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ABSTRACT

Due to distorsions of catadioptric sensors, omnidirectional
images can not be treated as classical images. If the equiv-
alence between central catadioptric images and spherical im-
ages is now well known and used, spherical analysis often
leads to complex methods particularly tricky to employ. In
this paper, we propose to derive omnidirectional image treat-
ments by using geodesic metric. We demonstrate that this ap-
proach allows to adapt efficiently classical image processing
to omnidirectional images.

Index Terms— Omnidirectional image, image process-
ing

1. INTRODUCTION

Numerous applications benefit from the use of cameras with
panoramic field of view [1]. However, because of distorsions
observed in images obtained with this kind of sensor (fig 3)
classical image processing treatments are not adapted.
Consequently, Bogdanova and al. [2] proposed to include
the deformation of the mirror by considering the Jacobian in-
duced by the mirror geometry. This method permits the cor-
rection of image distorsions for gradient estimation but can
not be extended to image filtering.
An other approach consists in considering omnidirectional
image as a planar projection of a spherical image. Indeed, [3]
[4], [5] have demonstrated that a central image (catadioptric
or perspective) or a fisheye image are equivalent to a spheri-
cal image if the intrinsic parameters of the sensor are known.
In this way, spherical space appears more suitable for image
processing than Euclidean plane. In order to avoid spherical
geometry, Jacquey and al. [6] proposed to project the spheri-
cal image onto an including virtual cylinder. Classical image
filterings are then applied on this cylinder. Even if this rep-
resentation appears to be a good approximation, cylindric ge-
ometry is not adapted to spherical images. Demonceaux and
Vasseur [7] proposed to adapt Markovian methods to omni-
directional images by defining a neighborhood with spheri-
cal constraints for each pixel. This representation presents a
real improvement of the quality of the results obtained with

Fig. 1. Sphere sampling with constantφ andθ provides an
irregular grid.

Markovian treatments but can not be also generalized to im-
age filtering.
In [8] and [9], omnidirectional are considered as spherical
images and the authors use spherical harmonics in order to
define convolution product and Fourier transform. However,
these spherical tools have been developped from a sampling
which is not appropriate to omnidirectional images. Indeed,
spherical coordinates of a point are defined as

∀x ∈ S2, x = (cos(φ) sin(θ), sin(φ) sin(θ), cos(θ)),

whereφ ∈ [0, 2π[, θ ∈ [0, π] and the natural sampling of
the sphere consists in considering every points separated by
constantθi andφj . Thus, the distance of two points on this
kind of grid depends on their latitude (fig 1). Consequently,
this irregular grid requires to introduce a weighting on the
azimuth derivate for computing the gradient∂I

∂φ
([9]):

∇S2I(θ, φ) =
∂I

∂θ
eθ(θ, φ) +

1

sin(θ)

∂I

∂φ
eφ(θ, φ)

Moreover, this representation leads to a non-commutative
convolution product and does not verify the useful following
relation(I ∗ f)′ = I ∗ f ′. In this way, computing the gra-
dient by using the low-pass filter derivative as in perspective
images is impossible.
Ainouz and al [10] propose to filter an omnidirectional image
using the projection of the previous spherical sampling on the
omnidirectional plane. But, once more, due to this irregular
sampling, the formulation is not really correct.



In this paper, we propose to define omnidirectional im-
age convolution from geodesic distance between points. We
demonstrate that this definition allows to use similar filters
than in perspective image processing and moreover, that com-
mutative properties and derivative computation of the convo-
lution remain valid.

2. GEODESIC METRIC

Perspective image processing tools are generally based on Eu-
clidean metric :

∀x, y ∈ R
2, d(x, y) = ||x − y||l2(R2).

From this metric, it is possible to define a neighborhood in
order to compute derivatives, to detect corners or to perform
point matching for instance. The aim of the neighborhood
is to define in the image plane the dependency between 3D
points. Practically, for an orthographic camera this neighbor-
hood describes exactly 3D dependency of points if they live
on a fronto-parallel plane (fig 2(a)). For a perspective camera,
this neighborhood is an approximation whatever the configu-
ration of 3D points (fig 2(b)). In the case of an omnidirec-
tional image, this neighborhood is no more adapted (fig 2(c)).
However, if we consider a regular sampling according toθ

andφ (fig 2(d)), this neighborhood describes exactly the mu-
tual influence of 3D points if they live on a concentric sphere
of the unitary sphere and is a good approximation in the gen-
eral case. This is this kind of neighborhood that we develop
in the following.

2.1. Definition

Let P, the projection of an omnidirectional planar image into
its equivalent spherical image:

P :
R

2 → S2

x 7→ xs = (θ, φ)
(1)

In order to apply image processing treatments on the sphere,
we propose to employ the following geodesic distance :

∀xs, ys ∈ S2 d(xs, ys) = arcos(xs, ys).

Let xs ∈ S2, the projection of planar image pixelx on
the equivalent sphere (xs = P(x)). The continuous neighbor-
hoodVr(x) of pixel x in the image is defined as :

Vr(x) = {ys ∈ S2, d(xs, ys) < r}

The discrete neighborhoodVN
r (x) is then defined by (fig.

2(d)):

∀ P(x) = xs = (θ, φ) ∈ S2

VN
r (x) = {(θ′, φ′)|

{

θ′ = θ + nr,

φ′ = φ + p
sin(θ)r

− N ≤ n, p ≤ N}

(2)

(a) (b)

(c) (d)

Fig. 2. Image formation and neighborhood dependency. (a)
Orthographic image, Euclidean metric, (b) perspective image,
Euclidean metric, (c) omnidirectional image, Euclidean met-
ric, (d) omnidirectional image, geodesic metric.

