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Abstract

Major intrinsic proteins (MIP) are characterized by a transmembrane pore-type architec-

ture that facilitates transport across biomembranes of water and a variety of low molecu-

lar weight solutes. They are found in all parts of life, with remarkable protein diversity.

Very little is known about MIP from fungi. And yet, it can legitimately be stated that MIP

are pivotal molecular components in the privileged relationships fungi enjoy with plants or

soil fauna in various environments. To date, MIP have never been studied in a mycopara-

sitism situation. In this study, the diversity, expression and functional prediction of MIP

from the genus Trichoderma were investigated. Trichoderma spp. genomes have at least

seven aquaporin genes. Based on a phylogenetic analysis of the translated sequences,

members were assigned to the AQP, AQGP and XIP subfamilies. In in vitro and in planta

assays with T. harzianum strain Ths97, expression analyses showed that four genes

were constitutively expressed. In a mycoparasitic context with Fusarium solani, the caus-

ative agent of fusarium dieback on olive tree roots, these genes were up-regulated. This

response is of particular interest in analyzing the MIP promoter cis-regulatory motifs,

most of which are involved in various carbon and nitrogen metabolisms. Structural analy-

ses provide new insights into the possible role of structural checkpoints by which these

members transport water, H2O2, glycerol and, more generally, linear polyols across the

membranes. Taken together, these results provide the first evidence that MIP may play a

key role in Trichoderma mycoparasitism lifestyle.
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Introduction

Most crop farmers are confronted with the need to control various diseases (physiological or

parasitic), while trying to meet strong consumer demands to use environment-friendly farm-

ing methods. One option is to use members of the fungus genus Trichoderma, most of which

are now known to be effective antagonists of a broad array of soil-borne pathogens [1]. We

recently showed that a strain of T. harzianum (Ths97), isolated from Tunisian farmlands,

expressed antagonist activities against a strain of Fusarium solani (Fso14), which causes severe

dieback of olive roots in Tunisia [2]. Fusarium root rot diseases are steadily expanding world-

wide in nurseries and young olive groves, and disease control is still limited to systemic fungi-

cide treatments and prophylactic actions. By analogy with different tripartite pathosystems

that include some Trichoderma spp. as mycopesticides, Ths97 is thought to act as a necro-

trophic myco-hyperparasite, stopping Fso14 growth in in vitro through the development of

contact structures, namely helicoidal structures around its host, papilla-like structures and the

collapse of several Fso14 septa. Furthermore, on olive trees, Ths97 develops substantial protec-

tive activity against Fusarium root infestation. This bioprotection is correlated with the up-reg-

ulation of an array of plant defense-related pathways by Ths97.

Trichoderma spp. occur as ubiquitous common agents in most soils, and in a few cases, they

are also competitive saprotrophs, opportunistic parasites of other organisms (animals, plants

or fungi), and possibly endophytes/symbionts of plants [3]. In a competitive context within an

rhizospheric ecosystem, like other chemo-heterotroph mycoparasites (whether or not they are

classified as a biological control agent or BCA), Trichoderma spp. weave an intimate network

of nutritional links with their close partners, most relevantly here the plant [the olive tree] and

its prey [the phytopathogen F. solani]. Even today, most studies on mycoparasites (lato sensu)

focus exclusively on the mechanisms of attack and/or self-defense in plants [4]. Feed mecha-

nisms are rarely mentioned or only very cursorily. Yet they are crucial to the relationship

between myco-hyperparasites and other living organisms. Some aspects of this physiological

pathway need to be more fully understood.

Parasite growth depends on the retrieval of a countless number and variety of nutrients

from host organisms. They are mainly water, inorganic solutes, and a plethora of nitrogen and

carbon organic precursors, such as carbohydrates, amino acids, fatty acids, and nucleosides.

Internalizing external food, when it occurs without membrane deformation (ie endocytosis), is

made possible by an abundant arsenal and diverse protein groups of plasma membrane trans-

porters. This group includes the major intrinsic proteins (MIP) [5]. MIP are a large transporter

superfamily generically designated as “aquaporins” (AQP). They facilitate the selective bidirec-

tional transport of water and small uncharged molecules across biological membranes [6].

Structurally, AQP share classic folded topology and channel architecture lending them an

hourglass shape. The overall three-dimensional design of the integral membrane region has a

two-fold symmetry consisting of six transmembrane α-helices with five internal loops. A sev-

enth pseudo-transmembrane helix is formed by two smaller hemi-helical segments (in the

middle of loop B and loop E segments) that project opposing “NPA” boxes (Asn-Pro-Ala) at

the center of the structure. The pore formed by the packing of these seven helices displays this

hourglass aspect, in which the narrow constriction determines transport selectivity based on

solute size and hydrophobicity [7]. A second major determinant for substrate specificity is

located in the outer channel vestibule, and is referred to as the ar/R (aromatic/arginine) selec-

tivity region [8, 9]. This feature consists of a tetrad of amino acid residues, one from each of

the transmembrane helices 2 [H2] and 5 [H5], and two from the inter-helical loop containing

the second “NPA” box [LE1 and LE2]. “NPA” boxes and the ar/R filter regulate the single-file

conductance of water and molecules by acting as a cation- and proton-excluding selectivity
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filter. These physicochemical and thermodynamic contexts determine which molecules can

cross the pore.

With an increasing number of genome sequences available, MIP genes have now been fully

described across all living organisms, except for some thermophilic Archaea and intracellular

bacteria [10]. Despite its overall diversity, the MIP family can be functionally divided into two

major phylogenetic divisions, separating the water-selective AQP (i.e. the water-specific and the

orthodox AQP) from the glycerol facilitators or aquaglyceroporin (GlFp) [11]. In fungi, MIP

nomenclature is established on that of yeasts, and resembles that of vertebrates [12, 13]. Phylo-

genetic analysis finds three main groups with possible subdivisions: classical aquaporins (AQP),

fungal XIP, and aquaglyceroporins (AQGP) subdivided into Fps-like AQGP, Yfl054-like AQGP

and "other" aquaglyceroporins [12, 14, 15, 16].

While aquaporins have been the subject of intensive study mostly in vertebrates and plants

concerning their transport specificity and their direct or indirect involvement in controlling

homeostasis, their precise role in various challenged environments is still not entirely under-

stood in most eukaryotes. This is particularly true for fungi for which MIP structure, functions

and regulation are less studied, beyond several closely related models of Saccharomyces cerevi-
siae yeasts [12], two Basidiomyceta and ectomycorrhiza fungus Glomus intraradices [16, 17]

and Laccaria bicolor [15], and the Ascomyceta Aspergillus glaucus [18]. Even so, the general

lack of fungus MIP data is surprising, given the large number of fungus species and their

diverse physiology and ecology niches that are always connected with water and a broad range

of solutes. Remarkably, MIP from fungal mycoparasites have never been comprehensively and

specifically explored.

