratio with neutrinos 5

ΛCDM NU0.17 NU0.30 NU0.53

Mν [eV] 0 0.17 0.30 0.53

Ωc 0.27 0.2659 0.2628 0.2573

σ8,cc 0.846 0.813 0.786 0.740

Table 1. The cosmological parameters that vary among the 4
DEMNUni simulations considered in the present work, depending

on the assumed neutrino total mass.

3 CLUSTERING RATIO WITH MASSIVE
NEUTRINOS

In order to investigate the behaviour of the clustering ratio
in cosmologies with massive neutrinos, i.e. whether it main-
tains all the properties described in Sec. 2, we analyse the
cosmological simulations “Dark Energy and Massive Neut-
rino Universe” (DEMNUni), presented in Castorina et al.
(2015) and Carbone et al. (2016).

These simulations have been performed using the
Gadget-III code by Viel et al. (2010) based on the Gadget

simulation suite (Springel et al. 2001; Springel 2005). This
version includes three active neutrinos as an additional
particle species1.

The DEMNUni project comprises two set of simula-
tions. The first one, which is the one considered in the
present work, includes 4 simulations, each implementing a
different neutrino mass. Besides the reference ΛCDM simu-
lation, which has Mν = 0 eV, the other ones are character-
ised by Mν = {0.17, 0.30, 0.53} eV. The second set includes
10 simulations, exploring different combinations of neutrino
masses and dynamical dark energy parameters.

All simulations share the same Planck-like cosmology,
with Hubble parameter H0 = 67 km s−1 Mpc−1, baryon
density parameter Ωb = 0.05, primordial spectral index
ns = 0.96, primordial amplitude of scalar perturbations
As = 2.1265 × 109 (at a pivotal scale kp = 0.05 Mpc−1)
and optical depth at the time of recombination τ = 0.0925.
The density parameter of the cold dark matter, Ωcdm, is ad-
justed in each simulation, depending on the neutrino mass,
so that all simulations share the same total matter density
parameter Ωm = 0.32, see Tab. 1. Each simulation follows
the evolution of 20483 CDM particles and, when present,
20483 neutrino particles, in a comoving cube of 2 h−1 Gpc
side. The mass of the CDM particle is ∼ 8 × 1010h−1M�,
and changes slightly depending on the value of Ωcdm. All
simulations start at an initial redshift zin = 99 and reach
z = 0 with 62 comoving outputs at different redshifts. In
this work we focus on the snapshots at redshift z = 0.48551
and z = 1.05352.

Dark matter haloes have been identified through a
Friend-of-Friends (FoF) algorithm with linking length b =
0.2 and setting the minimum number of particles needed to
form a halo to 32. Thus, the least massive haloes have mass
of about 2.6 × 1012h−1M�. In order to check the stability
of our results regarding the choice of the definition of a halo

1 The simulations do not account for an effective neutrino number
Neff > 3, as possible neutrino isocurvature perturbations which
could produce larger Neff (therefore affecting galaxy and CMB

statistics Carbone et al. 2011) are currently excluded by present
data (see, eg, Di Valentino & Melchiorri 2014)

Bin Mass range [1012 h−1 M�]

0 0.58 6M < 1.16

1 1.16 6M < 2.32

2 2.32 6M < 3.28
3 3.28 6M < 4.64

4 4.64 6M < 6.55

5 6.55 6M < 9.26
6 9.26 6M < 30

7 30 6M < 100

8 M > 100

Table 2. Subdivision of the halo catalogues in mass bins.

we also have access to halo catalogues where haloes have
been identified using spherical over-densities. For the pur-
pose of the present work we constructed halo catalogues in
redshift space by modifying the positions along the z direc-
tion according to the projected velocity (properly converted
in length) in that direction (see Eq. 14).

Regarding error estimation, being these simulations
very large, a jackknife method has been implemented by
subdividing the box in 64 sub-cubes. The standard error on
the measured value of ηR(r) is then taken to be the disper-
sion obtained from the jackknife process

σ2
ηR =

Nj − 1

Nj

Nj∑
i=1

[ηR,i(r)− η̄R(r)]2 , (28)

where Nj is the number of jackknife resamplings, in our case
Nj = 64.

In the following, we first check the reliability of the
clustering ratio in the presence of massive neutrinos. In
particular we are interested in proving that the identity
ηzR,g(r) ≡ ηR(r) still holds. To this end, we must prove that
the clustering ratio at the scales of interest does not depend
on the galaxy-matter bias (so that we can compare predic-
tions for matter and measures from galaxies) and that it is
not affected by redshift-space distortions (to be safe when
comparing the real space predictions to measures obtained
in a galaxy redshift survey).

3.1 Bias sensitivity

In order to test the independence of the clustering ratio from
the bias on linear scales, we divide the dark matter haloes
in 9 mass bins, reported in Tab. 2. The various halo popula-
tions evolve in a different way, therefore they present differ-
ent biasing functions with respect to the dark matter field.
Thus, we will use the linear bias bL to characterise each
halo sample. In Tab. 3 we show how both the FoFs and the
spherical overdensities from the simulations populate these
mass bins in the simulations. Due to the minimum number
of particle required to identify a halo, the first two mass bins
do not contain any. On the other hand, the only mass limit
to the spherical over-densities is given by the mass resolution
of the simulation, hence all the mass bins are populated.

In Fig. 1 we show the estimated correlation functions
of each FoF sample in the two extreme cases of Mν = 0 eV
and Mν = 0.53 eV (the same holds for the SOs as well).

