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Abstract 15 

In mathematical grassland models, plant communities may be represented by a various 16 

number of state variables, describing biomass compartments of some dominant species or 17 

plant functional types. The size of the initial species pool could have consequences on the 18 

outcome of the simulated ecosystem dynamics in terms of grassland productivity, diversity, 19 

and stability. This choice could also influence the model sensitivity to forcing parameters.  20 

To address these issues, we developed a dynamic grassland model, DYNAGRAM, designed to 21 

simulate seasonal changes in both aboveground biomass production and species composition 22 

of managed permanent grasslands under various soil, climate and management conditions. We 23 

compared simulation results from alternative instances of DYNAGRAM that only differ by the 24 

identity and number of state variables describing the green biomass, here plant species. We 25 

assessed the sensitivity of each instance of the model to key forcing parameters for climate, 26 

soil fertility, and defoliation disturbances, using univariate and multivariate regression trees 27 

and dynamic trees.  28 

Results of 10-year simulations under various climate, fertility and defoliation conditions 29 

showed that the final total biomass was tending to increase with the size of the species pool, 30 

while species evenness and the proportion of surviving species was tending to decrease. We 31 

found a positive correlation between the species survival ratio and the defoliation intensity, 32 

and this correlation increased with the initial species richness. The sensitivity to forcing 33 

parameters of community structure and species evenness differed markedly among alternative 34 

models, showing a progressive shift from high importance of soil fertility (fertilisation level, 35 

mineralization rate) to high importance of defoliation (mowing frequency, grazing intensity) 36 

as the size of the species pool increased. By contrast, the key drivers of total biomass 37 

production were independent of species richness and only linked to resource supply (nitrogen 38 

and water).  39 

These results highlight the need to take into account the role of species diversity to explain the 40 

behaviour of grassland models. 41 

Keywords: dynamic trees; grassland model; multivariate regression trees; plant succession; 42 

sensitivity analysis; species pool. 43 
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1. Introduction 44 

Semi-natural permanent grasslands present important ecological, cultural and economic 45 

values, and support many ecosystem services due to their biodiversity (Gaujour et al., 2012; 46 

Mauchamp et al., 2012). Some temperate European grasslands, managed for a long time with 47 

low-intensity grazing or mowing, are the plant communities with the world records for 48 

species richness at fine scale (Wilson et al., 2012).  49 

Various diachronic studies have revealed recent changes in the structure and composition of 50 

grassland plant communities in Europe (Gillet et al., 2016; Homburger and Hofer, 2012; 51 

Mitchell et al., 2017; Wesche et al., 2012). The causes of these changes are related to climatic 52 

(warming, extreme events) and anthropogenic (technical and socio-economic changes in 53 

management) constraints and disturbances. Land-use intensification or abandonment may lead 54 

to a severe reduction of species diversity with adverse impacts on ecosystem services. 55 

Fertilisation and defoliation regimes have been identified as the main drivers of plant species 56 

richness in productive grasslands (Gaujour et al., 2012; Mauchamp et al., 2016, 2014). 57 

According to field observations, local species richness of temperate natural and semi-natural 58 

grasslands shows unimodal relationship with productivity, with a maximum biodiversity for 59 

intermediate productivity (Dengler et al., 2014). This questions how grassland ecosystem 60 

stability and productivity are influenced by vascular plant species richness. Field observations 61 

and experiments on semi-natural grasslands suggest that the most productive communities are 62 

the least diverse, but also the least resilient. By contrast, field experiments based on artificial 63 

species mixtures showed a positive correlation between species richness and productivity 64 

(Hector et al., 1999; Reich et al., 2012). A recent meta-analysis of experimental studies on 65 

such artificial species assemblages revealed that species richness generally improves 66 

resistance of grassland productivity to climatic extreme events, but not its recovery rate (Isbell 67 

et al., 2015). Increasing species richness in such artificial communities stabilizes whole 68 

community biomass but destabilizes the dynamics of constituent populations (de Mazancourt 69 

et al., 2013; Gross et al., 2013). 70 

Since experimental studies have not been able to provide a general explanation to the 71 

relationships observed between grassland diversity and their productivity and stability, 72 

dynamical models are powerful tools for testing predictions of ecological theories. A lot of 73 

mathematical models of grassland dynamics based on explicit ecological processes have been 74 

developed. Some non-exhaustive reviews of grassland models are available (Snow et al., 75 

2014; Taubert et al., 2012; Wiegand et al., 2008). Grassland models published so far have 76 

targeted monospecific swards (Duru et al., 2009; McCall and Bishop-Hurley, 2003; 77 

Schapendonk et al., 1998), mixtures of a grass and a legume species (Lazzarotto et al., 2009; 78 

Thornley, 1998), or a multispecies community constant in time (Jouven et al., 2006; Riedo et 79 

al., 1998). In a review of thirteen grassland models (Taubert et al., 2012), only two considered 80 

more than three different species or plant functional types: GRAS, a succession compartment 81 

model (Siehoff et al., 2011) and STEPPE, a gap model of semiarid grasslands (Coffin and 82 

Lauenroth, 1990); however, none of them simulate biomass. So far, very few grassland 83 

models have been designed to simulate both composition and biomass changes in 84 

multispecies semi-natural grasslands used as pastures or/and hayfields, a requirement for 85 

understanding diversity-productivity-stability relationships. Indeed, most of current grassland 86 

models focus on the impact of agricultural practices on forage production with many 87 

ecophysiological and biophysical details inherited from crop models but do not consider 88 

temporal changes in taxonomic and functional composition. An attempt (Lauenroth et al., 89 

1993) to couple individual-based gap models describing changes in species composition 90 

(STEPPE) and ecosystem models describing nutrient cycling and biomass production 91 

(CENTURY) or water balance (SOILWAT) led to the development of the ECOTONE model, 92 
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able to simulate transitions between biomes (Peters, 2002). Several biophysical pasture 93 

models can be used to simulate growth of composite pasture types of several species under 94 

various management strategies, such as CLASS-PGM, a generic pasture growth model (Vaze 95 

et al., 2009), or DAIRYMOD and the SGS Pasture Model (Johnson, 2016), but these models are 96 

rather complex, limited to five “species” and not optimized for mowing management. GEMINI 97 

(Soussana et al., 2012) is another very detailed biophysical model of grassland ecosystems 98 

that explicitly simulates competition among any number of clonal populations for two key 99 

resources (light and nitrogen) along vertical canopy and soil profiles; plant functional traits 100 

are used to explain the response of aboveground net primary production and of plant 101 

community structure to various soil, climate and management conditions, including grazing, 102 

cutting and fertilization. Some recent mathematical models are based on stochastic differential 103 

equations adapted from the Lotka-Volterra equations to simulate changes in aboveground 104 

biomass of plant species mixtures and to explain community dynamics by environmental and 105 

demographic stochasticity (de Mazancourt et al., 2013; Lohier et al., 2016). 106 

Taking into account the whole species diversity of grasslands in a mathematical model is 107 

quite impossible, given the large number of vascular plant species that may potentially co-108 

occur in such ecosystems. For example, the regional species pool in permanent grasslands of 109 

the French Jura Mountains exceeds 1000 and the average number of species per local 110 

grassland is about 30, ranging from 3 to 92 (Mauchamp et al., 2012). To reduce the number of 111 

state variables describing the plant community in the model, a common solution is to consider 112 

plant functional types (PFTs) instead of individual species. PFTs can be viewed as theoretical 113 

“average species” combining parameters from a set of more or less functionally related 114 

species, such as legumes, perennial grasses or erect forbs. Typically, a PFT is a group of 115 

species with similar functional traits explaining their response to constraints and disturbances, 116 

such as management practices, and their effect on ecosystem function, such as forage 117 

production (Cruz et al., 2010, 2002; Duru et al., 2009; Graux et al., 2016). The GRAS model 118 

(Siehoff et al., 2011) simulates the succession of both dominant species and PFTs described 119 

by their cover dynamics, contrary to most agronomic grassland models, such as MODVEGE 120 