In this study, the tripartite myco-phytopathosystem [T. harzianum Ths97 –F. solani
Fso14 –olive trees] was used to gain insight into the molecular mechanisms involved in cell

uptake of essential nutrients, by focusing specifically on the MIP route. We first investigated

MIP diversity in the genus Trichoderma, and monitored the transcriptional expression pat-

terns of these MIP in a situation of mycoparasitism involving the T. harzianum Ths97 strain

and F. solani Fso14 strain, both in vitro and in olive trees (either preventively in primed

plants or curatively in diseased plants). Second, we depicted the protein structure of the

MIP expressed by modeling, and hypothesized its ability to transport water, H2O2 and glyc-

erol. In addition, the possibility that particular solutes such as small carbohydrates may be

transported across these MIP is discussed. In brief, our data provide the first comprehensive

information concerning the MIP superfamily in the Ascomyceta genus Trichoderma and

their potential involvement in a mycoparasitism context. We go on to discuss our findings

with a special focus on the trophic behaviors that Trichoderma sets up in its habitat, which

remain almost unknown in a situation of mycoparasitism.

Materials and methods

Fungal strains and plant material

Both the Trichoderma harzianum strain Ths97 and the soil-borne Fusarium solani strain Fso14
(accession number KU863548) were isolated from private Tunisian farmlands, with the per-

mission and the help of the owner of the land, and registered at the "Institut de l’Olivier" (Uni-

versity of Sfax, Tunisia) [19]. Fungi were grown on PDA plates at 25˚C and 27˚C for Fso14 and

Ths97, respectively. The cultivar Olea europaea cv. Chemlali obtained from herbaceous cuttings

of two-year-old plants were used for assays because of their high susceptibility to Fso14 [20, 2].

Plants were planted in plastic bags containing autoclave-sterilized sandy clay soil, and kept in a

controled growth chamber with the following growth parameters: 16h photoperiod, 26/23˚C

(day/night), relative humidity around 70%, and regular irrigation.

Trichoderma harzianum MIP, computational and biological insights
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Root inoculations were performed for 1 hour by placing the roots in the conidia suspen-

sions (S2 Fig). After inoculation, plants were replanted in plastic bags containing new soil. For

the confrontation assays, Ths97 and Fso14 were inoculated successively with 6 days apart. The

preventive assay corresponded to plants inoculated with Ths97 in the first step, and the cura-

tive assay to plants inoculated with Ths97 in the second step. The number of biological repeti-

tions was: n = 6 for water control plants, n = 9 each for Ths97 and Fso14 infested plants, and

n = 18 each for curative and preventive treatments. After eight weeks of infestation, roots were

carefully harvested and randomly pooled in three samples in terms of biological conditions,

rapidly frozen in liquid nitrogen and stored at -80˚C until needed for molecular analyses. Con-

cerning the in vitro confrontation tests, two mycelial plugs (8 mm diameter) were cut from the

edge of actively growing cultures of Ths97 and Fso14 respectively, and placed 4-cm apart in a

new PDA plate (S3 Fig). The paired cultures and control cultures (Fso14 alone) were incubated

at 27˚C in the dark and sealed with Parafilm. The biological repetitions were done in triplicate,

and each zone of interest was carefully harvested, rapidly frozen in liquid nitrogen and stored

at -80˚C until needed for molecular analyses. Statistical analyses of in planta and in vitro dual

tests were carried out using rank-based non-parametric and ANOVA parametric methods,

respectively. These analyses are detailed in [2]. All experiments for this study with the strains

were done at the "Institut de l’Olivier" under the supervision of Dr TRIKI Mohamed Ali.

Bioinformatic analysis

Protein sequences homologous to MIP transporters from Trichoderma spp. were retrieved at

the Joint Genome Institute (http://genome.jgi-psf.org/). Some new sequences were also identi-

fied by tBLASTn searches against the NCBI GenBank GSS databases (http://www.ncbi.nlm.

nih.gov/). These investigations were conducted using keyword queries (IPR000425; Major

Intrinsic Protein; Aquaporin) and tblastn searches (with conservative criteria requiring a cut-

off of E-value of 1.0−5). For all in silico analyses on T. harzianum, T. harzianum strain CBS

226.95 v1.0 (from JGI) was used as reference. Protein names and accession numbers are listed

in S1 Table. During retrieval, each MIP member was verified by predicting the transmembrane

topology with Interproscan from EMBL (http://www.ebi.ac.uk/Tools/pfa/iprscan/). Molecular

modeling of MIP from T. harzianum was performed with the I-TASSER (Iterative Threading

ASSEmbly Refinement) program suite [21, 22, 23]. Electrostatic potentials were established in

a PARSE forcefield [24] using the Adaptive Poisson-Boltzmann Solver [25] in PyMOL [26],

which was used to analyze and illustrate the molecular models. Structural alignment was gen-

erated with mulPBA [27]. MOLE-2 was used to define the central pores in terms of radius and

polarity. Amino acid sequences were aligned using MUSCLE [28]. Phylogenetically informa-

tive positions were selected using Gblocks [29], and maximum likelihood phylogenetic recon-

structions were made with PhyML (v3.0) [30] using the WAG substitution model, bootstrap

supports with 500 replicates and default parameters. Tree was carried out using maximum

likelihood and the phylogenetic tree was visualized with TreeDyn [31]. Theoretical isoelectric

point (pI) and molecular weight (Mw) were calculated with the Compute pI/Mw tool (expasy.

org/compute_pi/). Putative transcription factor binding sites (TFBSs) were analyzed on MIP

genes from T. harzianum that were expressed in our biological conditions. Promoters were

retrieved by searching the JGI database on sequences from Trichoderma harzianum CBS

226.95 that corresponded to the 1.5Kb of the genomic sequence upstream of the initiation

codon. TFBSs were detected with the Promoter Database of Saccharomyces cerevisiae, SCPD

(http://rulai.cshl.edu/SCPD/; [32]), and the putative biological processes (GO) were identified

with SCPD and the Universal Protein Resource Uniprot (http://www.uniprot.org/).
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RNA isolation and quantitative real-time PCR (qRT-PCR) analysis

Total RNA was extracted as previously described by [33]. Mycelia from in vitro cultures and

infected root tissues were ground to a fine powder in liquid nitrogen and transferred to 1 ml of

lysis CTAB extraction buffer (bromide cetyltrimethylammonium). The homogenate was incu-

bated for 5 min at 65˚C, and treated twice with 1 volume of chloroform:isoamyl alcohol (24:1).