We also represent the corresponding correlation func-
tion of the dark matter field, which is used to estimate the

c© 0000 RAS, MNRAS 000, 000–000



6 M. Zennaro, J. Bel, J. Dossett, C. Carbone, L. Guzzo

bin 0 bin 1 bin 2 bin 3 bin 4 bin 5 bin 6 bin 7 bin 8

FoF

z = 0.48551

Mν = 0.00 eV 0 0 2902221 3509393 2402274 1708375 2878557 758008 145410

Mν = 0.17 eV 0 0 3152025 3178910 2430866 1667315 2712374 690356 122241

Mν = 0.30 eV 0 0 3116471 3269324 2263001 1642694 2589654 634844 104539
Mν = 0.53 eV 0 0 3273517 3026718 2144285 1501769 2334332 532432 76127

z = 1.05352

Mν = 0.00 eV 0 0 2571902 3039264 2003119 1358767 2044706 389064 38299

Mν = 0.17 eV 0 0 2713196 2674546 1958721 1277479 1836860 328973 28852
Mν = 0.30 eV 0 0 2620295 2674912 1767015 1218810 1679768 283298 22244

Mν = 0.53 eV 0 0 2619539 2335248 1570202 1036782 1386909 206588 13059

SO

z = 0.48551

Mν = 0.00 eV 453415 2973241 2783664 2361431 1669494 1210036 2064503 527389 88178

Mν = 0.17 eV 471602 2993986 2904400 2118437 1668026 1166042 1917029 470522 72097
Mν = 0.30 eV 486007 2997527 2842491 2159522 1559049 1112575 1806821 424202 60046

Mν = 0.53 eV 508713 3259563 2582711 1956593 1424500 1014066 1587591 343288 41497

z = 1.05352

Mν = 0.00 eV 363148 2449897 2433901 2030689 1373779 952365 1446087 263959 22482
Mν = 0.17 eV 359806 2376103 2479355 1766898 1330746 885172 1280841 218832 16462

Mν = 0.30 eV 354938 2304946 2374992 1750620 1206312 819053 1157522 184575 12287

Mν = 0.53 eV 341645 2359735 2069025 1500656 1039892 694588 932357 130319 6834

Table 3. Population of the 9 mass bins for the Friend-of-Friends (FoF) and spherical overdenities with respect to the critical density
(SO) at redshift z = 0.48551 and z = 1.05352.

linear bias bL characterizing each halo sample:

bL ≡

√
ξFoFR (nR)

ξR(nR)
. (29)

We find that our cut in mass does indeed correspond to
different tracers, with higher bias for higher-mass objects.
However, such different halo populations still show a con-
stant bias with respect to scale, which allows us to fit the
measured bias in Fig. 1 with flat lines.

The independence of the FoF-matter bias from scale is
confirmed also in the massive neutrino case (Fig. 1, right).
In particular, we note here that the bias is generally higher
when considering massive neutrinos. This is due to the fact
that, since they smooth the matter distribution, neutrinos
make haloes of a given mass rarer then in a standard ΛCDM
cosmology.

Secondly we compute the clustering ratio for both
the FoFs and the spherical overdensities at redshift z =
0.48551 and z = 1.05352. In each of these cases, we
analyse the ΛCDM simulation, which does not include
massive neutrinos, and the ΛCDMν simulations with Mν =
{0.17, 0.30, 0.53} eV. In the two plots in Fig. 2 we show the
clustering ratio for fixed smoothing radius R = 16 h−1 Mpc
and correlation length r = 2R in the same mass bins shown
in Tab. 2 for the FoFs and spherical overdensities respect-
ively. Points are measurements in the simulations, while lines
are the predictions obtained from the matter power spec-
trum. The ratio between measures and prediction is in the
bottom panel. At z = 0.48551, the measured clustering ratio
in the bins with masses < 30.43h−1M� agrees with the pre-
dictions for the matter at 3% level. Below 100 h−1M� the
agreement is within 5%. For objects with mass greater than
this, we observe a more scattered trend. We blame a lower
statistical robustness, due to fewer objects falling in these
mass bins. In any case, we do not observe any peculiar de-
pendence of the clustering ratio on the mass of the objects,
confirming up to a few percent accuracy its independence
on the bias at these scales.

Conversely, at z = 1.055 we do see a dependence of the
FoF clustering ratio on the mass. The reason is likely to

be a lack of mass resolution in the simulations, as moving
towards higher redshifts not enough haloes have formed in
the high-mass end of the mass function. For this reason, we
expect this situation to be even more sever in the cases with
masses neutrinos, which is confirmed in the right power of
Fig. 2.

As we find similar results for both the FoFs and the
spherical overdensities, we conclude that such results do not
depend on the tracer we choose to observe.

Finally, we claim that the clustering ratio is insensitive
to the bias on linear scales in a cosmology including massive
neutrinos irrespective of either the mass of the tracer or
the nature of the tracer itself or the total mass of neutrinos
considered. This allows us to directly compare real-space
predictions of the matter clustering ratio with real-space
measures of the clustering ratio of any biased matter tracer,
i.e. ηg,R(r) ≡ ηR(r).

3.2 Redshift space

In redshift space, as described in Sec. 2, the apparent pos-
ition of galaxies is modified according to the projection of
their peculiar velocity along the line-of-sight. This effect dis-
torts the clustering properties of the distribution and we
thus expect its correlation function and variance to be af-
fected. However, we expect redshift-space distortions not to
affect the clustering ratio on linear scales (Eq. 17) as the
effect is cancelling out into the ratio. In order to verify the
accuracy of this approximation we created the redshift space
catalogues of the FoFs and spherical overdensities in the
simulations, moving the positions of the tracers along an
arbitrary direction, chosen as the line-of-sight direction.