(Calanca et al., 2016; Jouven et al., 2006), which simulate seasonal changes in one or several 121 

biomass compartments, assuming a constant assemblage of species or PFTs. Individual-based, 122 

spatially explicit community grassland models such as IBC-GRASS (Weiss et al., 2014) are 123 

able to simulate metacommunities of many PFTs over hundred years, but at the price of a 124 

simplified representation of edaphic and climatic drivers. By contrast, (Confalonieri, 2014) 125 

suggested a model of plant community dynamics based on a single instance of a generic crop 126 

simulator, state variables being only simulated for the whole community. ECOHYD (Lohmann 127 

et al., 2017) is an ecohydrological model of semi-arid grasslands and savannas, able to 128 

simulate cover dynamics of a large number of PFTs, but focuses on hydrological processes 129 

and does not implement nutrient stress. 130 

In this paper, we address a general issue that could be raised in any modelling study: the 131 

appropriate choice of the level of detail of the model, i.e. the number of state variables and 132 

associated parameters to be taken into account for describing the dynamical system, here the 133 

plant community. Although this choice is usually motivated by model objectives (e.g., with a 134 

focus on forage production or on biodiversity conservation) and by technical constraints (e.g., 135 

data availability, model performance), what are its consequences on the simulated dynamics 136 

of the virtual community in terms of grassland productivity, diversity, and stability? This 137 

question is especially relevant for permanent grasslands used for grazing or mowing and 138 

subject to seasonal changes in species composition and forage production, because of the high 139 

number of species coexisting in such ecosystems. 140 

Thus, the first aim of the present study is to examine the consequences of increasing the 141 

number of state variables (i.e. the size of the local species pool) describing plant community 142 
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composition on model behaviour, regarding grassland productivity, diversity and stability. 143 

Specifically, we formulated four hypotheses: (H1) the inclusion of more species in the model 144 

increases its productivity, hence the final total biomass after ten-year simulations with various 145 

values of control parameters; (H2) the inclusion of more species in the model decreases its 146 

final species evenness, the component of community diversity measuring equitability in 147 

biomass and resource partitioning among species; (H3) the inclusion of more species in the 148 

model decreases its stability, hence the final proportion of surviving species (species survival 149 

ratio); (H4) species survival ratio increases with intensity and frequency of disturbances, and 150 

this positive correlation increases with the size of the species pool.  151 

The second purpose is to assess the consequences of increasing the size of the species pool on 152 

the model sensitivity to key control parameters regarding climate, soil fertility and defoliation. 153 

We hypothesized that (H5) the hierarchy of influential parameters depends on species identity 154 

but not on the size of the species pool. 155 

For these purposes, we need a simple mechanistic model in which the main ecological 156 

processes are implemented (seasonal mechanisms of plant growth, soil resource competition, 157 

response to climatic constraints and agricultural management) and in which we can vary the 158 

number and the identity of species in the initial plant community. As no such model was 159 

available, we developed DYNAGRAM, a simple and flexible dynamical model based on 160 

ordinary differential equations (ODEs), able to simulate various combinations of climate, soil 161 

and management conditions. The aim of this paper is not to present this model in detail along 162 

with results of calibration and validation with experimental data, which will be the topic of a 163 

next paper, but to use it as a tool to address two general relevant questions in ecological 164 

modelling. We simply ensured we properly modelled competition processes among species, 165 

under various forms of land use, by comparing simulated results to expert knowledge of 166 

grassland ecosystems (Cruz et al., 2010). 167 

 168 

 169 
Fig. 1 Structure of the DYNAGRAM model. Solid lines denote flows of matter or energy and 170 

dashed lines denote reducers (mineral nitrogen acts both as a flow and as a reducer). State 171 

variables and forcing climatic variables are listed in Table 1 and a description of all 172 

parameters can be found in Tables A.1 and A.2 (Appendix A). 173 
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 174 

2. Materials and methods 175 

2.1. Model structure and main assumptions 176 

DYNAGRAM is a process-based succession model that simulates the aboveground vegetation 177 

dynamics of a temperate grassland, both in term of composition and of forage production. 178 

Using a common structure (Fig. 1), we developed four alternative versions of the model, 179 

which correspond to different levels of diversity. 180 

We built DYNAGRAM under some key assumptions, in the way to capture only essential 181 

processes, and keeping as reduced as possible the dimension of the parameter space. 182 

Grassland vegetation is described by n state variables Bi representing the green biomass 183 

(leaves) for each plant species i. We did not consider the belowground biomass (roots) and the 184 

reproductive parts of the plants. Hence, we assumed no seed production and no recruitment 185 

from the seedbank. Two other state variables describe available resources in the soil: mineral 186 

nitrogen Nm and water reserve WR (Table 1). 187 

Basically, DYNAGRAM is a mechanistic model of resource competition (Tilman, 1980) 188 

operating at a daily time step. We mainly based the regulation of green biomass and plant 189 

competition from the standpoint of resource dynamics. A single nutrient, mineral nitrogen 190 

(nitrate or ammonium), is consumed by plants for growth and is supplied by a pool of soil 191 

organic nitrogen No, itself supplied by the senescence of standing biomass and litter 192 

decomposition. 193 

We considered four forcing climatic variables defined as simple sinusoidal functions of time 194 

and acting on different processes (Table 1). This simplified formulation of the annual cycle 195 

allows the manipulation of a reduced number of climatic parameters. Average daily 196 

temperature T acts as a limiting factor for plant growth and litter decomposition, daily rainfall 197 

P fills the soil water reserve, photosynthetic active radiation PAR is a driver of biomass 198 

production by photosynthesis, and potential evapotranspiration PET determines the loss term 199 

in the soil water budget equation that may cause drought stress. 200 

 201 

Table 1 State variables and forcing climatic variables implemented in DYNAGRAM. 202 

 203 

State 

variables 

Symbol Description  Forcing climatic 

variables 

Symbol Description 

Green 

biomass 

Bi Green biomass of 

plant species i 

 Temperature T Daily average air 

temperature acting on 

plant growth and 

mineralization rates 

Organic 

nitrogen 

No Amount of 

organic nitrogen 

in the soil 

 Precipitation P Daily rainfall, the 

supply to the water 

reserve 

Mineral 

nitrogen 

Nm Amount of 

mineral nitrogen 

in the soil 

available for 

plant growth 

 Photosynthetically 

active radiation 

PAR Portion of the solar 

radiation spectrum 

driving photosynthesis 

and determining 

potential growth 

Water 

reserve 

WR Amount of water 

in the soil 

available for the 

plants 

 Potential 

evapotranspiration 

PET Function that 

determines the loss 

term in the water 

budget 

 204 
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Green biomass dynamics for each species is described by the following ODE (1). For clarity 205 

reason, we only wrote the dependence on state variables: 206 

𝑑𝐵𝑖

𝑑𝑡
= 𝑔𝑟𝑖(𝐵𝑖) 𝑁𝑟𝑒𝑑𝑖(𝑁𝑚) 𝑇𝑟𝑒𝑑𝑖  𝑊𝑟𝑒𝑑𝑖(𝑊𝑅) 𝐶𝑟𝑒𝑑𝑖 − μ𝑖𝐵𝑖  −  𝑚𝑜𝑤𝑖(𝐵𝑖)

−  𝑔𝑟𝑎𝑧𝑖(𝐵𝑖) 

(1) 

where µi is a constant leaf senescence rate, as assumed in the GRAS model (Siehoff et al., 207 

2011). A comprehensive description of DYNAGRAM will be the subject of a next paper. 208 

Below we provide details on the three functions gri, mowi and grazi, useful to better 209 

understand the sensitivity analysis we performed. A complete description of all parameters is 210 

given in Tables A.1 and A.2 (Appendix A). 211 

We assumed plant growth 𝑔𝑟𝑖(𝑃𝐴𝑅, 𝐵𝑖) to be driven by an Ivlev function describing the 212 

photosynthesis process, as defined in MODVEGE (Jouven et al., 2006) and in LINGRA 213 

(Schapendonk et al., 1998). This function defines the maximal growth obtained in optimum 214 

conditions regarding resources (nutrients, water) and temperature, and in absence of 215 

disturbances (trampling). It describes the efficiency of use of solar radiation for 216 

photosynthesis and is modelled as the product of the Photosynthetically Active Radiation 217 

(PAR), the maximal Radiation Use Efficiency (RUE), which accounts for a decrease in 218 

efficiency at light intensity higher than 5 MJ m-2, and an Ivlev function of the Surface Leaf 219 

Area (SLAi) and of the plant biomass (Bi) that accounts for the proportion of light intercepted 220 

by the sward. This optimum plant growth function is given by equation (2). 221 

𝑔𝑟𝑖(𝑃𝐴𝑅(𝑡), 𝐵𝑖(𝑡)) =  𝑃𝐴𝑅(𝑡)𝑅𝑈𝐸(𝑡) (1 −  𝑒−α 𝑆𝐿𝐴𝑖 
𝐵𝑖(𝑡)

10
 𝐿𝐴𝑀) 10, 

𝑅𝑈𝐸(𝑡) =  𝑅𝑈𝐸𝑚𝑎𝑥 𝑚𝑖𝑛(1, 1 − γ1(𝑃𝐴𝑅(𝑡) −  γ2)) 

(2) 

Four reducers decrease biomass productivity. The first reducer, 𝑁𝑟𝑒𝑑𝑖(𝑁𝑚), is modelled by 222 

an Holling function depending on the biomass. The second reducer, 𝑊𝑟𝑒𝑑𝑖(𝑊𝑅, 𝑃𝐸𝑇), is a 223 

function of the water reserve and of the potential evapotranspiration. The third growth 224 

reducer, 𝑇𝑟𝑒𝑑𝑖(𝑇), depends on temperature. The fourth reducer, 𝐶𝑟𝑒𝑑𝑖(𝑆𝐷), represents a 225 

decrease in plant growth due to trampling and is function of the livestock density, SD. 226 

