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ABSTRACT P

AT T TR0

Due to distorsions of catadioptric sensors, omnidirection
images can not be treated as classical images. If the equiv-
alence between central catadioptric images and sphemeal i
ages is now well known and used, spherical analysis often
leads to complex methods particularly tricky to employ. In
this paper, we propose to derive omnidirectional image-trea
ments by using geodesic metric. We demonstrate that this alg_—_ ) ) )
proach allows to adapt efficiently classical image procegsi F19- 1. Sphere sampling with constantandf provides an
to omnidirectional images. irregular grid.

Index Terms— Omnidirectional image, image process-

in . . .
g Markovian treatments but can not be also generalized to im-
age filtering.
In [8] and [9], omnidirectional are considered as spherical
N ) .jmages and the authors use spherical harmonics in order to
Numerous applications benefit from the use of cameras withy .. . X

o ) . . efine convolution product and Fourier transform. However,
panoramic field of view [1]. However, because of dlstorsmns[h . :

ese spherical tools have been developped from a sampling

ObSGT"ed. In Images obtf';uned with this kind of sensor (fig 3lehich is not appropriate to omnidirectional images. Indeed
classical image processing treatments are not adapted. spherical coordinates of a point are defined as
e

Consequently, Bogdanova and al. [2] proposed to includ
the deformation of the mirror by considering the Jacobianin vz € S% x = (cos(¢) sin(6), sin(¢) sin(6), cos(d)),
duced by the mirror geometry. This method permits the cor- _
rection of image distorsions for gradient estimation but ca Where¢ & [0,27[,6 < [0,7] and the natural sampling of
not be extended to image filtering. the sphere consists in Con3|de_r|ng every pomts_separate_d b
An other approach consists in considering omnidirectionafonstan®; and¢;. Thus, the distance of two points on this
image as a planar projection of a spherical image. Indegd, [&ind of grid depends on their latitude (fig 1). Consequently,
[4], [5] have demonstrated that a central image (catadoptr thl_s |rregula_r grid requires to mtroduce_a weighting on the
or perspective) or a fisheye image are equivalent to a sphe@zimuth derivate for computing the gradieff([9]):
cal image if the intrinsic parameters of the sensor are known oI 18I
In this way, spherical space appears more suitable forimage ~ Vs21(0,¢) = —e9(0,¢) + ——=——¢4(0, ¢)

. . : ; 00 sin(f) 0¢
processing than Euclidean plane. In order to avoid spHerica
geometry, Jacquey and al. [6] proposed to project the spherMoreover, this representation leads to a non-commutative
cal image onto an including virtual cylinder. Classical gea convolution product and does not verify the useful follogvin
filterings are then applied on this cylinder. Even if this-rep relation (I x f)’ = I x f’. In this way, computing the gra-
resentation appears to be a good approximation, cylingric g dient by using the low-pass filter derivative as in perspecti
ometry is not adapted to spherical images. Demonceaux anishages is impossible.
Vasseur [7] proposed to adapt Markovian methods to omniAinouz and al [10] propose to filter an omnidirectional image
directional images by defining a neighborhood with spheriusing the projection of the previous spherical samplingen t
cal constraints for each pixel. This representation ptssen omnidirectional plane. But, once more, due to this irregula
real improvement of the quality of the results obtained withsampling, the formulation is not really correct.

1. INTRODUCTION



In this paper, we propose to define omnidirectional im-

age convolution from geodesic distance between points. Wk (L {L
demonstrate that this definition allows to use similar fiter L0 L7

than in perspective image processing and moreover, that corr
mutative properties and derivative computation of the cenv
lution remain valid.

2. GEODESIC METRIC 6 .

Perspective image processing tools are generally based-on E @ ()

clidean metric :

Vr,y € R?, d(x,y) = llz = yllizre).- ©/

From this metric, it is possible to define a neighborhood in
order to compute derivatives, to detect corners or to perfor
point matching for instance. The aim of the neighborhood
is to define in the image plane the dependency between 3L
points. Practically, for an orthographic camera this neah
hood describes exactly 3D dependency of points if they live
on a fronto-parallel plane (fig 2(a)). For a perspective game ! X
this neighborhood is an approximation whatever the configu- o o

ration of 3D points (fig 2(b)). In the case of an omnidirec- © (d)

tional image, this neighborhood is no more adapted (fig 2(c))

However, if we consider a regular sampling according to

and¢ (fig 2(d)), this neighborhood describes exactly the mu+Fig. 2. Image formation and neighborhood dependency. (a)
tual influence of 3D points if they live on a concentric sphereOrthographic image, Euclidean metric, (b) perspectivegena

of the unitary sphere and is a good approximation in the gerkEuclidean metric, (c) omnidirectional image, Euclideart-me
eral case. This is this kind of neighborhood that we developic, (d) omnidirectional image, geodesic metric.

in the following.