Having shown that the clustering ratio does not depend
on the way we define the haloes nor on their mass tracer,
from now on we focus on the dark matter halo catalogues
identified with the Friend-of-Friends algorithm and we com-
pare the two extreme cases of Mν = 0 eV and Mν = 0.53
eV. Note that we use the Mν = 0 simulation as a reference
for comparisons, since it has already been shown that these
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Figure 1. Correlation function of the Friend-of-Friends in the simulations with two different cosmologies. In the plot on the left there
are the measurements in the ΛCDM cosmology, while in the plot on the right the ΛCDMν simulation with Mν = 0.53 eV. In both cases,

left panel is at redshift z = 0.48551 and right panel at z = 1.05352. In the top panel we show the correlation function measured in

the mass bins presented in Tab. 2 (points) compared to the theoretical smoothed matter correlation function (black solid line). In the

bottom panel there is the FoF-matter bias, computed as b =
√
ξFoFR (r)/ξR(r). The linear bias in the simulation with massive neutrinos

is larger than in the standard ΛCDM case, because, as neutrinos reduce clustering, massive haloes become rarer. We the bias values with

a straight line between R = 16 and 22 h−1Mpc. As the fit shows, the linear bias is compatible with being constant with scale.
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Figure 2. The clustering ratio of the Friend-of-Friends (FoF, left plot) and of the spherical overdensities with respect to the critical
density (SO, right plot) computed in each mass bin at redshift z = 0.48551 (left panel of each plot) and z = 1.05352 (right panel) for
all the neutrino masses. The smoothing radius is R = 16 h−1 Mpc and the correlation length is twice the smoothing radius. Points are

measures in the simulations, while lines are the theoretical predictions. At z = 0.48551 the agreement between measures and predictions
is better than 3% in the bins with masses < 30.43h−1M� (i.e. where the bias is < 2), while in the bins with larger masses, corresponding

to larger values of bias, the agreement is at 5% level. Errors are larger in the highest mass bin because it is more sparsely populated. At
z = 1.05352 the discrepancy between measures and predictions shows a specific dependence on the mass of the tracer. We consider this
effect to be due a mass resolution effect in the simulation. Finally we point out that we find similar results for FoF and SO, meaning
that the clustering ratio at these scales is insensitive to the linear bias irrespective of the mass tracer we choose.
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properties are valid when neutrino are massless (see Bel &
Marinoni 2014; Bel et al. 2014).

Fig. 3 shows, at the scales of interest, the independence
of the clustering ratio from redshift-space distortions. The
ratio between measurements of the clustering ratio in red-
shift and in real space is of order 1, either with and without
massive neutrino, both at z = 0.48551 and z = 1.05352.

In particular we show that we recover the results already
obtained in other works (Bel & Marinoni 2012) in the ΛCDM
case. In the case including massive neutrinos we find an
agreement between redshift and real space measurements
at 3% level at redshift z = 0.48551 and at better than 1%
on scales R & 16 h−1Mpc at z = 1.05352. In this case the
accuracy is higher at higher redshift as the growth of struc-
tures is more linear.

Moreover we note that the agreement with predictions
is better for the simulation with massive neutrinos with re-
spect to the ΛCDM one. This is due to the fact that massive
neutrinos lower the matter fluctuations (see the values of
σ8,cc in Tab. 1) and therefore tend to reduce the velocity
dispersion, resulting in redshift-space distortions that are
more into the linear regime.

We therefore propose to use the clustering ratio as a
cosmological probe to constrain the parameters of the cos-
mological model. As a matter of fact, the analysis of the sim-
ulations has shown that the clustering ratio, besides being
independent from the matter tracer and the bias, is not af-
fected by redshift-space distortions on linear scales. This im-
plies that Eq. (17), ηsg,R(r) ≡ ηR, still holds in the presence
of massive neutrinos, allowing us to directly compare cluster-
ing ratio measurements in redshift-survey galaxy catalogues
to the theoretical matter clustering ratio predictions.

4 RESULTS

4.1 Optimisation

In order to estimate and predict the clustering ratio of galax-
ies, we need to choose two different scales: the smoothing
scale R, i.e. the radius of the spheres we use for counting
objects, and the correlation length r, that for simplicity we
assume to be some multiple of the smoothing scale, r = nR.
Choosing the best combinations of R and r is seminal to
maximise the information we can extract from this statist-
ical tool.

The smoothing scale R controls the scale under which
we make our observable blind to perturbations. A sufficiently
large value of R allows us to screen undesired nonlinear ef-
fects, that would compromise the effectiveness of the clus-
tering ratio. On the other hand, an excessively large smooth-
ing scale can lead to more noisy measurements, since in the
same volume we can accommodate fewer spheres. Moreover,
if R is too large, the entire signal would be screened and the
measurement would become of little interest.

Also for the correlation length, choosing small values
of R and n implies coping with small-scale nonlinearities,
which risk to invalidate the identity expressed in Eq. (17).
Large values of correlation distances, however, would make
it difficult to accommodate enough couples of spheres in
the volume to guarantee statistical robustness. An addi-
tional constraint comes from the strategy we adopt to fill
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Figure 3. The clustering ratio smoothed on the scale R and at

correlation length r = nR, n = 2 as a function of the smooth-

ing scale. We show in red the measures in the ΛCDM simulation
and in blue the ones in the simulation with the highest neutrino

mass, Mν = 0.53 eV, which are the two extreme cases. Filled dots
are measures in real space, while empty dots in redshift space. In

the bottom panel the ratio between the clustering ratio in red-

hift space over the real space case is shown. Since on linear scales
the monopole contribution coming from redshift-space distortions

enhances the correlation function and the variance by the same

multiplicative factor, we expect the clustering ratio to be unaf-
fected. The ratio between redshift and real space measurements

is, in fact, of order 1 with an accuracy better then 3%. This is

even better confirmed in the case at redshift z = 1.055 (right)
because at higher redshift the matter growth is more linear.

the volume with spheres and perform the count-in-cells. In
this framework, if the correlation length is below twice the
smoothing scales, r < 2R, the spheres of our motif of cells
would overlap, resulting in an additional shot-noise contri-
bution. For this reason, we only allow values of n > 2.