Defoliation disturbances, i.e. mowing 𝑚𝑜𝑤𝑖(𝐵𝑖) and grazing  𝑔𝑟𝑎𝑧𝑖(𝑆𝐷, 𝐵𝑖), act as a loss in 227 

green biomass.  228 

The first defoliation disturbance consists on mowing events with a periodical cut of the 229 

canopy, following a pre-specified mowing schedule. All Bi variables related to green biomass 230 

are pulse-wise reduced and a proportion i of all species biomass is removed. We assume this 231 

proportion to be independent of the biomass value and only depends on the species-specific 232 

canopy height. For a given mowing event, we get: 233 

𝑚𝑜𝑤𝑖(𝐵𝑖(𝑡)) =  λ𝑖 𝐵𝑖(𝑡) (3) 

The second defoliation disturbance is due to grazing by livestock, following a predefined 234 

schedule. At every grazing day, a fixed amount  SD of standing biomass is removed by 235 

grazing. This loss of biomass is distributed among all species according to their appetence and 236 

their biomass, following a Holling type III function. During a given grazing period, we get: 237 

𝑔𝑟𝑎𝑧𝑖(𝑆𝐷(𝑡), 𝐵𝑖(𝑡)) = 𝜅 𝑆𝐷(𝑡) 
ρ𝑖  𝐵𝑖

𝑛𝑔(𝑡)

1 + ∑ ρ𝑗 𝐵𝑗
𝑛𝑔(𝑡)𝑛

𝑗=1

 (4) 

Soil processes are summarised by the following ODEs (5) to (7). Again, we only wrote the 238 

dependence on state variables. 239 

𝑑𝑁𝑜

𝑑𝑡
=  ∑ δ𝑖  μ𝑖 𝐵𝑖

𝑛

𝑖=1

+ 𝑁𝑑 −  θ 𝑁𝑜 𝑇𝑚𝑖𝑛 𝑊𝑚𝑖𝑛(𝑊𝑅) (5) 
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𝑑𝑁𝑚

𝑑𝑡
 = θ 𝑁𝑜 𝑇𝑚𝑖𝑛 𝑊𝑚𝑖𝑛(𝑊𝑅) + 𝑁𝑢 + Φ − Λ(𝑁𝑚)

− ∑ δ𝑖  𝑔𝑟𝑖(𝐵𝑖) 𝑁𝑟𝑒𝑑𝑖(𝑁𝑚) 𝑇𝑟𝑒𝑑𝑖 𝑊𝑟𝑒𝑑𝑖(𝑊𝑅) 𝐶𝑟𝑒𝑑𝑖

𝑛

𝑖=1

 

(6) 

𝑑𝑊𝑅

𝑑𝑡
= 𝑃 − 𝐴𝐸𝑇(𝐵𝑖, 𝑊𝑅) − ∆(𝐵𝑖, 𝑊𝑅) (7) 

We introduced feedback loops for the two resources, available nitrogen and water reserve in 240 

the soil. The loss of green biomass due to senescence constitutes the litter, which fills a pool 241 

of organic nitrogen No stored in the soil organic matter. Depending on surface temperature 242 

𝑇𝑚𝑖𝑛(𝑇) and soil moisture 𝑊𝑚𝑖𝑛(𝑊𝑅), this organic nitrogen is mineralized in mineral 243 

nitrogen Nm (nitrate and ammonium) that becomes available for plant uptake. These two 244 

reducer functions affect the mineralization process and should not be confused with Tred and 245 

Wred that reduce plant growth. For each unit of biomass produced, we assumed that a fixed 246 

proportion δ𝑖 of mineral nitrogen is consumed (Lazzarotto et al., 2009). Lixiviation Λ(𝑁𝑚) 247 

limits the amount of mineral nitrogen in the soil solution. Presence of grazing animals in the 248 

pasture brings organic Nd(SD) and mineral Nu(SD) nitrogen restitution proportionally to the 249 

stock density SD. The mineral nitrogen pool is also filled by mineral fertilization events, . 250 

The water reserve WR is filled by precipitations P and is emptied by the actual 251 

evapotranspiration 𝐴𝐸𝑇(𝐵𝑖, 𝑊𝑅, 𝑃𝐸𝑇) and by drainage ∆(𝐵𝑖, 𝑊𝑅, 𝑃𝐸𝑇, 𝑃). AET corresponds 252 

to the amount of water lost daily by evapotranspiration, which depends on green biomass, 253 

water reserve WR and potential evapotranspiration PET. Drainage corresponds to the loss of 254 

water by infiltration once the water reserve in the soil exceeds the water holding capacity 255 

WHC. 256 

To summarize, if n is the size of the species pool, DYNAGRAM is defined by a system of 3 + 257 

n ordinary differential equations associated with 3 + n state variables, with 9 × n species-258 

specific parameters, 31 global parameters, and 13 parameters for climatic forcing functions.  259 

The three primary C-S-R plant strategies defined by Grime (Grime, 1977; Pierce et al., 2017) 260 

are implicitly included in DYNAGRAM. Competitive ability (C strategy) occurs without any 261 

stress or disturbance and mainly depends on the potential growth rate of each species and their 262 

efficiency to achieve photosynthesis (parameters SLAi, µi). Stress tolerance (S strategy) is 263 

represented by several species-specific parameters included in the reducers of this potential 264 

vegetative growth regarding three limiting factors (temperature, mineral nitrogen and water) 265 

and a trampling effect (parameters T1,i, ki, i, i). Resistance to disturbance (R strategy) is 266 

represented by species-specific parameters concerning resistance to defoliation (mowing and 267 

grazing, which correspond to an explicit loss in green biomass; parameters i, i). To show 268 

the wide diversity of life strategies and plant functional types among the 21 species 269 

considered in DYNAGRAM, we plotted their location within the CSR triangle in Fig. 2. 270 

The DYNAGRAM model complies with five out of six criteria introduced in a recent review of 271 

grassland models (Taubert et al., 2012), by taking into account: (1) species richness, (2) 272 

resource limitation (light, nutrients, water), (3) management activities (mowing, grazing, 273 

fertilizing), (4) model simplicity, and (5) interspecific competition for resources. To keep the 274 

model simple, we did not comply with the sixth criterion concerning the representation of 275 

belowground competition processes. 276 

We implemented DYNAGRAM in R language (R Core Team, 2017). Numerical integration of 277 

the ODE system was computed with the function ‘ode()’ of the R package ‘deSolve’ (Soetaert 278 

et al., 2010), using the Euler method and an integration time step of one day to correspond to 279 

the length of discrete management events included in the model. This choice of discrete time 280 

and difference equations was also made to reduce the simulation time in batch runs, after 281 
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having verified that the model outputs were similar to the ones obtained with a smaller fixed 282 

or variable time step and a solver considering continuous time, such as ‘lsoda’, taking into 283 

account events (sudden changes in a state variable, e.g. mowing or fertilization). 284 

 285 

 286 

 287 

Fig. 2 Ternary plot of the CSR triangle indicating the strategy of the 21 species included in the full 288 
model (Pierce et al., 2017) and grouped into seven plant functional types (PFTs). Abbreviated names 289 
of species and PFTs refer to Table A.2.  290 

 291 

2.2. Choice of the biomass state variables 292 

As our aim was to capture the dynamics of the taxonomic and functional community 293 

composition and to assess the importance of community diversity, we considered various 294 

combinations of species to represent biomass state variables. In this way, we wrote four 295 

alternative versions of DYNAGRAM that only differ by the number 𝑛 ∈ {2, 4, 7, 21} of these 296 

state variables. We designed several assemblages containing a number n of species selected as 297 

follows among a list of 21 representative herbaceous species (Table A.2 in Appendix A).  298 

A first model version (DYNAGRAM2) considers a mixture of two species, namely perennial 299 

ryegrass (Lolium perenne), a grass, and white clover (Trifolium repens), a legume. These two 300 

species are frequent in intensively managed grasslands and are included in several agronomic 301 

grassland models, such as PROGRASS (Lazzarotto et al., 2009), which derives from the 302 

pasture simulation model PASIM (Calanca et al., 2007; Graux et al., 2011; Riedo et al., 1998). 303 

We selected a set of frequent and potentially dominant individual species, differing by their 304 

functional traits and ecological preferences, representative of the species pool in mid-305 

mountain European pastures and hayfields to be included in a second version of the model 306 
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(DYNAGRAM21) with 21 plant species. As shown by Fig. 2, these species belong to various 307 