The supernatant was collected and treated overnight in 2M of LiCl at -20˚C. The precipitate was

collected by centrifugation (16,000g for 45 min) and washed with 80% ethanol. The pellet was

dissolved in 25 μl of water (DEPC) and then treated with 1U of RNase-free RQ1 DNase (Pro-

mega, Madison, WI, U.S.A.) for 30 min to remove contaminating genomic DNA. After two

chloroform:isoamyl alcohol (24:1) washes, total RNA was precipitated with 100% ethanol (2V)

for 2 hours at -20˚C. After centrifugation at 16,000g for 30 min, the pellet was washed with 80%

ethanol, dissolved in 50 μl of water (DEPC), and stored at -80˚C for later analysis. RNA concen-

trations were determined by spectrophotometry at OD 260/280 (spectrophotometer ND-1000,

Nanodrop, France), and quality was checked by using 2% TAE/agarose electrophoresis. Two μg

of total RNA were reverse-transcribed into cDNA with Oligo-dT using the SuperScript1 III

First-Strand Synthesis System for RT-PCR (Invitrogen). cDNA was diluted 10-fold with sterile

water, and used as a template for qPCR. The abundance of MIP-related transcripts was deter-

mined by real-time qPCR with a MyiQ instrument (Bio-Rad). MIP gene expression levels were

calculated by the 2-ΔΔCT method [34]. PCR amplifications were done in 15 μL of PCR reaction

using MESA GREEN qPCR MasterMix Plus (Eurogentec) from 2 μl of cDNA template. Cycle

parameters were 94˚C for 30s, followed by 35 cycles at 94˚C for 15s, at 58˚C for 15s, and 72˚C

for 20s. PCR reactions were ended by generating a dissociation curve to confirm the amplifica-

tion of PCR single bands. Geometric mean of Ct related to genes encoding to tubulin (Th, pro-

tein ID: 516507; Fs, 98894; JGI; [35]), 18SrRNA (Th, sequence ID: KT897696.1; Fs, JQ837837.1;

NCBI) and according to the strain, genes encoding actin (Fs, protein ID: 63567; JGI) or elonga-
tion factor 1-alpha (Th, protein ID: 146236; JGI; [36]) were used as internal references to nor-

malize MIP expression for their stable constitutive expressions during fungus development and

infestation. Specific primer pairs for each MIP member were designed in consensus zones after

alignment of MIP sequences retrieved from Trichoderma spp. or Fusarium spp. with Primer3-

plus application (http://www.bioinformatics.nl/primer3plus). Specific amplification of only one

desired band was observed using each primer combination for qRT-PCR analysis. Primer pairs

are listed in S2 Table. All PCR technical samples were assayed in triplicate, and reactions were

carried out with three biological replicates. For statistical analysis, data were analyzed using a

parametric method on STATISTIX V8 software where aquaporin steady-state gene expression

levels were computed by a one-way analysis of variance (ANOVA) followed by a Tukey’s honest

significant difference (HSD) post hoc test (p< 0.05).

Results and discussion

Originality of the topic

In major ongoing research in molecular plant pathology, the characterization of virulence fac-

tors that underpin host-pathogen interactions is still a topical issue. Pathogens deploy an array

of effectors that intrinsically constitute their "cell architecture" or which are secreted into the

surrounding environment to interfere with host cell processes. By extension, during a situation

of pathogenicity, all solute transporters may be regarded as virulence factors, since they are

involved in controlling the entry into the cell of molecules with nutritive value, notably when

they originate from the host prey. Because MIP play major roles in numerous physiological

processes, it is meaningful to consider these channels as pathogenic factors. The genus

Trichoderma harzianum MIP, computational and biological insights
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Trichoderma offers us an opportunity to study this subfamily in a tripartite mycoparasitic con-

text [T. harzianum/F. solani/olive trees] [2].

MIP diversity

In order to characterize the MIP family from Trichoderma, the genome databases NCBI and

JGI were searched using the previously described MIP translated sequences from Trichoderma
virens and Nectria haemotococca (asexual name of Fusarium solani) [15]. The different Tricho-
derma strains encode six to eight predicted MIP, while Fusarium strains encode six predicted

MIP except for F. solani with five members, and F. oxysporum and F. oxysporum f. sp. lycoper-
sici with seven members each (S1 Table).

T. harzianum and F. solani (Nehca2) exhibited eight and five predicted MIP, respectively. A

random analysis of this MIP family from diverse fungi (JGI) showed an average of five MIP

members, placing Trichoderma among those species that share the broadest range. Phyloge-

netic relationships among the Trichoderma and Fusarium MIP proteins were analyzed with

classified orthologs from Laccaria bicolor and Mycosphaerella fijiensis [15] as a reference.

Sequences fall into three major clades: the classical aquaporins (AQP), aquaglyceroporins

(AQGP) and X-intrinsic proteins (XIP) (Fig 1). Specifically, Trichoderma shows three classical

AQP, three AQGP (two Fps-like and one "other" AQGP) and a single XIP. Amino acid conser-

vation ranges from 40% to 54% sequence identity in AQP, from 40% to 54% sequence identity

within AQGP, and from 76% to 87% sequence identity in XIP. By comparison, Fusarium
exhibits three classic AQP, one AQGP (Fps-like) and likewise a single XIP. However, unlike

Fusarium, AQP present in Trichoderma were split into three sub-groups, and AQGP into four

sub-groups with three Fps-like and one "Other aquaglyceroporin" branches. All the XIP coa-

lesced into a major clade, which can be divided into two branches. Although fewer subgroups

are met in fungi than in plants, the emergence of a structural diversity is highlighted. More-

over, whatever the number of MIP members from each species, there is invariantly a genus-

dependent subfamily distribution. Despite the common lineage of these two fungi (class of

Sordariomycetes), these MIP differences in each subgroup may result from independent

rounds of gene events such as duplications, but without excluding possible gene losses. For the

Trichoderma genus, however, the limited number of differences between MIP sequences has

not provided a clear-cut answer to the question of MIP expansion. At least one duplicated

event seems to have occurred in T. harzianum and concerns the aquaglyceroporin 82211,

absent in the ancestral species T. reesei. Gene duplication plays a key role in increasing genetic

variability (driving an increase in the sizes of gene families, and in fine, the genome expansion

of species), but most importantly, these genomic events create novel genes, which may confer

potential new adaptation abilities. Here, such a relative conservation in a MIP subfamily in the

Trichoderma genus suggests that each MIP member is devolved to transporting particular sol-

utes that are pivotal in the full cycle of fungus development.

