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TOWARDS COMPLEX NONNEGATIVE MATRIX FACTORIZATION
WITH THE BETA-DIVERGENCE

Paul Magron, Tuomas Virtanen

Laboratory of Signal Processing, Tampere University of Technology, Finland
{firstname.lastname}@tut.fi

ABSTRACT

Complex nonnegative matrix factorization (NMF) is a powerful tool
for decomposing audio spectrograms while accounting for some
phase information in the time-frequency domain. While its estima-
tion was originally based on the Euclidean distance, in this paper we
propose to extend it to any beta-divergence, a family of functions
widely used in audio to estimate NMF. To this end, we introduce
the beta-divergence in a heuristic fashion within a phase-aware
probabilistic model. Estimating this model results in performing
an NMF with Itakura-Saito (IS) divergence on a quantity called
the phase-corrected posterior power of the sources, which is both
phase-dependent and nonnegative-valued. Therefore, we replace IS
with the beta-divergence, so that the factorization uses an optimal
distortion metric and remains phase-aware. Even though by doing so
we loose theoretical convergence guarantees, the resulting algorithm
demonstrates its potential for an audio source separation task, where
it outperforms previous complex NMFs approaches.

Index Terms— Nonnegative matrix factorization (NMF), com-
plex NMF, beta-divergence, anisotropic Gaussian model, audio
source separation

1. INTRODUCTION

Many audio signal processing techniques act on a time-frequency
(TF) representation of the data, such as the short-time Fourier trans-
form (STFT), since the structure of audio signals is more prominent
in that domain. For instance, in audio source separation [1], it is
common to decompose the magnitude or power spectrogram of the
mixture in order to further recover the constitutive sources [2].

To tackle this issue, many approaches rely on nonnegative ma-
trix factorization (NMF) [3]. NMF consists in expressing a nonneg-
ative data matrix as the product of two nonnegative matrices, respec-
tively representing a dictionary of spectral templates and a matrix
of time-varying activations. This factorization is usually obtained
by minimizing a function that measures the mismatch between the
data and the model. In particular, the beta-divergences [4], a family
of functions which includes the Euclidean distance [3], Kulback-
Leibler (KL) [5] and Itakura-Saito (IS) [6] divergences, are widely
used in audio. Indeed, tuning their shape parameter /3 results in func-
tions that hold interesting properties for audio [7, 8].

However, the main drawback of NMF is that it assumes the ad-
ditivity of the spectrograms, which does not hold when the sources
overlap in time and frequency, and may results in artifacts in the
estimated signals [9]. To alleviate this issue, complex NMF [10]
has been proposed. This model decomposes the complex-valued
STFT of the mixture into a sum of components whose magnitudes
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are structured by means of an NMF. This model enables one to
jointly estimate the magnitude and the phase of each source. Es-
timating complex NMF was originally based on the Euclidean dis-
tance, which however does not properly characterize the properties
of audio (e.g., its large dynamic range).

Extending complex NMF to other divergences is cumbersome
since, for instance, KL and IS only accept nonnegative-valued data
as inputs. However, it has been extended to the KL divergence by
using a primal-dual formulation of the optimization problem [11]. It
has also recently been extended to the IS divergence [12] by consid-
ering a probabilistic framework based on anisotropic Gaussian (AG)
distributions [13]. This family of distributions permits us to model
the sources with non-uniform phase parameters and to structure the
variance parameters by means of an NMF model. This results in
an extension of the ISNMF to the case of complex-valued sources,
hence its name of complex ISNMF.

In this paper, we propose to extend complex NMF to other beta-
divergences. To achieve this goal, we introduce the beta-divergence
in a heuristic fashion within a phase-aware probabilistic framework.
We introduce an AG source model that is a simplified version of the
original one [12]. Inference of this model results in minimizing the
IS divergence between the NMF model and a novel quantity which
is the phase-corrected posterior power of the latent sources. This
quantity appears as particularly interesting because it is nonnegative-
valued and it accounts for the phase of the sources. Therefore, per-
forming an NMF on this quantity leads to a phase-aware decompo-
sition of the data. We further propose to replace IS with the beta-
divergence, so that in addition to be phase-aware, the factorization
uses an optimal distortion metric. Minimizing this divergence with
multiplicative update rules [6] results in an algorithm called com-
plex SNMF. Experiments conducted on real audio data for a har-
monic/percussive source separation task show that this approach out-
performs previous complex NMF methods.