PFTs and present a wide range of CSR strategies. 308 

Finally, for DYNAGRAM4 and DYNAGRAM7, we kept the two species present in 309 

DYNAGRAM2 (Lolium perenne and Trifolium repens), to which we added ten combinations of 310 

two or five other species, respectively, randomly selected among the 19 remaining species 311 

included in DYNAGRAM21. Thus, by keeping in all 22 alternative instances of the model (the 312 

basic DYNAGRAM2, the full DYNAGRAM21, and ten replicates of DYNAGRAM4 and 313 

DYNAGRAM7) a same grass and a same legume species we ensured a minimum common 314 

heterogeneity in the functional composition of each instance, and by our random selection of 315 

other species we avoided any subjective bias.  316 

2.3. Selection of the key control parameters 317 

When performing a sensitivity analysis, we look at the sensitivity of a model output Y = f(X) 318 

to variations of the control parameters in a matrix X. Each line of the matrix X defines a set of 319 

parameters for which we solve the ODE system. In a first identification analysis, we assessed 320 

the sensitivity of model outputs (total biomass and species evenness) to a deviation of ± 20% 321 

of all parameters, except species-specific parameters (Online Appendix B, Tables B.1, B.2 322 

and B.3).  323 

From the results of this first analysis, we selected the six most influential control parameters 324 

to be used for a more detailed sensitivity analysis, grouped in three categories: (i) climate 325 

parameters include mean monthly temperature Tm and mean monthly sum of precipitation 326 

Pm; (ii) soil fertility parameters include the mineralization rate of organic nitrogen  and the 327 

amount of mineral nitrogen dropped off each year on the soil as fertilizers ; (iii) defoliation 328 

disturbance parameters include the livestock density SD during each grazing period and the 329 

number of mowing events per year ncut. The X matrix consisted of all 1728 combinations of 330 

three or four values for the six control parameters (Table 2). 331 

We considered a management scenario that is identically repeated each year. Cattle is 332 

continuously present in the grassland during one long grazing season, from the 1st of July to 333 

the 31st of August. The first mowing event appears on the 1st of June, and a second mowing 334 

event on the 2nd of October. The amount of fertilizer,  = 90 kg N ha-1, is split in six fractions 335 

spread on the grassland (May 1st, May 15th, June 10th, June 20th, September 1st and September 336 

15th). 337 

 338 
Table 2 Set of values of the selected control parameters in the matrix X of the sensitivity analysis. 339 
Columns of X correspond to the six key parameters. Lines of X are built from all combinations of 340 
those values, leading to 33 × 43 = 1728 lines. LU: livestock unit (1 LU is equivalent to a dairy cow). 341 

 342 

Parameter Category Values in matrix X Unit 

Tm Climate 7 9 11  °C 

Pm Climate 50 80 110 140 mm month-1 

 Soil fertility 4 10-4 7 10-4 1 10-3  d-1 

Soil fertility 0 20 50 100 kg N ha-1 a-1 

SD Defoliation 0 0.5 1 1.5 LU ha-1 

ncut Defoliation 0 1 2  a-1 

 343 



10 

 

2.4. Selection of the response variables 344 

The next step was thus to extract the response variables from the simulation outputs after 345 

running each alternative version of the model. Those response variables are either a matrix Y 346 

(if built from several output variables per simulation) or a vector y (if built from a single 347 

output variable). 348 

Each line of the input matrix X corresponds to a set of parameters, for which we run the 349 

model and generated one response matrix Y and three response vectors y extracted from the 350 

model output at time tf = 3559, that is the 1st of October at year 10 of the simulation. This day 351 

is selected just before the second yearly cut and after all other management practices having 352 

occurred in the year. 353 

Y is a n-columns matrix of biomass values of all species at day tf. y1 is a vector of the total 354 

biomass values Btot at day tf, simply computed as the sum of the green biomass values of all 355 

present species: 356 

𝐵𝑡𝑜𝑡(𝑡𝑓) = ∑ 𝐵𝑖(𝑡𝑓)

𝑛

𝑖=1

 (8) 

y2 is a vector of Simpson evenness values Beve of the plant community at day tf. Simpson 357 

evenness is a taxonomic diversity index ranging between 0 and 1 and measuring the 358 

proportion of dominant species in the community according to differences in biomass (Hill, 359 

1973; Jost, 2006). A value of 1 means that all species initially introduced are equally 360 

distributed in biomass in the grassland, whereas a value close to 0 means the persistence of 361 

only one single species that outcompeted all others. We computed Simpson evenness by 362 

dividing the inverse Simpson diversity index by n, the number of species initially present in 363 

the model: 364 

𝐵𝑒𝑣𝑒(𝑡𝑓) =
1

𝑛 ∑ (
𝐵𝑖(𝑡𝑓)

𝐵𝑡𝑜𝑡(𝑡𝑓)
)

2
𝑛
𝑖=1

 
(9) 

y3 is a vector of the ratio S of the number of surviving species at day tf to the initial species 365 

pool n, considering as virtually absent a species with a biomass less than 1 g DM ha-1: 366 

𝑆(𝑡𝑓) =  
#{𝐵𝑖(𝑡𝑓) > 10−3}

𝑛
 (10) 

S represents the final proportion of surviving species, also called ‘species survival ratio’ 367 

thereafter. 368 

2.5. Assessment of the model’s response to variation in species richness 369 

To relate the variation of the computed indexes Btot, Beve and S to the size of the initial species 370 

pool, we performed Kruskal-Wallis tests with post-hoc multiple comparisons on the 371 

simulation outputs over all combinations of values for the six climate, fertility and defoliation 372 

parameters. Differences in total final biomass Btot would allow to know if grassland 373 

productivity is impacted by increasing species richness in the model, whereas differences in 374 

evenness Beve and survival species S would provide information about the impact on 375 

community diversity and resilience. 376 

2.6. Tree-based sensitivity analysis 377 

Regression tree is an iterative process of dividing the data into two partitions, and then 378 

splitting it up further on each of the branches using discriminant explanatory variables (De’ath 379 

and Fabricius, 2000). Each split corresponds to a node. A regression tree can be interpreted as 380 
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a decision tree, in which terminal leaves group records with homogenous response variables 381 

that can be explained by a series of explanatory variables (here model parameters). The 382 

homogeneity of each node is characterized by its impurity, a measure that takes the value zero 383 

for completely homogeneous nodes and increases as homogeneity decreases. Then 384 

maximizing homogeneity in a given group is equivalent to minimizing their impurity. The 385 

predicted value of the output variable for a particular node is the sample average of the output 386 

variable consisting of records included in that node. The splitting process continues until each 387 

node reaches a user-specified minimum node size and becomes a terminal node (Makler-Pick 388 

et al., 2011). 389 

Dynamic trees were introduced to provide Bayesian inference for regression trees that change 390 

with the arrival of new observations (Taddy et al., 2011). Dynamic trees provide an efficient 391 

measure of a covariate’s first-order effect, i.e. variance reduction directly attributed to splits 392 

on that variable. However, these indices are not appropriate for all applications of sensitivity 393 

analysis, as non-constant leaf prediction models, such as for linear trees. This issue has been 394 

corrected by a technique of estimation of sensitivity indices (Gramacy et al., 2013), which is 395 

model-free and can be constrained to subsets of the input space. Thus, DT computes the Sobol 396 

index associated to the sensitivity analysis (Ravalico et al., 2005), and graphically estimates 397 

how each parameter from the set of the matrix X impacts the output variable in vector y. 398 

To investigate the influence of the number of state variables describing the plant community 399 

(aboveground biomass of individual species) on the model sensitivity to key parameters 400 

(climate, soil fertility, defoliation), we performed a tree-based sensitivity analysis for each 401 

level of complexity of DYNAGRAM, with 2, 4, 7 and 21 species, based on the matrix X and Y 402 

(or vector y) described previously. 403 

Our sensitivity analysis was based on three kinds of trees: (i) Univariate Regression Tree 404 

(URT); (ii) Multivariate Regression Tree (MRT) and (iii) Dynamic Tree (DT). URT and DT 405 

consider a vector y containing one single synthetic variable (Btot, Beve, or S) contrary to MRT 406 

(De’ath, 2002) that considers a matrix Y including several response variables (biomass of 407 

each species). URT has been used to rank a set of influential control parameters, here {Tm, 408 

Pm, ,  SD, ncut}, from top to bottom, according to their impact on a single output variable 409 

among the set {Btot, Beve, S} for performing global sensitivity analysis (Eynaud et al., 2012; 410 

Makler-Pick et al., 2011). 411 

We applied URT and DT to assess the sensitivity of the three response variables (total 412 

biomass Btot, Simpson evenness Beve and survival rate S at time tf) to the variation of the six 413 

control parameters in matrix X. 414 

To assess the sensitivity of species composition to the variation of the same parameters we 415 

applied MRT to the multivariate response matrix Y of all species biomasses, constrained by 416 

the input parameter matrix X. To our knowledge, it is the first application of MRT to model 417 

sensitivity analysis. 418 

We pruned each tree to plot the result with six terminal nodes. We determined the most 419 

influential parameters selected by univariate and multivariate regression trees by retaining the 420 

three discriminant parameters up to the second splits of each URT or MRT, respectively. We 421 

compared the average number of discriminant parameters of each category (climate, soil 422 

fertility or defoliation) among the four species richness levels (2, 4, 7 and 21). 423 