By analogy with the planar case, we define a regular grid
of (2N + 1) × (2N + 1) points centered inxs such as the
geodesic distance between a point and its nearest neighbours
is exactly equal tor :

∀ys ∈ VN
r (x) min

zs∈VN
r

(x)
d(ys, zs) = r.

2.2. Filtering

Considering an omnidirectional imageI and IVN
r

(x) =

I(P−1(VN
r (x))) as a regular grid centered inx with (2N +

1)2 pixels associated to their grey level values.
Let H be a filter of size(2N + 1) × (2N + 1), the filtered
imageIH at the pointx = (x1, x2) can be defined similarly
than in the classical case by the convolution product1:

IH(x) = IVN
r

(x)(x) ∗ H

=
∑N

i=−N

∑N
j=−N IVN

r
(x)(x1 − i, x2 − j)H(i, j)

(3)

1This representation is equivalent to the convolution product on the tan-
gent plane at pointxs = P(x).



If we consider the particular example of the gradient from a
Sobel filter,

S =





−1 −2 −1
0 0 0
1 2 1



 .

we then obtain :

||∇I(x)||2 = |IV2
r
(x) ∗ S|2 + |IV2

r
(x) ∗ S′|2

In the same way, image filtering with a Gaussian can be
seen as a weighting of the points according to their distance
from the considered point. Consequently, the traditional
Gaussian defined as :

Gx(y, σ) =
1

2πσ2
exp−

||x − y||2

2σ2

can be replaced by :

Gx(y, σ) =
1

2πσ2
exp−

d(x, y)

2σ2
(4)

Moreover, it is possible to develop the following Lapla-
cian of Gaussian :

LoGx(y) = −
1

πσ4
[1 −

d(x, y)

2σ2
] exp−

d(x, y)

2σ2
(5)

Thus, while harmonic analysis proposes definitions for
Gaussian and Laplacian of Gaussian very tricky to implement
for spherical image processing [9], our approach allows to
adapt easily classical filters. Indeed, thanks to (4, 5) and the
convolution product defined by (3), the masks used in per-
spective image processing remain valid.

3. EXPERIMENTS

In this section, we demonstrate the benefits of our modeling
in the case of corner detection based on Harris method and in
the case of point matching based on ZNCC. It is worth noting
that our geodesic neighborhood requires a first interpolation
phase. In the following experiments of this section, we obtain
IVN

r
(x) by a nearest neighbour interpolation.

3.1. Harris detector

Harris detector allows to extract corners in images and is par-
ticularly useful in computer vision. In perspective image pro-
cessing, detect corners by Harris method consists in studying
eigenvalues of matrixM for each pointX :

M(X) =

[

L2
x(X, σ) LxLy(X, σ)

LxLy(X, σ) L2
y(X, σ)

]

(6)

whereLi(X, σ) = ∂
∂i

GX(X, σ) ∗ I(X)
In the case of omnidirectional images, this definition is always
valid by using the convolution defined in (3) and (4). Results

(a)

(b)

(c)

(d)

Fig. 3. Harris detector. (a)-(b) classical approach,(c)-(d)
geodesic approach

of Harris detector are shown in figure 3 for two consecutive
images of a sequence. Table 1 presents the repeatability factor
[11] of our detector in comparison with the classical Harris
detector. On the locker (fig 3(b) and 3(d)),50 corners have
been detected inI1 with our method and55 with the classical
approach. In the second frame, we detect51 corners with
our approach while the classical Harris detector finds only36
corners. In the results of the classical Harris detector, only 29
common corners have been detected which corresponds to a
repeatability rate equal to80%. In the case of the geodesic
approach,43 common corners have been detected between
the two images which corresponds to a repeatability of86%.

3.2. Matching with ZNCC

Beyond image processing methods based on filtering, point
matching techniques based on correlation have also to include



Geodesic Harris Classical Harris
Image I1 I2 I1 I2

Corners 231 227 212 239
Corners on locker 50 51 55 36

Repeatability 43→86% 29→80%

Table 1.

(a)

(b)

Fig. 4. Matching with ZNCC. (a) classical approach :65
matchings,53 true matchings,(b) geodesic approach :71
matchings,63 true matchings

image distorsion. We have then considered ZNCC measure :

ZNCC(x, y) =

P

i∈V(x)

P

j∈V(y)(I1(i) − I1(x))(I2(j) − I2(y))
q

P

i∈V(x)(I1(i) − I1(x))2
P

j∈V(y)(I2(j) − I2(y))2

(7)

whereI1(x) (respI2(y)) is the mean ofI1 (resp. I2) in the
neighborhoodV(x) (resp.V(y)). We have compared a classi-
cal neighborhood of size7× 7 with a geodesic neighborhood
V3

r (fig 4). If we consider the same corners in both cases
and the same thresholds, classical ZNCC allows to match65
points. Among these65 matchings, only53 are correct, which
represents18.4% of outliers. In the case of geodesic neigh-
borhood defined by (2), we obtain71 matchings including63
correct ones, which is equal to11.2% of outliers.

4. CONCLUSION

In this paper, we have proposed a new approach for omnidi-
rectional image processing which consists in considering the
spherical space and the geodesic metric rather than Euclidean
plane with Euclidean metric. We are then able to define a
geodesic neighborhood which presents several advantages :

• Masks are similar to the masks inR2

• Classical methods are easily transposable.

The single drawback of the approach deals with the necessity
to perform an interpolation of the image in order to define our
regular grid. Nevertheless a simple interpolation by nearest
neighborhood allows to obtain good results as shown in the
experiments. A very interesting perspective consists in devel-
oping spherical multi-scale image processing.
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