2.1. Definition By analogy with the planar case, we define a regular grid
o S _ - of (2N + 1) x (2N + 1) points centered i, such as the
Let P, the projection of an omnidirectional planar image intogeodesic distance between a point and its nearest neighbour

its equivalent spherical image: is exactly equal to :
RZ2 — 52
P: r = oz, =(0,0) (1) Vys € VN (2) min  d(ys,zs) =1

zs€VN (x)

In order to apply image processing treatments on the sphere,
we propose to employ the following geodesic distance : 2.2. Filtering

2 _
Vrs,ys €S°  d(ws,ys) = arcoszs, ys). Considering an omnidirectional image and Iy~ =

Letz, € S2, the projection of planar image pixelon  I(P~'(V,¥(x))) as a regular grid centered inwith (2N +
the equivalent sphere{ = P(z)). The continuous neighbor- 1)* pixels associated to their grey level values.

hoodV, () of pixel = in the image is defined as : Let H be a filter of size2N + 1) x (2N + 1), the filtered
) imagel H at the pointz = (z1,x2) can be defined similarly
V() = {ys € S, d(ws,ys) <7} than in the classical case by the convolution product
The discrete neighborhood¥ is then defined by (fig.
o) 9 o, (2) y @9 = Iy o) < H
=it N 2jen v (@1 — i, 22 — §)H (3, )
V Pz)=zs=(0,¢) €S? (3)
0 =0+nr,
=1 o{ 24 s N snpsw)
- sin(0) r 1This representation is equivalent to the convolution pobdn the tan-

(2)  gentplane at points = P(x).



If we consider the particular example of the gradient from a
Sobelfilter,
-1 -2 -1
S = 0 0 0
1 2 1

we then obtain :
||VI(CL‘)||2 = |IV3(:£) * S|2 + |IV$($) * Sl|2

In the same way, image filtering with a Gaussian can be
seen as a weighting of the points according to their distance
from the considered point. Consequently, the traditional
Gaussian defined as :

_ 2 — gl )
Gely, o) = 202 P T o502
can be replaced by :
_ 1 d(z,y)
G$ (yv U) - 271'0'2 €xp — 20_2 (4)

Moreover, it is possible to develop the following Lapla-
cian of Gaussian :

d(z,y)
202

mol 202

Thus, while harmonic analysis proposes definitions for
Gaussian and Laplacian of Gaussian very tricky to implement
for spherical image processing [9], our approach allows to
adapt easily classical filters. Indeed, thanks to (4, 5) aed t
convolution product defined by (3), the masks used in per- (d)
spective image processing remain valid.

LOGw (y) = -

Jexp — (5)

Fig. 3. Harris detector. (a)-(b) classical approach,(c)-(d)
3. EXPERIMENTS geodesic approach

In this section, we demonstrate the benefits of our modeling
in the case of corner detection based on Harris method and in ) o )
the case of point matching based on ZNCC. It is worth notingf Harris detector are shown in figure 3 for two consecutive
that our geodesic neighborhood requires a first interpmiati Images of a sequence. Table 1 presents the repeatabitity fac
phase. In the following experiments of this section, we iobta [11] of our detector in comparison with the classical Harris
Iy () by a nearest neighbour interpolation. detector. On the chker (fig 3(b) and 3(d5)) corners hgve

" been detected ify, with our method and@5 with the classical

approach. In the second frame, we detgttcorners with

our approach while the classical Harris detector finds 86ly
Harris detector allows to extract corners in images andris pacorners. In the results of the classical Harris detectdy, 2%
ticularly useful in computer vision. In perspective imagep common corners have been detected which corresponds to a
cessing, detect corners by Harris method consists in stgdyi repeatability rate equal t80%. In the case of the geodesic
eigenvalues of matrid/ for each pointX: approach43 common corners have been detected between
the two images which corresponds to a repeatabili§66t.