All analyses were performed in the R environment (R Core Team, 2017) with the packages 424 

‘mvpart’ (univariate and multivariate regression trees) and ‘dynaTree’ (dynamic trees). 425 
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3. Results 426 

3.1. Model response to variation in initial species richness 427 

Under various climate, fertility and defoliation conditions given by all combinations of the six 428 

control parameters, the final total biomass after ten years of simulation Btot globally increased 429 

with the number of species in the grassland (Fig. 3A). 430 

By contrast, Simpson evenness Beve tended to decrease with initial species richness, showing 431 

that the more the species pool was large, the less the final green biomass was equally 432 

distributed among the species (Fig. 3B). 433 

The proportion of surviving species S tended also to decrease with the size of the species pool 434 

(Fig. 3C). However, for any initial species richness, we observed that some combinations of 435 

parameter values led to cases with null values for each response variable, i.e. with the 436 

extinction of all species due to excessive stress or disturbance. 437 

For 21 species in the initial species pool, the survival rate increased with the disturbance 438 

intensity, which is the product of defoliation parameters SD and ncut (Fig. 4A). Moreover, the 439 

positive Kendall rank correlation between the disturbance intensity and the species survival 440 

rate increased with the size of the species pool (Fig. 4B). 441 

 442 
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 443 

 444 
Fig. 3 Boxplots of final total biomass Btot (A), Simpson species evenness Beve (B) and proportion of 445 
surviving species S (C) at the end of simulations from alternative DYNAGRAM models with all 446 
combinations of control parameters given in Table 2. All results of Kruskal-Wallis tests were highly 447 
significant (***: P < 0.001). Different letters indicate significant differences among groups of 448 
simulations, based on 1728 simulations for 2 and 21 species, and 10 series of 1728 simulations for 449 
different assemblages of 4 and 7 species. 450 

 451 
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 452 
Fig. 4 The relationship between the defoliation intensity and the species survival ratio. A: Boxplots of 453 
the proportion of surviving species S at the end of simulations from DYNAGRAM21 with all 454 
combinations of control parameters, in function of the level of defoliation intensity, with results of 455 
Kruskal-Wallis and post-hoc tests (***: P < 0.001); different letters indicate significant differences 456 
among levels, based on 1728 simulations for 21 species. B: Bar plot of the Kendall rank correlations 457 
between the size of the species pool n and the species survival ratio S, based on 1728 simulations for 2 458 
and 21 species, and 10 series of 1728 simulations for different assemblages of 4 and 7 species. 459 

 460 

3.2. Sensitivity analysis of DYNAGRAM for 2 and 21 species 461 

To illustrate some details of the sensitivity analysis we performed, let us focus at first on the 462 

results of simulations with the extreme values of the species pool, i.e. 2 and 21 species.  463 

 464 

A 465 

 466 
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B 467 

 468 
Fig. 5 Multivariate regression trees of a response matrix Y containing final green biomass of 2 (A) or 469 
21 (B) species explained by control parameters out of matrix X. Barplots show biomass means for all 470 
species, with deviance and number of cases at each terminal node. 471 

 472 

3.2.1. Multivariate regression trees 473 

The hierarchy of the most influential parameters that explained differences in final species 474 

composition differed completely between DYNAGRAM2 and DYNAGRAM21 (Fig. 5). 475 

Variations in quantitative composition of the two-species modelled grassland (Fig. 5A) were 476 

mainly driven by fertility parameters (fertilizer input  and mineralization rate converting 477 

organic N to mineral N) and by water supply Pm. By contrast, defoliation parameters 478 

(especially stock density SD) and temperature Tm played the major role in explaining the final 479 

composition of the species-rich grassland with 21 species (Fig. 5B). These results show that 480 

processes driving the assemblage may be strongly related to species richness. 481 

3.2.2. Univariate regression trees 482 

Like species composition, species evenness and survival rate depended mainly on soil fertility 483 

(  and ) for DYNAGRAM2, but on defoliation (SD) for DYNAGRAM21 (Table 3). 484 

By contrast, the hierarchy of parameters influencing final total green biomass was 485 

independent of the size of the species pool: the first discriminant parameter was in each case 486 

fertilisation intensity , followed by mineralization rate  and mean precipitation Pm. The 487 

defoliation regime played no important role in explaining the final standing biomass of a 488 

simulated grassland made of 2 or 21 species. 489 

 490 

Table 3 Hierarchy of key control parameters resulting from a sensitivity analysis of DYNAGRAM 491 
based on MRT and URT on the final biomass of 2 and 21 species. Response variables were individual 492 
species biomasses Bi, total biomass (Btot), Simpson evenness (Beve), and survival rate ratio (S) at the 493 
end of 10-year 1728 simulations for each species pool. Numbers in brackets are thresholds applied to 494 
split the tree at the first (first line, in bold) or the second level (second line). Climate parameters: Tm 495 
(temperature), Pm (precipitation); soil fertility parameters:  (fertiliser input),  (mineralization rate); 496 
defoliation parameters: SD (livestock density), ncut (mowing frequency). 497 

 498 
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Response variables 2 species 21 species 

MRT on Bi {35} 

{5.5 10-4}      Pm {65}

Tm {10} 

SD {0.75}      SD {0.75}

URT on Btot {35} 

{5.5 10-4}      Pm {65} 

{35} 

{5.5 10-4}      Pm {65} 

URT on Beve {75} 

{5.5 10-4}      {5.5 10-4} 

SD {0.75} 

SD {0.25}      Tm {10} 

URT on S {5.5 10-4} 

{35} 

SD {0.75} 

{35}      Tm {10} 

 499 

3.2.3. Dynamic trees of species evenness 500 

As the first results of the sensitivity analysis based on composition (MRT) and on Simpson 501 

evenness (URT) were very similar, we will focus on this last relevant index of community 502 

structure Beve to investigate in more detail the main effects of the six parameters using 503 

dynamic trees (Fig. 6). Results for total biomass and survival rate are provided as 504 

Supplementary Material (Online Appendix C, Fig. C.1 and C.2). 505 

Dynamic trees confirmed the strong positive effect of livestock density SD on species 506 

evenness with 21 species (Fig. 6B), as compared to other parameters. With two species (Fig. 507 

6A), the main positive effects were also due to the amount of fertilizer  and the maximal 508 

mineralization rate , which were much less influential with a large species pool. The number 509 

of mowing events ncut showed opposite effects on evenness: slightly positive for two species 510 

and negative for 21 species. In both cases, mean temperature Tm had a negative effect on 511 

evenness. 512 

Despite common trends easily explained by their common structure, the sensitivity analysis 513 

revealed strong divergences between the two alternative versions of DYNAGRAM, depending 514 

on the size of the species pool, suggesting a shift in key parameters influencing community 515 

organization. 516 

 517 

A 518 

 519 
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B 520 

 521 
Fig. 6 Main effects of six key parameters on Simpson species evenness Beve, from dynamic trees 522 
performed on DYNAGRAM2 (A) and DYNAGRAM21 (B) outputs. Climate parameters: Tm 523 
(temperature), Pm (precipitation); soil fertility parameters:  (fertiliser input),  (mineralization rate); 524 
defoliation parameters: SD (livestock density), ncut (mowing frequency). 525 

 526 

3.3. Impact of species number on the hierarchy of influential parameters 527 

Tree-based sensitivity analysis of DYNAGRAM2 and DYNAGRAM21 suggested a shift in key 528 

parameters determining the grassland composition according to the size of the species pool. 529 

To assess the impact of species number, irrespective to species identity, on the hierarchy of 530 

the key parameters, we have to include in the comparison the results of regression trees for 531 

DYNAGRAM4 and DYNAGRAM7, each with ten random samples among the full set of 21 532 

species. Results of this comparison are summarized by bar plots (Fig. 7). 533 

 534 

 535 
Fig. 7 Bar plots of the three most influential control parameter categories on species composition (A), 536 
Simpson evenness (B) and total green biomass (C) at the end of simulations with 2, 4, 7 and 21 537 
species. Three key parameters were extracted from the first and second splits of each MRT (A) or 538 
URT (B, C). Results for 4 and 7 species are mean numbers from ten random species samples. 539 

 540 

A progressive shift from high importance of soil fertility to high importance of defoliation as 541 

the number of species increased was evidenced for both species composition (Fig. 7A) and 542 