Additionally, insofar as these subfamilies (AQP, AGP and XIP) are expected to transport

different solutes [16], the strong diversity and the large number of AQGP specifically observed

in Trichoderma probably reflect the divergences in the adaptation of this fungi to contrasting

niches and/or infection processes in a specific host range of organisms completely different

from that for Fusarium. This differentiates Trichoderma from Fusarium in their respective

mycoparasitic and necrotrophic lifestyles. While still hypothetical, it is nevertheless possible

that a versatile arsenal of aquaglyceroporins may help the mycoparasite extract particular mol-

ecules at the hyphae of a broad range of potential host prey. Some examples in an amplified

spectrum of genes have also been found for virulence factors (chitinases, hydrophobins, etc) in

certain BCAs, which seem correlated with their strong mycoparasitic abilities [37, 38]. With
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the availability of the MIP gene sequences, this work lays a firm phylogenetic foundation from

Fig 1. Unrooted phylogeny of MIP protein sequences from genera Trichoderma and Fusarium genus. AQP, classical aquaporins; AGP,

aquaglyceroporins; XIP, X-intrinsic protein. The bootstrap values indicated at the nodes are based on 500 bootstrap replicates. Branch values

lower than 50% are hidden. The distance scale denotes the evolutionary distance expressed in number of amino acid substitutions per site. MIP

sequences from T. harzianum (CBS 226.95 v1.0 as reference, JGI) are highlighted in red. MIP sequences from F. solani (Nehca2 for Nectria
haematococcae, JGI) are highlighted in green. The reference sequences used to give the MIP sub-group nomenclatures are highlighted in blue

(Lacbi2, Laccaria bicolor V2; Mycfi2, Mycosphaerella fijiensis V2; Tri.virens, Trichoderma virens V2; JGI). Accession numbers of proteins are

attached after each species name; both are listed in S1 Table. Protein sequences are given in S1 Fig. Orange, blue and green squares, circles and

triangles indicate nodes that include specific T. harzianum MIP members. This code refers to Fig 2 and S1 Table.

https://doi.org/10.1371/journal.pone.0193760.g001
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which to investigate this possibility by means of respective knock-out strains, and to assess

possible gene regulatory network resetting linked to MIP.

MIP structure

The MIP protein family in fungi contains a large number of highly divergent proteins. Apart

from being assessed by their sequence identity, MIP diversity can be monitored not only

through their biochemical features such as isoelectric points (pI) and molecular weights

(MW), but also and most importantly, by modeling their three-dimensional profiles. (Fig 2; S1

Table). Except for the AQGP subgroup with Fps-like and "Other", MIP in Trichoderma spp.

show a mean of 303 amino acids and a mean MW of 32 kDa. These features cover expected

value ranges [39]. An analysis of their overall structure shows that most AQP are neutral or

basic, the XIP are basic, and the majority of AQGP are neutral or acidic (Fig 2). Their distribu-

tions are in line with what has been observed for a broad range of MIP from other fungi [40].

However, this analysis may be too simplistic, as these distributions do not reveal subtle fea-

tures, especially as regards to potential sites of regulation such as loops and specific residues or

motifs inside the pore. Further molecular structure analysis by modeling shows that the central

channel polarization seems conserved, with almost the same distribution of charges along the

z-axis. The positive charge of the guanidinium group of the characteristic arginine in the con-

striction region is strongly expressed, and radiates over a long portion of the light of the pore

(Figs 3B, 3C, 3D, 4B, 4C, 4D, 5B, 5C and 5D) in the absence of an immediate counterion. In fact,

most of the differences in size and charge of the MIP mentioned here stem from the polymor-

phism of their amino and carboxy terminal extensions, whose role has not yet been completely

characterized (Figs 3A, 4A and 5A). We focused our interest on the MIP that are constitutively

expressed (ie Fsp-like-90014 Fig 3; "Other AQGP"-92358 members Fig 4; AQP-98742, Fig 5;

XIP-488926, Fig 5; cf section “MIP expression”), and inspection of the alignments by phyloge-

netic group shows that, aside from those variable extensions at both ends, we are facing two

groups of MIP in terms of their putative transport capabilities. On one hand, we have what

resembles water -and by extension H2O2- facilitators in the case of the AQP-98742 member and

the XIP-488926 member, and on the other hand, we have probable glycerol facilitators in the

case of the "Other AQGP"-92358 member and the Fsp-like-90014 member, whose family is also

known to group glycerol facilitators regulated by osmotic changes [16]. This segregation is

Fig 2. Biochemical features of Trichoderma MIP. (A) Relationship between isoelectric point and molecular weight for Trichoderma spp. MIP clusters. Plot

showing isoelectric point versus molecular weight for XIP (X), aquaglyceroporins (X) and aquaporins (X). Subgroups are detailed in the phylogeny in Fig 1 and in

the S1 Table. Means ± SE according to number of MIP members from each subgroup. (B) Amino acid diversity in NPA boxes and Aromatic/arginine selectivity

filters in the different MIP subgroups from Trichoderma spp. Exact ar/R locations on MIP proteins are detailed in Figs 3A, 4A and 5A.

https://doi.org/10.1371/journal.pone.0193760.g002
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confirmed on a Newick tree when comparing the four models on multiple structural alignments

with MulPBA [27]. This could be extended to the other members of each subfamily or group

considered here because of their intra-proximity. The primary difference justifying this segrega-

tion is located at the principal constriction site in the central pore, the so-called ar/R filter, which

is slightly smaller in the water-specific AQP and composed of four residues, and slightly larger in

the aquaglyceroporin and composed of four residues of which one is small (alanine) or by only

three residues (the fourth is absent, and instead a glycine is found in its position). In our case, the

constriction site is composed of F65, H185, T194 and R200 for the AQP-98742 member, of N81,

S211, Q225 and R230 for the XIP member, of F100, A244, T251 and R258 for the "other AQGP"-

92358 member, and W63, Y212, and R218 for the Fsp-like-90014 member (Figs 2, 3A, 4A and

5A). The associated diameters measured at this site on our models with the MOLE 2.0 approach