The rest of this paper is organized as follows. Section 2 presents
the necessary background on NMF and complex NMF, and Section 3
introduces complex SNMF. Section 4 experimentally validates its
potential for a source separation task. Finally, Section 5 draws some
concluding remarks.

2. BACKGROUND

2.1. NMF with the beta-divergence

Let us consider a nonnegative-valued matrix V € RiXT, which in
audio is usually a magnitude or power spectrogram with F' frequency
channels and 7" time frames. NMF consists in finding a factorization
V ~ WHwithW € ]RiXK andH € Ri{XT, where K is the rank of
the factorization. This factorization is usually obtained by minimiz-
ing an error between the data V and the model WH. An important



class of functions in audio is the family of beta-divergences [14].
The beta-divergence between two matrices A and B with entries a ¢+
and by, is Ds(A,B) = Zf,t dg(aft, bft), with:
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Special cases are the Euclidean distance (8 = 2), and KL (8 = 1)
and IS (8 = 0) divergences. This divergence is usually minimized
by applying the following multiplicative updates [4]:
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where ®, .© and = respectively denote the element-wise matrix mul-

tiplication, power and division, and T is the matrix transposition.
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2.2. Statistical interpretation of ISNMF

NMF with beta-divergence can be framed in a general probabilistic
framework using Tweedie distributions [15], but a particularly inter-
esting case is ISNMF [6], which we detail hereafter.

Let X € CF*7T be the STFT of a single-channel audio signal. X
is the instantaneous mixture of J sources S; € C**7:
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J

The TF coefficients of all sources are modeled with indepen-
dent circularly-symmetric Gaussian random variables: s; r¢ ~
N(0,v;,7:I), where T is the identity matrix, and the variances

follow an NMF model: V; = W;H;, where W; ¢ RiXKj

and H; € ]RffXT. Then, thanks to the additivity of the Gaus-
sian distributions, the mixture given by (4) is also Gaussian so
Tfr ~ N(O,'Ux’ftf) with V, = WH = Zj WjHj.

To estimate W and H, an intuitive approach in such a proba-
bilistic framework consists in maximizing the likelihood of the data.
It can be shown [6] that the maximum likelihood estimation of this
model is equivalent to performing an NMF with IS divergence on
V = |X|®?, hence the name of ISNMF model. This IS divergence
is usually minimized with the multiplicative updates (2) and (3), or
with variants of the expectation-maximization (EM) algorithm [6].

2.3. Complex NMF

Complex NMF [10] consists in directly modeling the complex-
valued STFT of the mixture as a sum of components whose magni-
tudes are structured by means of an NMF model:
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We rather consider here a model known as complex NMF with intra-
source additivity [16]: it consists in modeling the phase of each
source instead of the phase of each rank-1 component. This signifi-
cantly reduces the number of parameters of the model, thus it lowers

both the memory and computation time required for the estimation
of the model, at the cost of a moderate drop in terms of separation
quality [16]. Grouping the components into J sources then leads to:
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It is usually estimated by minimizing the Euclidean distance between
the data and the model (6), and its main advantage is that it enables us
to promote phase constraints [17, 18]. However, this distortion met-
ric is not well adapted to audio [7]. To alleviate this issue, complex
NMEF has recently been extended to KL [11] and IS [12] divergences.

3. COMPLEX NMF WITH THE BETA-DIVERGENCE

Here, we extend complex NMF to any beta-divergence. This is done
in a probabilistic framework in which inference of the parameters
results in applying NMF to a quantity that is both phase-aware and
nonnegative. It then becomes possible to perform this factorization
with the beta-divergence.

3.1. Anisotropic Gaussian model

First, we introduce a probabilistic source model based on the AG
distribution, which is a simplified version of the model in [12]. In-
deed, we assume here that the sources are centered (i.e., their mean
is null), which was not the case in the original model [12]. This
novel model is easier to manipulate and it preserves the possibility
to account for a phase value.

Our approach consists in generalizing the Gaussian model pre-
sented in Section 2.2, by considering sources s;,r+ ~ N (0, +)
whose covariance matrices I';, s; are no longer diagonal:
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where v; ;e = E(|s;,5¢|°) € Ry and ¢ 5¢ = E(s] ;) € C are
the variance and relation term of s; ¢, and Z denotes the complex
conjugate of z. This approach allows us to account for a phase value
through non-null relation parameters. Drawing on [12], we define
the variance and relation terms as follows:

Ve = (1= A)[WiH ], ®)
cige = p[WH, et
where 115, ¢+ is a phase location parameter, and
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where I, is the modified Bessel function of the first kind of order
q, and k > 0 is an anisotropy parameter which quantifies how im-
portant the phase location parameter is. In particular, if £ = 0, then
A=p=0and I s = vj 1. Consequently, the distribution be-
comes circularly-symmetric and this model becomes equivalent to
ISNME, as presented in Section 2.2.