Simpson evenness Beve (Fig. 7B). A small increase in species number from 2 to 4 induced a 543 

small decrease of fertility importance in favour of defoliation and climate. Increasing further 544 

species number from 4 to 7 enhanced this trend. Finally, by including all 21 species the 545 
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influence of soil fertility parameters vanished in favour of defoliation parameters. The shift 546 

we evidenced in relative parameter influence followed a gradient only driven by the size of 547 

the species pool, whatever the species identity. 548 

By contrast, results for total biomass Btot (Fig. 7C) confirmed the absence of any trend, 549 

already observed in Table 3: parameters influencing final total green biomass were totally 550 

independent of the size of the species pool. Btot always mainly depended on parameters linked 551 

to resource supply: input of Nm by soil fertilization , maximal mineralization rate  of No to 552 

Nm, and water supply by rainfall Pm. 553 

4. Discussion 554 

4.1. Final model outputs depend on initial species richness 555 

The positive relationship between the size of the species pool and the final green biomass 556 

after 10 growing seasons (Fig. 3A) suggests a better overall productivity of species-rich 557 

modelled ecosystems in favourable conditions, whatever species identity. This result is in 558 

accordance with our first hypothesis and with the findings of field experiments with artificial 559 

plant communities (Hector et al., 1999; Reich et al., 2012). An analysis of these biodiversity 560 

experiments (Gross et al., 2013) suggested that interspecific competition generates 561 

compensatory dynamics in grasslands that help stabilize community biomass. This stabilizing 562 

effect of species richness on community biomass arises because increasing species richness 563 

increases mean biomass by a larger amount than it increases variance, thus increasing 564 

stability. The contrast with observations in (semi-)natural grasslands, which generally 565 

conclude to a negative correlation between species richness and productivity, can be 566 

explained by the same reasons that those given in the case of these biodiversity experiments: 567 

our simulation experiment considers artificial assemblages of a relatively small number of 568 

species (21 species is a relatively low species richness as compared to the one of semi-natural 569 

grasslands), which are not likely to coexist in extent plant communities resulting from abiotic 570 

and biotic species filtering (Lortie et al., 2004). This contrast between results of simulations or 571 

experiments and observations highlights the need to consider multi-species sward in grassland 572 

models, which was identified as one of the fifteen key challenges by a panel of European 573 

grassland modellers and experts (Kipling et al., 2016b), and a priority for further research. 574 

The simulated effect of species diversity on forage production confirms that modelling multi-575 

species swards, along with grassland quality and the impact of management changes, requires 576 

further development (Kipling et al., 2016a; van Oijen et al., 2018). 577 

The negative relationship between initial species richness and final species evenness (Fig. 3B) 578 

confirms our second hypothesis and the ability of our model to capture competition processes 579 

that could lead to dominance of some species. DYNAGRAM also simulates species extinction, 580 

and this diversity loss is an expression of competitive exclusion, with dominant species that 581 

outcompete some others, depending on environmental conditions. 582 

Furthermore, we observed a decrease in the proportion of surviving species as the size of the 583 

species pool increases (Fig. 3C), confirming our third hypothesis. This trend is also in 584 

accordance with theory and experiments that suggest that increasing species richness should 585 

destabilize the dynamics of individual populations (Gross et al., 2013; Tilman, 1999). This 586 

decrease in the species survival ratio means that for high diversity levels not all species 587 

initially present can survive. However, contrary to Tilman’s tradeoff-based niche theory 588 

rooted on a simple resource-reduction competition model (Tilman, 1980), which states that 589 

two different species cannot coexist on a single limiting resource, DYNAGRAM is able to 590 

simulate the persistence of more species than essential resources. In this model we considered 591 

three essential resources (mineral nitrogen, water and light) but we observed long-term 592 
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persistence of more than three species. Species coexistence could partly be explained by the 593 

cyclicity of plant growth rate due to seasonal periodic fluctuations of climatic conditions 594 

implemented in our model, allowing temporal turnover of species with different temperature 595 

optimum for growth. 596 

Among the numerous differences with Tilman’s model, we also introduced disturbances due 597 

to grassland management (defoliation by grazing and cutting), which as such could be 598 

detrimental to some intolerant species and lead to species extinction. However, according to 599 

our fourth hypothesis, disturbances are supposed to affect more competitive species and thus 600 

prevent competitive exclusion, allowing more species to coexist in the plant community. This 601 

is confirmed by our results, as the species survival ratio increased with the defoliation 602 

intensity (Fig. 4A). We report the results for 21 species, but a similar relationship was 603 

obtained for any size of the species pool (not shown). The importance of defoliation events, 604 

mowing or grazing, has also been highlighted for dynamic global vegetation models: the 605 

ORCHIDEE model better reproduces seasonal variation of LAI after integrating a 606 

management module for defoliation activities (Chang et al., 2013). It could be of interest to 607 

extend this result to other disturbances affecting grasslands, such as pest outbreaks and 608 

diseases, for which a lack of model development has been reported (Snow et al., 2014). 609 

As expected, the positive correlation between n and S tended to increase with the size of the 610 

species pool (Fig. 4B), suggesting that disturbances play a more important stabilizing role in 611 

species-rich communities, in which non-equilibrium conditions brought by disturbances and 612 

fluctuating environment better favour species coexistence by promoting species turnover and 613 

preventing competitive exclusion of subordinate species. The relatively low correlation 614 

obtained with DYNAGRAM2 may also be explained by the identity of the selected species, 615 

Lolium perenne and Trifolium repens, which, as shown in Table A.2, are both tolerant to 616 

defoliation and trampling (Kühn et al., 2004). 617 

These results confirm the need of taking into account the species composition of grassland 618 

vegetation to accurately estimate the leaf area index (Ben Touhami and Bellocchi, 2015). 619 

They also add to the growing evidence that increased species richness and functional diversity 620 

contribute to stabilizing biomass production and enhancing the resilience of grassland 621 

ecosystems, as shown both theoretically and experimentally (Cottingham et al., 2001; Gross et 622 

al., 2013). 623 

4.2. A shift in key parameters across a diversity gradient 624 

Our sensitivity analysis revealed the existence of an unexpected shift in the hierarchy of the 625 

most influential parameters on final community structure (MRT on Bi: Table 3, Fig. 5 and 7), 626 

species evenness (URT and dynamic trees on Beve: Table 3, Fig. 6 and 7) and species survival 627 

ratio (URT on S: Table 3) across a gradient of species richness: as the number of state 628 

variables describing the plant community increased, the influence of soil fertility parameters 629 

related to stress tended to decline in favour of defoliation parameters related to disturbance. 630 

By considering various random combinations of species in addition to the clover-ryegrass 631 

mixture for DYNAGRAM4 and DYNAGRAM7, we showed that this general trend was 632 

independent of species identity, contrary to our fifth hypothesis. 633 

This importance of soil nitrogen availability for a low diverse assemblage (two species) is 634 

consistent with several recent studies that specifically raised the need to model soil nutrient 635 

dynamics (Ma et al., 2014; Sándor et al., 2016; Snow et al., 2017). A sensitivity analysis of 636 

the biogeochemical grassland model COUPMODEL (Senapati et al., 2016) showed that more 637 

than half of the critical parameters, recognized as most influential on ecosystem processes, 638 

were related to nutrient dynamics. This importance of soil nitrogen availability for 639 

DYNAGRAM2 could be explained by the contrasting needs of the two species, expressed by 640 
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strong differences in species-specific parameters i (leaf nitrogen concentration) and ki (half-641 

saturation constant for nitrogen uptake) between the grass and the legume (Table A.2). The 642 

inclusion in the model of the symbiotic fixation of atmospheric nitrogen N2 by the legume 643 

(Lazzarotto et al., 2009) would probably have still accentuated this contrast, hence the model 644 

sensitivity to resource parameters. Conversely, a species-rich grassland, such as the one 645 

modelled by DYNAGRAM21, allows functional redundancy among species, making access to 646 

light a key factor of plant growth expressed by a strong importance of defoliation parameters. 647 

One further development could consist on taking into account the uncertainty in parameter 648 

distribution, following a method for sensitivity analysis recently proposed (Paleari and 649 