Fig 3. Structural analysis of the expressed fungal Fsp-like-90014 MIP. (A) Multiple sequence alignments (MSA) were generated from MIP homologs of different

groups by group from various fungi computed with Muscle WS in Jalview, and colored by the Taylor color code. Homologous T. harzianum strains CBS 226.95 of the

expressed members from Ths97 are indicated by a black arrow before their names. Topology of each type is indicated by a ribbon diagram above the sequences on which

the different segments are labeled in blue for those in the inner compartment, and red for the outer compartment. The positions of the residues exposed to the light of the

channel are designated by a target symbol formed of three black circles under the MSA. The conservation and consensus sequence are given and marked by blue arrows to

indicate the positions at the constriction site. (B) Models out of an I-Tasser computation (after different runs to improve the confidence range) are shown in PyMOL

scenes. The C-score (estimating the quality of the prediction) is positive for this model used (Cscore = 1.18), suggesting a good level of confidence in all the predictions

(the normal range of C-scores being between −5 and 2). The pore established with "MOLE- 2" is materialized by a grid on which the electrostatic potential calculated by

APBS with the PARSE forcefield is reported to compare the physicochemical nature of the channels. (C) Focus on the residues of the pore. A blue arrow indicates the ar/R

region. (D) Sidechains of the amino acids constricting the channel after both NPA motifs.

https://doi.org/10.1371/journal.pone.0193760.g003
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were 1.28Å, 1.8Å, 3.78Å and 2.54Å, respectively, which is consistent with the reasonable assump-

tion that the aperture in the glycerol transporters will be larger than in strict water transporters.

The second difference arises from the extracellular loops (A, C and E), which present vari-

able lengths. Loop A with 14 residues (D42-P55) is prominent as expected for the AQP-98742

Fig 4. Structural analysis of the expressed fungal "other AQGP"-92358 MIP. (A) Multiple sequence alignments (B) Models out of an I-Tasser computation. The C-score

(0.51) is positive, suggesting a good level of confidence in all the predictions. The pore is materialized by a grid on which the electrostatic potential is reported to compare

the physicochemical nature of the channels. (C) Focus on the residues of the pore. A blue arrow indicates the ar/R region. (D) Sidechains of the amino acids constricting the

channel after both NPA motifs. Technical procedures for each item are detailed in the Fig 3 caption.

https://doi.org/10.1371/journal.pone.0193760.g004
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member. This is also found on the "other AQGP" member, where it measures 13 residues

(N80-S92); loop A is found to be slightly shorter with 10 residues (L65-G74) for the XIP, and is

substantially halved with 7 residues (S49-D55) for the Fsp-like-90014 member. This criterion

does not seem to be discriminating in terms of molecules to be transported. Conversely and

more remarkably, loops C and E seem to permit a distinction in the nature of the transport

ensured by the MIP, suggesting a possible coupling with a third-party effector, as it could pro-

vide an interacting site for one. We note that both putative glycerol facilitators share a com-

mon topology concerning their long loop C, which fits the model of an alpha hairpin as found

in the GlFp, for which the archetype namely the E. coli Glycerol Facilitator structure was

released [41]. The second alpha helix of the hairpin is mostly hydrophobic and ends with a cys-

teine, which is also found in the XIP member at the same position near the pore entry. In both

putative glycerol transporters, this segment is 20 residues longer than its homolog in the AQP-

98742 fold: loop C is 19 residues long in the AQP member, 24 residues in the XIP member, 38

residues in the "other AQGP" member, and 36 residues in the Fsp-like-90014 member. On the

intracellular side, we note a last subtle but still remarkable difference between the two GlFp

candidates expressed concerning the net charge of loop B. In the first segment of this long

loop, prior to the short NPA helix and at the very beginning of the loop, a lysine conserved in

the Fsp-like subgroup (K76) is found instead of a conserved threonine (T114) as in the "other

AQGP" members. Post hoc, the characteristic asparagine residue of the NPA motif is replaced

by a serine in most of the "Other AQGP" members. In the second part of this loop, a conserved

arginine (R93) is present in the Fsp-members, while this position is occupied by a glutamine

(Q131) in most of the "other AQGP" members. This loop ends in both groups in a basic motif

of two successive lysines in the "other AQGP" and an arginine followed by a lysine in the Fsp-

members. To sum up, this loop is more basic in the Fsp candidates in addition to the presence

of a supernumerary and conditional positive charge of a histidine (H95 instead of the neutral

F133). This could have implications in how the two kinds of pores function, for example in

their ability to interact with possible regulators, or in their ability to favor one circulating

direction for the polyols they can tunnel across the membrane. The impact of such a subtle dif-

ference will need to be addressed in further investigations.

Even more interesting, in both GlFp-like proteins we found an internal salt bridge between

the conserved aspartate next to the ar/R filter arginine with another arginine on the helical

turn immediately following, possibly helping to regulate aperture size by tilting the short NPA

helix (Fig 6). This also occurs in generic GlFp, where this hemihelix is also one turn longer

than its homolog from the AQP-98742 member. This is currently apparent in two available

structures, an aquaglyceroporin from Plasmodium falciparum (pdb code 3C02) and the first in

the series of the E. coli glycerol facilitator (pdb code 1FX8). It implies translocation of the argi-

nine of the filter, and its Cbeta moves about 1Å away from its canonical position on classical

aquaporins. This in silico data can provide intuitive insight into the potential permeability

properties of the channel in transporting not only polyhydroxyl alcohols (or polyols such as

glycerol), but also more voluminous polyols such as erythritol, arabitol, sorbitol and mannitol

as observed for pfAQP and ApAQP2, two multifunctional aquaglyceroporin channels from

Plasmodium falciparum and Acyrthosiphon pisum, respectively [42, 43]. These polyol

Fig 5. Structural analysis of the expressed fungal AQP-98742 and XIP-488926 MIPs. (A) Multiple sequence alignments (B)

Models out of an I-Tasser computation. The C-score are positive for all two models used (Cscore = 1.39 for AQP-98742;

Cscore = 1.26 for XIP-488926), suggesting a good level of confidence in all the predictions. The pore is materialized by a grid on

which the electrostatic potential is reported to compare the physicochemical nature of the channels. (C) Focus on the residues of

the pore. A blue arrow indicates the ar/R region. (D) Sidechains of the amino acids constricting the channel after both NPA

motifs. Technical procedures for each item are detailed in the Fig 3 caption.

https://doi.org/10.1371/journal.pone.0193760.g005
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Fig 6. Structural alignments of MIP to highlight noticeable differences in glycerol facilitators versus standard AQP. (A) Structural alignment of different MIP

based on the coordinates of resolved structures made with MulPBA on a narrow but still representative sample of MIP of different classes from different kingdoms.