The main information we want to extract is the total
neutrino mass. The sensitivity of the clustering ratio to this
parameter can be quantified as an effective signal-to-noise
ratio, defined as

S/N =
ηνR(r)− ηΛ

R(r)

σΛ
R

, (30)

where ηνR(r) is the clustering ratio measured in a simulation
with neutrino mass Mν , ηΛ

R(r) is measured in the reference
ΛCDM simulation and σΛ

R is the uncertainty on the cluster-
ing ratio measured in the ΛCDM simulation. This quantity
measures how much a massive neutrino cosmology is distin-
guishable from a ΛCDM one, given the typical errors on the
measures of the clustering ratio for the specific volume and
number density of tracers, as a function of R and r. Fig. 4
shows the (n,R) plane, constructed as a grid with correla-
tion lengths n ∈ [2, 2.75] with step ∆n = 0.05 and smooth-
ing scales R ∈ [15, 30] with step ∆R = 1, all distances being
expressed in units of h−1 Mpc. At each point on the grid
a color is associated, representing the value of this effect-
ive signal-to-noise ratio. The effect of massive neutrinos is,
as expected, appreciable on small scales (both small n and
small R), and eventually becomes negligible moving towards
large scales.
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Figure 4. The effect of neutrinos on the clustering ratio com-
pared to a ΛCDM cosmology. In the (n,R) plane, we plot colour

contours corresponding to (ηR(r, ν)− ηR(r,ΛCDM)/ση(ΛCDM).
As expected, the sensitivity to the neutrino total mass increases

at small smoothing scales and correlation lengths (red regions).

While we want to maximise the effects of neutrinos, we
want to minimise errors. In particular, we can define a theor-
etical error, that accounts for the combinations of smoothing
radii R and correlation lengths r where the assumptions un-
der which we can apply the identity expressed in Eq. (17)
break down. Such theoretical error can be quantified as

δth =
ηR(r)− ηth

R (r)

ση
, (31)

where ηR(r) is the clustering ratio measured in the simula-
tion with a given cosmology, ηth

R (r) is the prediction obtained
with a Boltzmann code, and ση the uncertainty on the meas-
urement. In Fig. 5 we show as a color map the values that
we obtain for this theoretical error in the same (n,R) plan
introduced above. We can see that on very small scales the
effect of nonlinearities is not negligible, and we cannot use
the clustering ratio as an unbiased observable.

From Fig.s 4 and 5 we see that we need to balance
between the requirement coming from the signal-to-noise
ratio (that is maximum on small scales), and those from
the theoretical errors (that is minimum on large scales). We
introduce, therefore, a way of combining these pieces of in-
formation into a single colour map, which we use to seek the
sweet-spots, in this parameter space, where both conditions
are satisfied.

First, we define a combined percentage error (that ac-
counts both for statistical errors and discrepancies from the
model) as

δcombined =

{
ηνR(r)− ην,thR (r)

ηνR(r)− ηΛ
R(r)

}{
σΛ
η

ηνR(r)− ηΛ
R(r)

}
. (32)

The quantity in the first parenthesis is related to how much
the statistical error is important with respect to the effects
of neutrinos, while the second parenthesis is a weight that
accounts for the typical uncertainty on the measurement in
each bin of n and R. Finally, we define the neutrino contrast
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Figure 5. Discrepancy between the clustering ratio measured in
the simulation and the theoretical prediction in the (n,R) plane.

Colours represent the quantity (ηR(r) − ηth
R (r))/σ

(
Rr), the blue

regions being the ones with the best agreement with the pre-
dictions. Sufficiently large smoothing scales screen the effects of

the nonlinear growth of perturbations, allowing us to exploit the
clustering ratio as a cosmological probe. By smoothing our distri-

bution on scales R > 19 h−1 Mpc we ensure an agreement with

the model better then ∼ 1.5 standard deviations.

as

C =
S/N

max(S/N)
− δcombined

max(δcombined)
. (33)

Here we have normalised the signal/noise defined in Eq. (30)
and the combined error defined in Eq. (32) to their respect-
ive maxima (on the considered grid) and we are interested
in finding the regions where this contrast is dominated by
the signal/noise, i.e. where C(n,R) ∼ 1. In Fig. 6 we show
the neutrino contrast on the (n,R) grid, for the simulation
with Mν = 0.17 eV at redshift z = 0.48551.

We have repeated this analysis for the three massive
neutrino simulations (with Mν = 0.17, 0.30, 0.53 eV) and
for different redshifts, spanning the range from z = 0.48551
to z = 2.05053. Our conclusion is that the combination R =
22 h−1 Mpc, n = 2.1 is the most viable candidate for all
these cosmologies and redshifts.

4.2 Likelihood

We aim at comparing measurements and predictions of the
clustering ratio, in order to find the set of parameters of
the model that maximizes the likelihood. We exploit the
different dependence of measurements and predictions on
the cosmological model. In particular, the measured value of
the clustering ratio depends on the way we convert redshifts
and angles into comoving distances, that depends on the
total matter density Ωm, on the dark energy fraction ΩΛ

and on the background expansion rate H(z).
On the other hand, the theoretical prediction for the

clustering ratio depends on the entire cosmological model
and is therefore sensitive also to the value of the total neut-
rino mass Mν .