Confalonieri, 2016). 650 

4.3. Grassland diversity, productivity and stability 651 

Contrary to drivers of community structure, parameters influencing final total green biomass 652 

did not depend on the size of the species pool (Fig. 7C). Thus, the positive effect of species 653 

richness on productivity cannot be explained by changes in key drivers. For any combination 654 

of species, biomass production was mainly limited by nutrient and water availability, i.e. 655 

stress factors, while disturbances always played a minor role. 656 

Here we assume that the green biomass at the end of the tenth growing season is proportional 657 

to the aboveground net primary productivity (ANPP) of the final plant community. We base 658 

this assumption on the observation of time series from various simulations that showed strong 659 

periodic seasonal similarities after six or seven years of repeated climate and management 660 

conditions, suggesting that the system has rapidly reached a cyclic equilibrium (results not 661 

shown). A stability analysis based on phase or bifurcation diagrams should be carried out to 662 

assess the impact of key forcing parameters, e.g. the fertilisation intensity  and the stock 663 

density SD, on steady states of the system (Louie et al., 2002). As we simulated seasonal 664 

dynamics, cyclic steady states are expected but this stability analysis is out the scope of the 665 

present paper.  666 

Another possible critical choice is the date at which values of biomass state variables were 667 

kept to compare simulation outcomes. We chose the 1st of October at year 10 of each 668 

simulation, just before the second cut and after all other management practices occurred 669 

eventually in the last year, but other choices could have been possible, such as the day before 670 

the first management event, i.e. the 1st of May at year 10. This second choice led to similar 671 

results and to the same conclusions (results not shown). 672 

4.4. Simplicity or complexity? 673 

Our study highlights consequences of the chosen number of state variables on model’s 674 

behaviour. In the case of our grassland model, we evidenced a shift in the hierarchy of key 675 

parameters involved in the dynamics of community structure depending on the size of the 676 

species pool. This should warn the modeller that mathematical grassland models that simplify 677 

the plant community by considering a small number of species or PFTs are likely to reveal 678 

impacts of soil fertility, whereas more complex models that include a larger species pool will 679 

be more sensitive to disturbance processes. Therefore, this result suggests some conditions in 680 

the choice of the number of species to define the hierarchy of drivers involved in plant 681 

growth, such as performed in the COSMO sub-model that ranked disturbances as the most 682 

important drivers and nitrogen availability as the less important one (Confalonieri, 2014). 683 

This shift of the most influential parameters follows a kind of continuum (Fig. 7). However, 684 

whereas the most influential parameters are markedly different between models with 2 and 21 685 

species, the difference between 7 and 21 species is relatively low. Therefore, the choice of 7 686 



21 

 

species or PFTs could be a good compromise to take into account functional plant diversity 687 

with keeping the number of state variables as lower as possible. 688 

This issue relates to a more general problem in ecological modelling: how to keep the model 689 

as simple as possible without missing key variables and processes? DYNAGRAM is simpler 690 

than many other grassland models but more complex than other ones. As compared to more 691 

parsimonious mechanistic models based on ODE systems (Louie et al., 2002; Siehoff et al., 692 

2011; Tilman, 1985), DYNAGRAM includes a consumption-degradation loop for nitrogen, the 693 

main limiting soil nutrient, and takes into account the seasonality of plant growth and resource 694 

competition (Lazzarotto et al., 2009). This added complexity was necessary to assess the 695 

model’s sensitivity to soil fertility, climatic conditions and defoliation.  696 

As both knowledge of grassland ecosystems and computer performance progress, the 697 

implementation of more and more details and processes is a general trend in grassland 698 

modelling. Our choice of a minimal model complexity implies some strong assumptions. As 699 

compared to more detailed models, such as MODVEGE, GEMINI or PROGRASS (Jouven et al., 700 

2006; Lazzarotto et al., 2009; Soussana et al., 2012), DYNAGRAM considers only one single 701 

biomass compartment for each species without distinguishing aboveground plant structural 702 

components (i.e. vegetative or reproductive, green or dead) and ignores the belowground 703 

biomass (roots, rhizomes and storage organs) as well as many associated physiological 704 

processes. In accordance with most grassland growth models, DYNAGRAM only simulates 705 

vegetative growth and does not include seed reproduction or emergence of new species from 706 

the soil seed bank or by seed dispersal.  707 

Model degradation techniques can be applied to assess consequences on model performance 708 

(simulation time, prediction accuracy) of reducing the number of variables and parameters in 709 

a complex model. Applied to grassland models, they often conclude to the necessity of 710 

keeping the full complexity to ensure an acceptable goodness of fit with empirical data 711 

(Lohier et al., 2016). In this paper, our goal was more strategical than tactical: we developed 712 

DYNAGRAM to address a specific theoretical question about the response of a grassland 713 

model to climatic, edaphic and management forcings in function of the number and identity of 714 

the state variables describing the plant community. The next step will be to calibrate and to 715 

validate the model against experimental data so as to use it for the simulation of climatic and 716 

management scenarios applied to real systems. Its performance in terms of computation time 717 

as compared to more complex models makes it possible to implement DYNAGRAM as a 718 

submodel in a spatially explicit, mosaic landscape model, such as WoodPaM (Gillet, 2008; 719 

Peringer et al., 2013). 720 

Alternatives to the development of new models may rely on re-usable components or 721 

submodels that could be coupled with generic crop simulators to simulate an assemblage of 722 

several species and reproduce plant community dynamics (Confalonieri, 2014). Another 723 

promising approach consists in comparing the performance of multiple grassland models so as 724 

to implement a multi-model ensemble prediction system in grasslands (Palareti et al., 2016; 725 

Sándor et al., 2017). 726 

5. Conclusion 727 

Our simulations with DYNAGRAM confirmed most of our expectations but provided new 728 

insights on the diversity-productivity-stability relationship. After reaching a cyclic 729 

equilibrium, the final structure of the grassland plant community, described by green biomass 730 

of a given set of species, depends on the size of species pool. In accordance with the insurance 731 

hypothesis (Yachi and Loreau, 1999), increasing species richness insures the ecosystem 732 

against declines in its productivity caused by climatic fluctuations and periodic anthropogenic 733 

disturbances. However, depending on species identity and environmental conditions, the 734 
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stability of the community, measured by the proportion of surviving species after 10-year 735 

simulations, and the evenness component of its diversity tend to decrease with the size of the 736 

species pool, due to environmental filtering and competitive exclusion. 737 

Moreover, results of our tree-based sensitivity analysis revealed an unexpected shift in the key 738 

drivers of the final community structure, but not of its total biomass, when increasing the size 739 

of the species pool from two to 21 species. These findings create new challenges in ecological 740 

modelling to be raised through mathematical and simulation studies. 741 
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Appendix A: Variables and parameters of DYNAGRAM 1009 

 1010 

Table A.1 Summary of all variables and parameters of DYNAGRAM. Values of the species-1011 

specific parameters are given in Table A.2.  1012 

 1013 

Symbol Definition Unit Value  

State variables 

Bi Green biomass of species or PFT i kg DM ha-1 Bi(0) = 200/n 

No Organic nitrogen, stored in the soil organic matter kg N ha-1 No(0) = 5800 

Nm Mineral nitrogen (nitrate and ammonium) in the soil solution, available 

for plant uptake 

kg N ha-1 Nm(0) = 20 

WR Water reserve in the soil, available for plant uptake mm WR(0) = WHC 

Climatic forcing variables 

T Surface temperature °C function 

P Daily precipitation mm d-1 function 

PAR Photosynthetically active radiation MJ m-2 d-1 function 

PET Potential evapotranspiration mm d-1 function 

Plant species-specific parameters 

n Number of species or PFTs [count] {2, 4, 7, 21} 

SLAi Specific leaf area m2 g-1 species-specific 

i Proportion of biomass removed by a mowing event d-1 species-specific 

i Appetence for feeding regime of cattle [-] species-specific 

i Utilization indicator value for the trampling tolerance [-] species-specific 

i Leaf nitrogen content kg N (kg DM)-1 species-specific 

ki Half-saturation constant: resource level at which growth rate is half its 

maximum 

kg N ha-1 species-specific 

i Basic senescence rate of leaves d-1 species-specific 

T1, i Lower limit of optimum of daily temperature for photosynthesis  °C species-specific 

i Water stress tolerance exponent [-] species-specific 

Plant growth processes and tolerance parameters 

T0 Base temperature for light utilization and development  °C 3 

T2 Higher limit of optimum of daily temperature for photosynthesis °C 20 

T3 Maximal temperature for light utilization and development °C 40 

RUEmax Maximum radiation use efficiency g DM MJ-1 3 

LAM Proportion of laminae in green biomass [-] 0.68 

 Extinction coefficient [-] 0.6 

Holling coefficient for mineral nitrogen consumption  [-] 2 

ng Holling coefficient for green biomass removal by grazing  [-] 2 

Ttol Amplification exponent of the control function f(X) of trampling [-] 0.5 

Soil parameters 

 Nitrogen mineralization rate d-1 7 10-4 

Nmmax Maximal amount of Nm stored in the soil before lixiviation kg N ha-1 120 

WHC Volumetric water content at field capacity mm 150 

PWP Volumetric soil water content at permanent wilting point mm 7.5 

Tm1 

Tm2 

gT 

Critical temperature for maximal mineralization rate of No to Nm 

Empirical parameters describing effect of temperature on mineralization 

Empirical parameters describing effect of temperature on mineralization 

°C 

°C 

[-] 

40 

31.79 

3.36 
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gW1 

gW2 

gW3 

Empirical parameters describing effect of soil water on mineralization 

Empirical parameter describing effect of soil water on mineralization 

Empirical parameter describing effect of soil water on mineralization 

[-] 

[-] 

[-] 

1 

6.63 

-5.69 

PETmax Maximal measured value of PET mm d-1 3.75  

1 

2 

Empirical parameter for fitting fW function of Jouven et al. 