The name of the proteins and their relative pdb code is written with distinctive colors on the left of the alignment, itself colored by the Taylor color code in Jalview. A
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transporters, alongside specific sucrose transporters, could be expected to feed the fungal car-

bohydrate metabolism, which provides energy for hyphal growth and supplies carbon skeleton

to other metabolisms. However, and again most importantly, they may participate in the con-

tinuous process of generating hydrostatic pressure used by the pathogenic hyphae to break the

hyphae cell wall surface of its host and penetrate it. Because polyols make a major contribution

to the osmotic ballast, water and polyols are two interplaying components essential for hyphae

integrity when fungi move in fluctuating environments [42, 15, 16].

Finally, we used the Glycopred prediction method to examine the differences in terms of

numbers of potential glycosylation sites in these external loops. All of them are potentially gly-

cosylated except for loop A of the FSP member, loop C of the AQP and loop E of the XIP and

both putative glycerol facilitators. Most of the sites are far from the central pore. In the putative

glycerol facilitators, glycosylation sites are found in the descending hydrophobic helix of loop C.

To conclude, on the basis of these structural and possible functional considerations, eluci-

dating the physiological role of MIP in Trichoderma spp. through in-depth functional studies

with MIP variants in key residues will answer these important unanswered questions. How-

ever, this approach will not be applied on Ths97: systematic of T. harzianum appears to be

complex with many cryptic species, making it quite difficult to work with. Mutagenesis tech-

nologies require double cross-over homologous recombination around 1,5kb up- and down-

stream of the target gene, and therefore a thorough knowledge of intergenic regions, which are

highly diversified and complex between T. harzianum spp. in contrast to the transcribed

regions, which are highly conserved as shown by MIP genes. Thus, our hypothesis will need to

be confirmed in the future by mutagenesis of MIP from Trichoderma species whose genomes

are sequenced.

MIP expression

The transcriptome of Trichoderma is still the subject of several molecular studies, leading to

the identification of pathways involved in the different aspects of biocontrol mechanisms [1,

44, 45, 46]. From these studies, however, no MIP information has yet been provided. To com-

plete the in silico identification of candidates for MIP channels, their expression profile was

addressed at transcript level using real-time quantitative reverse transcription-polymerase

chain reaction (qRT-PCR) with MIP gene-specific primers. Molecular analysis is aimed pri-

marily at Trichoderma under non-mycoparasitic conditions (mycelial growth or infestation

without its host F. solani, corresponding to the control samples) or under mycoparasitic condi-

tions in the presence of F. solani (corresponding to the assays). Additionally, two different bio-

logical contexts were studied: on “artificial substrates” with PDA on Petri dishes (in vitro), and

in roots from young olive trees (in planta). Similarly, MIP expressions from F. solani were

studied in the same biological conditions. Results demonstrated that of the eight MIP genes

conservation threshold of 50% is applied to highlight the conservation by groups. From this comparison emerges the particular meaning of the conserved GlFp motif

NPARD: the conserved negatively-charged residue aspartate makes a salt bridge with an equally conserved residue at exactly one α-turn from it. This bridge quenches

both charges by mutual neutralization, allowing their presence in a quite hydrophobic environment for folding purposes (first quarter of α-6). (B) PyMOL scene of

the superimposition results from mulPBA displayed as a wireframe diagram of the main chain colored with respect to the sequence name coloring. The channel is

shown as a transparent volume to materialize the localization. The sidechain of the conserved arginine from the NPAR motif is shown as sticks, as also are both

charged residues occurring only in the GlFp proteins (light and dark red). A red arrow shows the relative displacement (concomitant with this type of electrostatic

bridge within the short α-helix of loop E) responsible, at least in part, for a larger pore aperture at its constriction site. Only the NPA α-helices are shown as

transparent colored coils (C) Summary of the superimposition score from mulPBA. (D) Structural alignment of MIP from the T. harzianum strain CBS 226.95

homologous to those expressed from Ths97 and based on the coordinates of good quality I-Tasser homology models. The MSA is colored by the Taylor color code in

Jalview. On the left, the Newick tree established by mulPBA is given showing the relative proximity of both XIP-488926 and AQP-98742 members on one side, and

both "other AQGP"-92358 and Fsp-like 90014 members on the other side. Models are consistent with previous data obtained on experimental structures. A

conservation threshold of 50% is also applied to highlight the conservation by groups.

https://doi.org/10.1371/journal.pone.0193760.g006
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present in the genome of T. harzianum, only four were transcribed with significant differential

modulation during mycelial growth on an artificial medium and on olive roots (Fig 7). In

detail, the steady-state level of transcript abundance of AQP-98742, AQGP-92358 and XIP-

488926 was higher during the mycelial growth in planta than in vitro, while AQGP-90014 was

slightly less abundant. These diverging expressions between “growth environments” are not

surprising and have already been mentioned [47]. They could result from the presence of vari-

ous chemical factors in plant tissues that may be lacking in artificial substrates. Similarly, these

contrasting expressions could be linked to a subtle difference observed between the net charges

of their respective loop B that would determine a specific ability to favor one circulating direc-

tion of particular solutes across the membrane.

Concerning the confrontation situations, and irrespective of the biological contexts (i.e.
preventive or curative), the expressions of these four MIP were significantly modulated by the

presence of F. solani. It is of note that the onset of a differential expression of MIP genes is a

rather early event during the interaction with host prey: it occurs during the first stage of

mycelial growth, when T. harzianum is in physical contact with its prey. MIP transcript abun-

dance then increased considerably over the contact area between T. harzianum and F. solani.

Fig 7. Relative transcription ratios of the MIP genes from T. harzianum and F. solani. Relative expression levels of MIP genes

from T. harzianum (Ths97) and F. solani (Fso14) cultivated separately or together in artificial culture (after 6 days of inoculation)

or on roots of olive trees (after 8 weeks of inoculation). Plants vs Plates: constitutive steady state level of MIP expression from T.

harzianum and F. solani cultivated separately in plants or on PDA medium. In vitro assay: (A) T. harzianum individually, (B) area

of confrontation between hyphae, (C) area of overlap of T. harzianum on F. solani (detailed in S2 Fig). In planta assay: inoculated

separately in roots or in curative and preventive contexts (root symptoms detailed in S3 Fig). Transcript levels for each gene were

estimated using real-time qRT-PCR analyses, and normalized by the expression of three housekeeping genes specific for each

fungal strain. Relative transcript abundance rates were obtained by the E-ΔΔCt method with transcript abundances from individual

in vitro culture or in planta inoculation. Data correspond to means of three independent biological experiments. Bars represent

the biological standard error. Data not sharing the same letter are significantly different (Tukey post-hoc test after one-way analysis

of variance (ANOVA), p< 0.05). Nd, transcript non-detectable significantly.

https://doi.org/10.1371/journal.pone.0193760.g007
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Unexpectedly, MIP patterns contrasted sharply between the artificial and in planta dual cul-

ture contexts, except for AQGP-92358, which remained up-regulated. AQP-98742, AQGP-

90014 and XIP-488926 were up-regulated in artificial substrates, but down-regulated in planta.