We choose six baseline free parameters in our analysis,
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Figure 6. In this colour plot we subtract to the neutrino signal-

to-noise normalised to 1 a combined error normalised in the

same fashion. Details on the definition are in the text. We are
interested in the regions in the (n,R) plane where the neut-

rino signal-to-noise dominates (∼ 1) on the error (∼ 0), graph-
ically visible as hot spots. The region with smoothing scales

20 < R < 23 h−1 Mpc

seems to be the most promising. In particular, by repeating this

test for different redshifts and neutrino masses, we chose as our

candidate scales R = 22 h−1 Mpc, n = 2.1.

namely the baryon and cold dark matter density parameters
Ωbh

2 and Ωcdmh
2, the Hubble parameter H0, the optical

depth at the recombination epoch τ , the amplitude of the
scalar power spectrum at the pivotal scale As and the scalar
spectral index ns. Moreover, we extend this parametrization
with two additional free parameters, the total neutrino mass
Mν and the equation of state of the dark energy fluid w. The
most general vector of parameters therefore is

p = {Ωbh2,Ωcdmh
2, H0, τ, As, ns,Mν , w}.

We follow Bel & Marinoni (2014), who showed that the like-
lihood function of the clustering ratio (given a fixed set of
parameters) is compatible with being a Gaussian. Therefore
we will compute the logarithmic likelihood as lnL = −χ2/2
(apart from a normalization term) where

χ2(p) =
∑
i

(ηR,i(r)− ηth
R,i(r))

2

σ2
ηi

, (34)

where we neglect the covariance between the different red-
shift bins.

We account for the dependence of the measurements on
the cosmological model assumed, induced by the cosmology-
dependant conversion of redshifts into distances, whenever
we compare measurements of the clustering ratio (obtained
in the fiducial cosmology) to its predictions (in a generic
cosmology). That is, when computing the likelihood for the
set of parameters ϑ, we must keep in mind that the measured
value has been computed in a different cosmology, the one
with the fiducial set of parameters ϑF.

We keep the measurements fixed in the fiducial cosmo-
logy and rescale the predictions accordingly. We consider
that, due to Alcock-Paczyński effect, at same redshift and

angular apertures we can associate different lengths depend-
ing on cosmology (Alcock & Paczyński 1979).

Our measurements depend on distances only through
the smoothing scale R. This is because the correlation length
is always expressed as a multiple of the smoothing scale,
r = nR. This means that, since the measure has been
obtained in the fiducial cosmology using spheres of radius
RF = 22 h−1Mpc, they need to be compared to predictions
obtained in a generic cosmology using a smoothing length
R = αRF, where α is our Alcock-Paczyński correction.

We write the Alcock-Paczyński correction α as (Eisen-
stein et al. 2005)

α =

[
EF(z)

E(z)

(
DA

DF
A

)2
]1/3

, (35)

where E(z) ≡ H(z)/H0 is the normalised Hubble function
and DA the angular diameter distance. Therefore, we are
going to compare

ηF,sg,R(nR) ≡ ηαR(nαR), (36)

the left hand side of Eq. (36) being the clustering ratio of
galaxies measured in redshift space assuming the fiducial
cosmology, while the right hand side is the predicted clus-
tering ratio for matter in real space, rescaled to the fiducial
cosmology to make it comparable with observations.

In order to efficiently explore the parameter space we
have modified the public code CosmoMC (Lewis & Bridle
2002), adding a likelihood function that implements this pro-
cedure.

4.3 Constraints using SDSS data

We measure the clustering ratio in the 7th (Abazajian et al.
2009) and 12th (Alam et al. 2015) data release of the Sloan
Digital Sky Survey (SDSS) by smoothing the galaxy dis-
tribution with spherical cells of radius R and counting the
objects falling in each cell. We divide the sample into three
redshift bins that have mean redshifts z̄ = {0.29, 0.42, 0.60}.
The first redshift bin is extracted from the DR7 catalogue,
while the two bins at higher redshift come from the DR12
catalogue, after removing the objects already present in the
other bin.

To perform the count-in-cell procedure, we convert red-
shifts into distances, assuming a cosmology with H0 =
67 km s−1 Mpc−1, Ωm = 0.32 and in which we fix the geo-
metry of the universe to be flat, Ωk = 0, forcing ΩΛ =
1 − Ωr − Ωm. Therefore, this is to be considered our fidu-
cial cosmology. We compute the clustering ratio using the
estimators presented in Sec. 2.1, employing our optimised
smoothing size and correlation length, R = 22 h−1Mpc and
r = 2.1 R. Our measures of the clustering ratio in each red-
shift bin are

at 0.15 6 z 6 0.43, ηg,R(r) = 0.0945± 0.0067,

at 0.30 6 z 6 0.53, ηg,R(r) = 0.0914± 0.0055,

at 0.53 6 z 6 0.67, ηg,R(r) = 0.1070± 0.0110.

Details on the computation of the clustering ratio and its er-
rors in the SDSS catalogue can be found in Bel et al. (2015),
where, though, measures are performed assuming a different
fiducial cosmology.
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Figure 7. Joint posterior distribution obtained using Planck tem-

perature and polarization data and the clustering ratio measured
in SDSS DR7 and 12. We fit a cosmological model with seven

free parameters, the six baseline parameters of Planck and the

neutrino total mass, but here only four of them are shown.

In Fig. 7 we show, for some relevant parameters, the
joint posterior distribution obtained fitting at the same time
the Planck temperature and polarization data and the clus-
tering ratio measurements in SDSS DR7 and DR12, leaving
free to vary the six baseline parameters and the total neut-
rino mass Mν . Already by eye, adding the clustering ratio
to the CMB information does not seem to improve much
the upper bound of the total neutrino mass parameter. In
general, the most significant improvement seems to occur on
the constraint of the cold dark matter density parameter.