Empirical parameter for fitting fW function of Jouven et al. 

[-] 

[-] 

6.467 

7.623 10-8 

 

Management parameters and auxiliary variables 

SD Livestock density, number of adult bovine units per hectare LU ha-1 [0, SDmax] 

SDmax Maximal possible livestock density LU ha-1 3 

Daily consumption of 1 adult bovine unit kg DM LU-1 d-1 18 

 Yearly input of mineral nitrogen fertilizer in the soil kg N ha-1 a-1 0 

u Rate of mineral nitrogen restitution by cattle urine deposition kg N ha-1 d-1 0.315 

d Rate of organic nitrogen restitution by cattle dung deposition kg N ha-1 d-1 0.236 

ncut Number of mowing events per year [-] {0, 1, 2, 3} 

  Climatic parameters 

Seasonal oscillation period, conversion of radian in days d-1 2 /365 

Tm 

Pm 

PARm 

PETm 

Mean annual values of temperature T 

Mean annual values of sum of monthly precipitations P 

Mean annual values of PAR 

Mean annual values of PET 

°C 

mm d-1 

MJ m-2 d-1 

mm d-1 

8.517 

2.056 

5.434 

1.93 

Ta 

Pa 

PARa 

PETa 

Amplitude of T 

Amplitude of P 

Amplitude of PAR 

Amplitude of PET 

°C 

mm d-1 

MJ m-2 d-1 

mm d-1 

14.81 

1.168 

7.344 

3.542 

T 

P 

PAR 

PET 

Origin phase of oscillations for T 

Origin phase of oscillations for P 

Origin phase of oscillations for PAR 

Origin phase of oscillations for PET 

d 

d 

d 

d 

106.5 

110.5 

80.8 

87.76 

 1014 

  1015 



31 

 

Table A.2 List of the 21 herbaceous species to be selected in the alternative versions of 1016 

DYNAGRAM, with their plant functional type (PFT), CSR strategy (Pierce et al., 2017) and 1017 

species-specific parameter values: SLA specific leaf area (Perronne et al., 2014);  proportion 1018 

of biomass removed by a mowing event, estimated from canopy height (Perronne et al., 1019 

2014);  appetence for cattle (Kühn et al., 2004);  trampling tolerance (Kühn et al., 2004);  1020 

leaf nitrogen content (Soussana et al., 2012); k half-saturation constant of the nitrogen 1021 

resource, estimated from N requirement (Julve, 2017);  leaf senescence rate (Ryser and 1022 

Urbas, 2000); T1 lower limit of optimal growth temperature (Al Haj Khaled et al., 2005);  1023 

water requirement (Julve, 2017). In bold, the two species considered for DYNAGRAM2 and 1024 

kept for defining the assemblages of DYNAGRAM4 and DYNAGRAM7. PFTs are defined by 1025 

four groups of grasses and three life forms of dicots (Ansquer et al., 2004; Cruz et al., 2002): 1026 

A, early and fast-growing grasses in fertile and frequently disturbed grasslands; B, 1027 

competitive and productive grasses in fertile and unfrequently disturbed grasslands; C, late 1028 

and slow-growing grasses in infertile and frequently disturbed grasslands; D, late and slow-1029 

growing grasses in infertile and unfrequently disturbed grasslands; E, erect forbs; R, rosette 1030 

forbs; L, legumes. 1031 

 1032 

Symbol Name PFT CSR SLA k T1 

Lol.per Lolium perenne A R/CR 0.0286 0.40 9 8 0.0182 13.00 0.0303 7.5 1.000 

Ely.rep Elymus repens A CSR 0.0233 0.70 6 7 0.0106 12.00 0.0178 9.5 1.000 

Ant.odo Anthoxanthum odoratum B S/SR 0.0283 0.70 4 5 0.0173 12.00 0.0192 11.0 1.000 

Arr.ela Arrhenatherum elatius B SR/CSR 0.0299 0.80 8 3 0.0238 11.00 0.0250 8.5 1.000 

Dac.glo Dactylis glomerata B CSR 0.0253 0.50 8 6 0.0094 11.00 0.0230 10.0 1.000 

Poa.tri Poa trivialis B CSR 0.0331 0.50 7 6 0.0224 11.00 0.0250 8.0 2.000 

Agr.cap Agrostis capillaris C SR 0.0286 0.80 5 5 0.0205 7.50 0.0205 16.0 1.000 

Bro.ere Bromopsis erecta C S/SR 0.0155 0.90 12 1 0.0105 5.15 0.0160 15.3 0.500 

Fes.rub Festuca rubra C SR 0.0164 0.90 5 6 0.0137 7.00 0.0138 13.0 1.000 

Nar.str Nardus stricta C S 0.0110 0.58 9 2 0.0175 4.85 0.0115 15.0 1.000 

Tri.fla Trisetum flavescens C SR/CSR 0.0205 0.91 5 4 0.0130 6.00 0.0212 14.0 1.000 

Bra.pin Brachypodium pinnatum D SR/CSR 0.0234 0.92 12 1 0.0202 6.25 0.0167 16.5 1.000 

Poa.cha Poa chaixii D S/CSR 0.0207 0.40 3 4 0.0175 10.00 0.0250 8.0 1.000 

Ger.syl Geranium sylvaticum E CSR 0.0315 0.82 8 3 0.0175 10.50 0.0220 8.5 2.000 

Her.sph Heracleum sphondylium E C 0.0230 0.75 6 3 0.0175 11.00 0.0176 9.0 1.000 

Pla.lan Plantago lanceolata R C/CR 0.0196 0.69 3 9 0.0191 9.00 0.0159 12.0 1.000 

Tar.off Taraxacum officinale R CR 0.0324 0.92 7 8 0.0175 9.00 0.0224 12.5 1.000 

Ver.cha Veronica chamaedrys R SR/CSR 0.0277 0.80 3 7 0.0196 9.00 0.0220 13.0 1.000 

Lot.cor Lotus corniculatus L R/SR 0.0224 0.95 9 1 0.0175 7.75 0.0173 11.5 0.707 

Tri.pra Trifolium pratense L R/CSR 0.0228 0.82 8 3 0.0196 8.00 0.0175 11.5 1.000 

Tri.rep Trifolium repens L R/CR 0.0343 0.90 9 8 0.0195 8.50 0.0234 13.0 1.000 
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Online Supplementary Material 1035 

The following supplementary material is available for this article. 1036 

 1037 

Appendix B Preliminary identification stage of the sensitivity analysis of DYNAGRAM. This 1038 

appendix details all results of the preliminary sensitivity analysis we performed to select the 1039 

six key control parameters. Results stay in the three following tables:  1040 

Table B.1 Parameter sensitivity of total green biomass Btot to deviations by ± 20% from the 1041 

default parameter values for DYNAGRAM2 and DYNAGRAM21. Changes were applied 1042 

independently for each parameter, all other parameters keeping their default values. 1043 

Table B.2 Parameter sensitivity of species evenness Beve to deviations by ± 20% from the 1044 

default parameter values for DYNAGRAM2 and DYNAGRAM21. Changes were applied 1045 

independently for each parameter, all other parameters keeping their default values. 1046 

Table B.3 Ranking of parameters according to the sensitivity of total green biomass Btot and 1047 

of species evenness Beve to variations in the default parameters for DYNAGRAM2 and 1048 

DYNAGRAM21. Values were computed by both increasing and decreasing the default value of 1049 

each parameter. Parameters were ranked according to the mean values of the 2 and 21 species.  1050 

 1051 

Appendix C Main effects of key control parameters on biomass and species survival ratio. 1052 

This appendix contains two figures that detail the main effects of the six parameters on total 1053 

green biomass Btot and species survival ratio S as revealed by dynamic trees. 1054 

Figure C.1 Main effects of six key parameters on total green biomass Btot, from dynamic trees 1055 

performed on DYNAGRAM2 (A) and DYNAGRAM21 (B) outputs. Climate parameters: Tm 1056 

(temperature), Pm (precipitation); soil fertility parameters:  (fertiliser input),  1057 

(mineralization rate); defoliation parameters: SD (livestock density), ncut (mowing 1058 

frequency). 1059 

Figure C.2 Main effects of six key parameters on species survival ratio S, from dynamic trees 1060 

performed on DYNAGRAM2 (A) and DYNAGRAM21 (B) outputs. Climate parameters: Tm 1061 

(temperature), Pm (precipitation); soil fertility parameters:  (fertiliser input),  1062 

(mineralization rate); defoliation parameters: SD (livestock density), ncut (mowing 1063 

frequency). 1064 