3.1. Harris detector

- L3(X,0) L.L,(X,0)
whereL;(X, o) = %GX(X, o)+ I(X) 3.2. Matching with ZNCC

In the case of omnidirectional images, this definition IS&E;JEI Beyond imaage processing methods based on ﬁ|tering, point
valid by using the convolution defined in (3) and (4). Resultsmatching techniques based on correlation have also todaclu



Geodesic Harrig Classical Harris|
Image I | Iy I | I
Corners 231 | 227 212 | 239
Corners on locker 50 | 51 55| 36
Repeatability 43 —86% 29 —80%
Table 1

(b)

Fig. 4. Matching with ZNCC. (a) classical approachtb
matchings,53 true matchings,(b) geodesic approactvt
matchings$3 true matchings

image distorsion. We have then considered ZNCC measure

2iev(a) 2ojev(y) 1@ — L)) I2(5) — 12(y))
Vv (10 = 1@)? Z ey (120) — 2()?
- ™
wherel; (z) (resplz(y)) is the mean of; (resp. I5) in the
neighborhood’(x) (resp.V(y)). We have compared a classi-
cal neighborhood of sizeé x 7 with a geodesic neighborhood

ZNCC(z,y) =

V3 (fig 4). If we consider the same corners in both cases

and the same thresholds, classical ZNCC allows to m@éich
points. Among thes&5 matchings, only3 are correct, which
representd8.4% of outliers. In the case of geodesic neigh-
borhood defined by (2), we obtait matchings including3
correct ones, which is equal td.2% of outliers.

4. CONCLUSION

In this paper, we have proposed a new approach for omnid
rectional image processing which consists in considetieg t
spherical space and the geodesic metric rather than Eanlide

plane with Euclidean metric. We are then able to define a

geodesic neighborhood which presents several advantages

e Masks are similar to the masksR?
e Classical methods are easily transposable.

The single drawback of the approach deals with the necessity
to perform an interpolation of the image in order to define our
regular grid. Nevertheless a simple interpolation by n&tare
neighborhood allows to obtain good results as shown in the
experiments. A very interesting perspective consists wete
oping spherical multi-scale image processing.

5. REFERENCES

[1] R. Benosman and S.B. Kang?anoramic vision: sen-
sors, theory, and applications, Springer-Verlag New
York, Inc., 2001.

[2] I. Bogdanova, X. Bresson, J. Thiran, and P. Van-
dergheynst, “Scale-space analysis and active contours
for omnidirectional images,JEEE Transactionson Inm+

age Processing, vol. 16, no. 7, pp. 1888-1901, 2007.

[3] J.P. Barreto, “A unifying geometric representation for
central projection systems,'Comput. Vis. Image Un-
derst,, vol. 103, no. 3, pp. 208-217, 2006.

[4] C. Geyer and K. Daniilidis, “Catadioptric projective-ge
ometry,” 1JCV, vol. 45, no. 3, pp. 223-243, December
2001.

[5] X.H.Ying and Z.Y. Hu, “Can we consider central cata-
dioptric cameras and fisheye cameras within a unified
imaging model,” inECCV04, 2004, pp. Vol |: 442—-455.

[6] F. Jacquey, F. Comby, and O. Strauss, “Fuzzy edge de-
tection for omnidirectional images,Fuzzy Sets Sy<t.,

vol. 159, no. 15, pp. 1991-2010, 2008.

[7] C. Demonceaux and P. Vasseur, “Markov random fields
for catadioptric image processing,"Pattern Recogn.
Lett., vol. 27, no. 16, pp. 1957-1967, 2006.

[8] A. Makadia, C. Geyer, and K. Daniilidis,
“Correspondence-free structure from motionJJCV,
vol. 75, no. 3, pp. 311-327, December 2007.

[9] S. Bigot, D. Kachi, and S. Durand, “Spherical edge
detector: Application to omnidirectional imaging,” in
ACIVS, 2008, pp. 554-565.

S. Ainouz, O. Morel, N. Walter, and D. Fofi, “Mirror-
adapted matching of catadioptric images,”| EEE In-
ternational Conference on Image Processing, 2008, pp.
309-312.

(10]

i-
[11] C. Schmid, R. Mohr, and C. Bauckhage, “Evaluation of
interest point detectorsfnternational Journal of Com-

puter Vision, vol. 37, no. 2, pp. 151-172, 2000.