Very few functional studies have been carried out on fungal MIP. However, AQP-98742

belongs to a MIP cluster that comprises MIP with putative water channels [12, 14, 47]. AQGP-

90014 belongs to a "facultative Fsp-like aquaglyceroporin" cluster including MIP with putative

water, glycerol and small neutral molecule transport channels [13, 17, 48], whereas AQGP-

92358 belongs to the "other-aquaglyceroporin" cluster made up of MIP that present glycerol

and small neutral molecule transport capacities [13, 15]. Concerning XIP, no biochemical vali-

dation has been reported in fungi. However, three inputs can be exploited to gain a better

understanding of this unorthodox cluster: (i) the MIP JQ412059 from Glomus intraradices, a

relatively proximate phylogenetic homolog of fungal XIP [16], exhibits a water transport chan-

nel [49], (ii) its transcriptional kinetics parallel that of AQP-98742 (Fig 7), and (iii) three-

dimensional structure analysis suggests a tighter channel, particularly at the constriction zone

approaching the level seen in the AQP-98742 channel (Fig 5). This would indicate a plausible

ability to channel water and possibly other small polar molecules like H2O2, but not glycerol as

previously observed for certain XIP from plants [50, 51, 52]. Despite these putative biochemi-

cal extrapolations, and because evidence of how MIP take part in fungal lifestyles is still scant

and speculative, further interpretations concerning the putative involvement of each member

during mycoparasitism of Ths97 would be premature. However, data do suggest that F. solani
has a direct influence on Ths97 genome reprogramming, and this is significant when we read

the MIP expression from the ‘in planta’ biological context. This takes place invariantly whether

Ths97 has colonized healthy plant tissues prior to a F. solani infestation (preventive treatment)

or an infested fusarium environment (curative treatment). The in vitro and in planta environ-

ments are not comparable, and it is difficult to envisage how F. solani can directly up- or

down-regulate some Ths97 genes in specific environments, unless we consider the possibility

that Ths97 displays a direct mycoparasitic activity on F. solani. The interaction of T. harzianum
with F. solani is described as mycoparasitic [35], and this feature was observed in vitro between

Ths97 and Fso14 (S2 and S3 Figs) [2]. This overall adjustment may be supplemented by the

release of cell-wall-degrading enzymes, known to be directly involved in the mycoparasitism

interaction, and whose production is influenced by various ambient factors [53, 54, 55]. These

fine and complex molecular adjustments generate specific metabolized-products (i.e. oligo-

mers) that may themselves become secondary inducers of cell responses for Trichoderma [56,

57]. This would explain the differential expression patterns of transcripts encoding MIP pro-

teins observed during the different biological contexts and stages of confrontation.

Two other interesting scenarios should be considered. The first one is that the biochemical

environments of the intercellular space change fundamentally. This event is mainly due to the

virulent activity of F. solani and also its ability to secrete an arsenal of hydrolytic enzymes [58,

59]. Certain particular plant residues generated by F. solani could interfere here with Ths97 cel-

lular responses. Such residues are inevitably absent in the in vitro context, but could possibly be

produced when F. solani infests its plant host. In the second scenario, although no information

is available about competition and defense reactions of F. solani as a host, F. solani would is be

able to develop a differential toxicogenic activity in planta compared with the in vitro context

(like Ths97, F. solani senses and responds differentially to contrasting environments) [60, 61],

and specific secreted mycotoxins (possibly in a "growth medium"-dependent manner) could

affect certain gene responses in Ths97without, however, upsetting its mycoparasitic behavior.

To the best of our knowledge, there is no evidence to support these two last suppositions, but

whatever the case, the transport machinery reprogramming for Ths97 is governed by environ-

mental changes, probably due to the presence of exudates released from the host mycelium (F.
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solani), whose priority remains to meet nutritional needs. As for F. solani MIP expression pat-

terns, four MIP out of the six in its genome were transcribed and differentially modulated.

Interestingly, none of them was significantly detectable in infested plants treated with Ths97.

This result provides new evidence suggesting the ability of the beneficial partner to drastically

reduce the population of its host target.

MIP regulation

In line with previous findings, we showed here that Ths97 seems able to sense the presence of

its host prey and respond by modulating a set of genes that could be involved in its mycopara-

sitism. In our work on MIP, we are aware that correlations alone do not allow a causal link to

be established. In addition, the transcriptional level does not represent what happens at the

protein level. However, there are good indications that MIP transcript regulations may imply

assigned functions of isoforms in mycelia trans-cellular solute flows. Thus whatever the biolog-

ical contexts, we can intuitively expect the expression of a broad range of genes to depend pre-

ponderantly on solute sources (carbon, nitrogen, minerals, etc) available in the environment.

One of the major challenges facing biologists is to unravel the complex networks that govern

these gene expressions. One clue could come from the establishment of the existence of meta-

bolons. Transcriptional regulation relies to a large extent on molecular mechanisms that allow

nucleic acid binding proteins or transcription factors (TF) to recognize specific sets of nucleic

acids in DNA, known as transcription factor binding sites (TFBSs) or cis-regulatory sequences.

Identifying these regulatory elements in non-coding regions is an interesting key step in

understanding gene regulation and ultimately in inferring regulatory networks.

We scanned 1.5kb upstream of the start codon of the four expressed MIP using the yeast

Saccharomyces cerevisiae dedicated promoter database SCPD [32]. Conscious of the limitations

inherent in such a systematic analysis on TFBSs, which are usually very short and statistically

often highly degenerate, the fact remains that results showed an over-representation of motifs

targeted by TFs known to be involved in various carbon, nitrogen sulfur and phosphate meta-

bolic processes (Tables 1 and S3). Between 62% and 81% of motifs constituting the four MIP

promoters are in promoters of genes encoding proteins involved in carbohydrate, fatty acid

and sterol, amino acid or nucleotide metabolisms. Unexpectedly, motifs involved in the cellu-

lar responses to stress (osmosensing and ion homeostasis pathways, drug metabolization and

exportation, oxidative stress) were poorly represented (<0.05%). This contrasts notably with

plant MIP promoters, which contain a large number of TFBSs related to cellular responses to

abiotic and biotic stress [62, 63, 64]. The remaining motifs control mRNA transcription, cell

growth and division, and DNA synthesis (meiosis process) (S3 Table). We hypothesize that

this cis-element provides indications about the potential involvement of these MIP in estab-

lishing a trophic relationship that Trichoderma creates with its surroundings, and especially

here with F. solani, with which Ths97 initiates a competitive relationship. This functional trend

corroborates previous findings where functional annotations of different wide-transcript

libraries linked to a mycoparasitic context indicated a substantial over-represented category

related to various metabolic processes [35, 53, 55, 65]. Finally, if F. solani really influences