Moreover, we have also checked how constraints change
when we leave the equation of state of dark energy, w, as an
additional free parameter. As a matter of fact, w is known
to be strongly degenerate with the other parameters of the
model, when only CMB data are used. In general, we need
information from a geometrical probe sensitive to the late
time universe in order not to find non-physical solutions.
Fig. 8 shows that the clustering ratio is indeed able to break
such degeneracy.

Also the combination of other cosmological probes can
help breaking degeneracies and tightening constraints. For
this reason we compare the constraining power of the clus-
tering ratio to that of two other observables, the fit of the
BAO peak in the correlation function measured by the BOSS
collaboration in the DR11 CMASS and LOWZ datasets (An-
derson et al. 2014) and the lensing of the CMB signal due to
the intervening matter distribution between the last scatter-
ing surface and us, where the amplitude of the lensing po-
tential, AL, has been kept fixed to 1 (Planck Collaboration
et al. 2016).

In the first part of Tab. 4 we show the mean, 68% and
95% levels obtained for the different parameters combining
the likelihoods presented above. To better show the beha-

viour of the clustering ratio with respect to the other probes
considered, in Fig.s 9-10, we focus particularly on the para-
meters w, Mν and H0.

In general, adding the clustering ratio considerably im-
proves on the parameter constraints obtained with CMB
data alone, especially when also w is free to vary. In par-
ticular, the clustering ratio is able to break the degeneracy
between w and the other cosmological parameters, that af-
fects the constraints drawn with the sole CMB data. On the
other hand, the clustering ratio does not seem to improve
much the constraint on the Mν parameter, especially when
compared to probes such as the CMB lensing and the BAO
peak position.

The clustering ratio proves to be extremely sensitive to
the cold dark matter fraction Ωcdmh

2, as adding the cluster-
ing ratio to the CMB analysis results in a 12% improvement
on the 95% confidence level.

To improve our understanding of the results presented
in the previous section, we investigate how well the cluster-
ing ratio allows us to recover a certain known cosmology.

To this purpose, we use the measurements of the clus-
tering ratio in one of the DEMNUni simulations, the one
with Mν = 0.17 eV, which represents the closest value to
the current available constraints on the neutrino total mass.
The clustering ratio is measured in the simulation at the
same redshifts, and with the same binning, as in the SDSS
data. The error on each measurement in the simulation is
taken to be the one obtained from the SDSS measurements.

The likelihood using the CMB data is computed in this
case fixing the bestfits to the values of the parameters in
the cosmology of the simulation, and employing the covari-
ance matrix contained in the publicly available Planck data
release.

The posterior distribution obtained with this procedure
is shown in Fig. 11, while the second part of Tab. 4 summar-
izes the improvements on the constraints on the parameters
that we obtain adding the clustering ratio. We correctly re-
cover the bestfits of our known cosmology, with errors com-
parable with the true ones. We conclude that the reason
why we did not achieve a significant improvement on the
constraint on the total neutrino mass using the SDSS data
resides in the fact that the clustering ratio requires smaller
error bars to be effective in constraining such parameter.
We can therefore expect that, with upcoming, large galaxy
redshift surveys, the clustering ratio will reach a larger con-
straining power.

We test such an hypothesis in the next section, ana-
lysing the clustering ratio expected for a Euclid-like galaxy
redshift survey, in combination with CMB data.

4.4 Forecasts for a Euclid-like galaxy redshift
survey

In order to forecast the constraining power of the cluster-
ing ratio, expected from a future, Euclid-like galaxy redshift
survey, we construct the synthetic clustering ratio data in
the following way:

• We imagine to have 14 redshift bins, from z = 0.7 to
z = 2, with ∆z = 0.1
• In each redshift bin, the synthetic measurement of the

clustering ratio is given by the predicted clustering ratio

c© 0000 RAS, MNRAS 000, 000–000
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Figure 8. Joint posterior distribution obtained employing CMB temperature and polarization data from Planck and the clustering ratio
measurements from SDSS DR7 and DR12 catalogues. Besides the six standard parameters of the model, also the equation of state of
dark energy is left free.

(computed using a Boltzmann code), to which we add a
small random noise (within 1 standard deviation).

• We measure the errors (at the same redshifts) in the
DEMNUni simulations; the errors in the simulations are
then rescaled, according to the operative formula presen-
ted below, to match the volume and number density of our
Euclid-like survey.

The relative error on the clustering ratio depends on
the volume and number density of the sample, and can be

parametrised, following Bel et al. (2015), as

δη

η
= AV −1/2 exp

{
0.14

[
ln ρ− ln2 ρ

2 ln(0.02)

]}
(37)

where V is the volume expressed in h−3Mpc3, ρ is the object
number density in h3Mpc−3 and A is a normalization factor
computed with the reference volume and number density.

We use these data to explore the posterior distribution
of the parameters of the model. The results are shown in
Fig. 12, and the constraints are shown in the last part of
Tab. 4.

c© 0000 RAS, MNRAS 000, 000–000



Constraints from clustering ratio with neutrinos 13

−2.8 −2.4 −2.0 −1.6 −1.2 −0.8

w

50

60

70

80

90

100

H
0

CMB

CMB + CR

CMB + BAO

CMB + CR + BAO

−2.8 −2.4 −2.0 −1.6 −1.2 −0.8

w

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Σ
m
ν

CMB

CMB + CR

CMB + BAO

CMB + CR + BAO
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right the total neutrino mass Mν . The considered likelihoods are the one computed using Planck data alone, and its combinations with
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In this case there is a much larger improvement on the
constraints of all the parameters. The neutrino total mass
parameter improves by 14% on the 95% limit with respect to
using Planck alone. Most notably, the constraint on the cold
dark matter density parameter, Ωcdmh

2, improves by over
40%. Also the spectral index ns shows a 10% improvement
and the constraint on the Hubble constant H0 improves by
20%.

This means that, when new data, covering a larger
volume, will be available, clustering ratio measurements are
expected to contribute with a significant improvement on
the constraints on the parameters of the cosmological model.

We also note that, as more different observations are
carried out, it becomes very interesting to enhance the
constraining power of the clustering ratio also combining
its measurements in different datasets. This can be easily
done since the clustering ratio is a single measurement, thus
scarcely dependent on the survey geometry.

5 SUMMARY AND CONCLUSION

Neutrino effects are being increasingly included in cosmolo-
gical investigations, becoming in fact part of the standard
cosmological model. Thanks to these investigations, the de-
scription of the statistical properties of the universe is gain-
ing the precision required by forthcoming experiments and,
at the same time, neutrino physics gains tighter constraints.

In this work we have considered the clustering ratio,
an observable defined as the ratio between the smoothed
correlation function and variance of a distribution, and ex-
tended its range of applicability to cosmologies that include
a massive neutrino component. As a matter of fact, the clus-
tering ratio, which has already been tested in ΛCDM cos-
mologies including only massless neutrinos, is unbiased and
independent from redshift-space distortions on linear scales.
As massive neutrinos introduce characteristic scale depend-
encies in the clustering of galaxies (and matter), such pecu-
liar properties of the clustering ratio needed to be confirmed
(or denied) in this cosmological framework.

We divided our analysis into two steps: first, we stud-
ied the properties of the clustering ratio in simulations that

c© 0000 RAS, MNRAS 000, 000–000



14 M. Zennaro, J. Bel, J. Dossett, C. Carbone, L. Guzzo

0.95 0.96 0.97

ns

0.1150

0.1175

0.1200

0.1225

Ω
c
h

2

0.15

0.30

0.45

0.60

∑
m
ν

62.5 65.0 67.5 70.0

H0

0.95

0.96

0.97

n
s

0.11500.11750.12000.1225

Ωch
2

0.15 0.30 0.45 0.60∑
mν

CMB

CMB + CR

Figure 11. Joint posterior distribution obtained using Planck

temperature and polarization data and the clustering ratio. Be-
stfits here are fixed, errors for Planck come from the publicly
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parameters are shown.

include massive neutrinos; afterwards, we used the cluster-
ing ratio to compute the likelihood of the parameters of the
cosmological model, using both real data and forecasts of
future data.

In the first part of this work, we employed the DEM-
NUni simulations to test the clustering ratio in the pres-
ence of massive neutrinos. These are the largest available
simulations that include massive neutrinos as a separate
particle species along with cold dark matter. We computed
the clustering ratio using different tracers (dark matter
FoF haloes and spherical overdensities), divided into differ-
ent mass bins (spanning the interval from ∼ 6 × 1011 to
& 1014 h−1M�), and we explore different choices of neut-
rino mass (Mν = {0, 0.17, 0.3, 0.53} eV) in real and redshift
space.

From such analysis we conclude that the properties of
the clustering ratio hold also in cosmologies with massive
neutrinos. In particular its main property, the fact that the
galaxy clustering ratio in redshift space is directly compar-
able to the clustering ratio predicted for matter in real space
on a range of linear scales, is proven valid.

We have therefore moved to employing the clustering
ratio as a cosmological probe to find the set of parameters of
the model that maximizes the likelihood function, given a set
of data. We have used the data from the SDSS DR7+DR12
catalogue. We have computed the clustering ratio in three
redshift bins and used these measures in combination with
the temperature and polarization anisotropies of the CMB
measured by the Planck satellite to explore the likelihood in
parameter space with an MCMC approach. We find that the
clustering ratio is able to break the degeneracy, present in
the CMB data alone, between the equation of state of dark

matter, w, and the other parameters. Moreover it improves
the 95% limit on the CDM density parameter by ∼ 12%.
However, we do not find an appreciable improvement in the
constraint on the neutrino total mass.

By analysing simulations we conclude that we blame
such lack of improvement on the statistical errors, which,
with current data, are not yet competitive enough. We have
therefore tested the constraining power of the clustering ra-
tio using the error bars expected from a Euclid-like galaxy
survey.

In this case we find that not only does the clustering ra-
tio greatly improve (with respect to using CMB data alone)
the constraint on the CDM density parameter (shrinking
the 95% limit by ∼ 40%) and on the Hubble parameter H0

(whose 95% limit improves by 20%), but it is also able to im-
prove by ∼ 14% the 95% upper bound on the total neutrino
mass.

In conclusion, the clustering ratio appears to be a valu-
able probe to constrain the parameters of the cosmological
model, especially with upcoming large galaxy redshift sur-
veys. Being easy to model and to measure, it provides us
with a powerful tool to complement other approaches to
galaxy clustering analysis, such as the measurement of the
galaxy correlation function or power spectrum. Moreover,
we note that, given the simplicity of combining the cluster-
ing ratio measured in different surveys, we expect its true
constraining power to emerge when it will be measured in a
number of different datasets.
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Ωbh
2 Ωch2 τ Mν

Pl (fixed w) 0.02222 ±0.00017 ±0.00033 0.11978 ±0.00147 ±0.00291 0.07851 ±0.01713 ±0.03355 0.16722 < 0.19150 < 0.49402

Pl + CR (fixed w) 0.02222 ±0.00016 ±0.00031 0.11972 ±0.00128 ±0.00255 0.07801 ±0.01744 ±0.03330 0.15795 < 0.18088 < 0.47835