Ths97 genes expression in some way, then it would be relevant to identify the TFs network

from Ths97, which could be in direct relation with certain virulence effectors secreted by F.

solani during its plant tissue infestation phase, or related metabolized products in the case of

effectors with intrinsic hydrolase activities. To further test our hypothesis of a plausible

involvement of MIP in the competition machinery of Trichoderma against various pathogens,

and the establishment of its trophic network, suppression of MIP gene function within non-

encoding and encoding regions would have to be addressed in future experiments.
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Conclusion

Our present results bring us nearer to understanding one molecular mechanism potentially

involved in the mycoparasitic process of T. harzianum (with the example of Ths97 here) with

the involvement of the MIP family. Modulated transcript abundance of members belonging to

the three sub-classes representative of the fungal MIP family suggests the importance of trans-

porting certain specific solutes during hyphae development and possibly self-defenses. How-

ever, owing to the complexity of the underlying mycoparasitism mechanisms, an in-depth

understanding of the functional characterization of the MIP genes reported here is essential,

and this will be improved by future studies of their subcellular localization, post-translational

regulation and precise roles in signaling and solute transporting processes in such "myco-phy-

toparasitic" tripartite interactions. Part of this effort will require focusing on key residues

shown in this study to be responsible for the specialization of the two GlFp and subsequently

testing these by mutagenesis approaches. Lastly, if we consider -by definition- that MIP are vir-

ulent factors in this (myco)parasitic interaction, the manipulation of candidate MIP genes

linked to virulence activity remains a pertinent approach to improve the T. harzianum strain.

Table 1. Proportion of putative transcription factor binding sites (TFBSs) on the 1.5kb promoter region of the expressed MIP genes from Trichoderma harzianum.

MIP promoter sequences from T. harzianum CBS 226.95 v1.0 (JGI) were used as reference. TFBSs were detected with the "Promoter Database of Saccharomyces cerevisiae"
(http://rulai.cshl.edu/SCPD/), and biological processes (GO) analyzed using «Uniprot» (http://www.uniprot.org/). TFBS nucleotide sites on 1.5kb of each promoter are

detailed in the S3 Table.

Cis-motif UniProt

identifier

XIP

488926

AQP

98742

AQGP

92358

AQGP

90014

ADR1 P07248 4 (3,8%) 2 (1,8%) 4 (3,3%) 4 (3,6%) Carbon and nitrogen metabolic processes

BAS2 P07269 1 (0,9%) 7 (6,1%) 1 (0,8%) 0

CSRE - 1 (0,9%) 1 (0,9%) 1 (0,8%) 0

GAL4 P04386 2 (1,9%) 0 0 0

GCN4 P03069 20 (14,4%) 12 (10,5%) 16 (13%) 9 (8,1%)

GCR1 P07261 9 (8,7%) 12 (10,5%) 18 (14,6%) 21 (18,9%)

LEU3 P08638 1 (0,9%) 1 (0,9%) 0 0

MCM1 P11746 1 (0,9%) 2 (1,8%) 2 (1,6%) 2 (1,8%)

MIG1 P27705 1 (0,9%) 1 (0,9%) 6 (4,9%) 3 (2,7%)

PUT3 P25502 4 (3,8%) 0 0 0

CAR1 Repressor P39001 15 (14,4%) 12 (10,5%) 19 (15,4%) 13 (11,7%)

RAP1 P11938 2 (1,9%) 1 (0,9%) 1 (0,8%) 0

STE12 Q03063 4 (3,8%) 4 (3,5%) 6 (4,9%) 8 (7,2%)

PHO2 P07269 12 (11,9%) 12 (10,5%) 13 (10,6%) 8 (7,2%) Phosphate transport and metabolic processes

PHO4 P07270 4 (3,8%) 4 (3,5%) 13 (10,6%) 4 (3,6%)

81/104 (77%) 71/114 (62%) 100/123 (81%) 73/114 (64%)

PDR1-PDR3 P33302 0 0 5 (4,1%) 0 Cellular cation homeostasis / xenobiotic transport

ROX1 P25042 2 (1,9%) 1 (0,9%) 0 1 (0,9%) Cellular response to

osmotic stress

RML1 Q12224 0 1 (0,9%) 0 0 Cellular response to stress

SMP1 P38128 1 (0,9%) 1 (0,9%) 0 0 Cellular response to stress

XBP1 P39001 1 (0,9%) 1 (0,9%) 1 (0,8%) 3 (2,7%) Cellular response to oxidative stress

4/104 (0,04%) 4/107 (0,04%) 6/123 (0,05%) 4/114 (0,04%)

https://doi.org/10.1371/journal.pone.0193760.t001
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Supporting information

S1 Fig. Detail of all MIP protein sequences used in this work.

(PDF)

S2 Fig. Symptoms of fusarium root rot disease on root system from olive trees. Preventive

treatment: Ths97-treated plants subject to Fso14 infestation; Curative treatment: Fso14 infested

plants treated with Ths97. Dual inoculation contexts were set up with a 10-day delay between

each fungal inoculation. Fungi were inoculated on roots.

(PDF)

S3 Fig. Culture of F. solani (Fso14 strain) and T. harzianum (Ths97 strain) cultivated sepa-

rately, or together in a dual growth context related to a mycoparasitic situation. Mycelial

were grown in Petri dishes on PDA medium. Slides show 6 days of growth at 27˚C. Letters A,

B, and C on dual culture assay correspond to area sampled for molecular experiments, with

(A) Ths97 individually, (B) area of confrontation between mycelia, and (C) area of overlap of

Ths97 on Fso14.

(PDF)

S1 Table. Features of the non-redundant representative fungal MIP proteins from Tricho-
derma and Fusarium species used in the phylogenetic analysis. Reference species for MIP

nomenclature: Mycosphaerella fijiensis (Mycfi) and Laccaria bicolor (Lacbi). AQP, aquaporins;

AQGP, aquaglyceroporins; XIP, X-intrinsic proteins.

(PDF)

S2 Table. Primers used for qPCR amplification.

(PDF)

S3 Table. Detail of the TFBS nucleotide sites found on 1.5kb of each promoter of the four

expressed MIP.

(PDF)
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