Pl 0.02222 ±0.00016 ±0.00034 0.11971 ±0.00142 ±0.00281 0.07737 ±0.01793 ±0.03483 0.22153 < 0.26698 < 0.60851
Pl + CR 0.02216 ±0.00017 ±0.00033 0.12042 ±0.00149 ±0.00290 0.07469 ±0.01754 ±0.03403 0.20304 < 0.24510 < 0.53081

Pl + CLens 0.02217 ±0.00017 ±0.00035 0.11967 ±0.00153 ±0.00299 0.06927 ±0.01749 ±0.03420 0.32882 ±0.19711 < 0.67219

Pl + BAO 0.02225 ±0.00015 ±0.00030 0.11949 ±0.00134 ±0.00263 0.07728 ±0.01705 ±0.03304 0.11571 < 0.14235 < 0.30423
Pl + CLens + CR 0.02213 ±0.00016 ±0.00032 0.12026 ±0.00145 ±0.00288 0.06909 ±0.01681 ±0.03237 0.29440 ±0.17524 < 0.59471

Pl + BAO +CR 0.02223 ±0.00015 ±0.00030 0.11965 ±0.00132 ±0.00261 0.07731 ±0.01666 ±0.03147 0.10844 < 0.13143 < 0.28339

w ln(1010As) ns H0

Pl (fixed w) -1.00000 − − 3.09167 ±0.03332 ±0.06510 0.96531 ±0.00478 ±0.00951 66.36205 +1.93320
−0.79827 ±3.14533

Pl + CR (fixed w) -1.00000 − − 3.09042 ±0.03375 ±0.06497 0.96550 ±0.00456 ±0.00906 66.47015 +1.72753
−0.68157 ±2.93440

Pl -1.68615 ±0.29543 ±0.59285 3.08881 ±0.03490 ±0.06751 0.96500 ±0.00473 ±0.00953 86.91446 +12.41268
−4.70920 ±15.59971

Pl + CR -1.25376 ±0.24254 ±0.52000 3.08537 ±0.03368 ±0.06550 0.96389 ±0.00487 ±0.00967 73.04263 ±6.83317 ±14.51362

Pl + CLens -1.67628 ±0.35984 ±0.66750 3.07148 ±0.03387 ±0.06578 0.96452 ±0.00502 ±0.00978 84.62450 +14.64438
−5.54025 ±16.85512

Pl + BAO -1.05867 ±0.07959 ±0.16354 3.08846 ±0.03305 ±0.06428 0.96612 ±0.00451 ±0.00886 68.60048 ±1.67361 ±3.36935

Pl + CLens + CR -1.22298 ±0.23981 ±0.51234 3.07259 ±0.03189 ±0.06176 0.96385 ±0.00493 ±0.00946 71.08454 ±6.31034 ±13.48706
Pl + BAO + CR -1.05267 ±0.07749 ±0.15731 3.08903 ±0.03209 ±0.06098 0.96595 ±0.00453 ±0.00888 68.42143 ±1.63637 ±3.26416

Ωbh2 Ωch2 τ Mν

Pl (fixed w) 0.02244 ±0.00016 ±0.00034 0.11948 ±0.00157 ±0.00314 0.09332 ±0.01644 ±0.03291 0.20477 < 0.26441 < 0.42993

Pl + CR (fixed w) 0.02242 ±0.00015 ±0.00030 0.11950 ±0.00136 ±0.00265 0.09199 ±0.01659 ±0.03229 0.20843 ±0.11909 < 0.41013

w ln(1010As) ns H0

Pl (fixed w) -1.00000 − − 3.05893 ±0.03169 ±0.06381 0.95937 ±0.00518 ±0.01015 66.65175 ±1.43657 ±2.67394
Pl + CR (fixed w) -1.00000 − − 3.05620 ±0.03264 ±0.06422 0.95969 ±0.00458 ±0.00918 66.60347 ±1.23252 ±2.41851

Ωbh
2 Ωch2 τ Mν

Pl (fixed w) 0.02243 ±0.00016 ±0.00031 0.11942 ±0.00146 ±0.00290 0.09335 ±0.01747 ±0.03445 0.20513 ±0.12382 < 0.43157
Pl + CR (fixed w) 0.02245 ±0.00013 ±0.00026 0.11926 ±0.00084 ±0.00167 0.09422 ±0.01655 ±0.03298 0.17749 ±0.11133 < 0.37693

w ln(1010As) ns H0

Pl (fixed w) -1.00000 − − 3.05859 ±0.03378 ±0.06670 0.95983 ±0.00491 ±0.00964 66.66588 ±1.38464 ±2.62998
Pl + CR (fixed w) -1.00000 − − 3.06008 ±0.03262 ±0.06476 0.96046 ±0.00443 ±0.00854 66.98261 ±1.12263 ±2.18365

Table 4. Mean, 68% and 95% levels of the marginalised posterior distributions. In the first part of the table the datasets of Planck’s CMB temperature and polarization anisotropies,
BOSS measurement of the BAO peak, and Planck’s CMB lensing signal are used in combination with the clustering ratio measured in the SDSS DR7+12 sample. In the second part of
the table bestfits have been fixed to the ones of the fiducial cosmology, errors for Planck are obtained from the publicly available Planck parameter covariance matrix and error for the

clustering ratio are the ones measured in SDSS DR7 and DR12. Finally, in the last part of the table, bestfits have been fixed to the ones of the fiducial cosmology, errors for Planck are
obtained from the publicly available Planck parameter covariance matrix and errors for the clustering ratio are the ones predicted for a Euclid-like galaxy survey, following the procedure
described in the text.
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