3.2. Inference

We propose to estimate the model parameters © = {W, H, u} with
the EM algorithm [19], which consists in maximizing the following
lower bound of the data log-likelihood:

Q(O,0") = / p(ZX;0")log p(X,Z; ©)dZ, (10)



where ©’ contains the current set of estimated parameters, and Z
denotes a set of latent (hidden) variables. The EM algorithm consists
in alternatively computing the functional () given the current set of
parameters ©’ (E-step) and maximizing it with respect to © (M-
step). This is proven [19] to increase the value of the criterion (10).
Due to the mixing constraint (4), we consider, as in [12], a reduced
set of J — 1 free variables Z = {{Sj7ft};v];11}ft.

Due to space constraints, we do not detail the full derivation of
the E-step, but it can be found in [12]. It results in maximizing the
following functional:

Q(e,0) = —ZZlog
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where | A| is the determinant of a matrix A, = denotes equality up to
an additive constant, and the posterior mean and covariance matrix
are given by:
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We can rewrite the functional (11) by isolating the phase parameters.
This leads to minimizing:

R (7200 () g+ mPp)) (14)

which is easily achieved with the following update:
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Finally, we rewrite (11) to put the emphasis on the NMF parameters:

ZZlog (W, H;] ) + [pﬂft] ., (16)
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where pj, ¢ is the phase-corrected posterior power of sj, ¢¢:
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where we removed the indices j, ft for clarity. We recognize in (16)
the IS divergence between P; and W;H;. In the original complex
ISNMF model [12], this divergence was slightly different because
it included an extra-term that was due to the non-zero means in the
AG model (cf. Section 3.1). Therefore, we proposed in [12] to mini-
mize the corresponding function with the auxiliary function method.
However, we can here use the multiplicative updates (cf. (2) and (3))
where V, W and H are respectively replaced by P;, W and H;.

3.3. Introducing the 3-divergence

The key aspect of this derivation was to highlight a novel quantity
pj, f¢ which is both nonnegative and phase-aware. It was therefore
possible to extend complex NMF to the IS divergence by perform-
ing the factorization on this quantity rather than on the magnitude
spectrogram of the mixture V, which does not account for the phase.

Algorithm 1: Complex SNMF

1 Inputs: Mixture X € CF*T
Anisotropy x € Ry and divergence 5 € Ry

Initial NMF matrices Vj, W, € ]RFXKJ H; e RK T

Initial phases V7, p; € [0, QTI'[FXT
Initialization: compute A and p with (9)
while stopping criterion not reached do
% E-step

Update v and ¢ with (8)

Ly = Z‘;’:l L

10 Update m’ with (12) and I'” with (13)
11 Update p with (17)

12 9% M-step

13 Vj Update W ; with (19)

14 Update H; with (20)

15 Normalize W and H;;

16 Update po; with (15)

17 end

18 Update ~ and c with (8)

v Iy = Z;’:l r;

20 Update m’ with (12),

21 Outputs: m' € CT*FxT,

[
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Consequently, we propose here to further extend complex NMF
to any beta-divergence. Replacing the IS cost function in (16) by the
beta-divergence leads to maximizing the following functional:

J
8(010) = =" "ds(pj g0, [WiH, ). (18)
J=1 fit

for which we apply the multiplicative updates (2) and (3):
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The phase update (15) is left unchanged, though in future work we
will investigate on alternative phase update schemes. This procedure
is called complex SNMF and it is summarized in Algorithm 1. This
algorithm includes a normalization step after updating W and Hj;,
which eliminates trivial scale indeterminacies and avoids numerical
instabilities. We impose a unitary £2-norm on each column of W
and scale H; accordingly, so that the cost function is not affected.
One final E-step is performed after looping in order to estimate the
sources with the most up-to-date set of parameters.

We derived here a procedure that extends complex NMF to any
beta-divergence in a heuristic way. Indeed, replacing the IS diver-
gence in (16) by the beta-divergence results in loosing the conver-
gence properties of the algorithm. However, we observed in our ex-
periments that the objective function (i.e., the log-likelihood of the
data in the AG model) was still non-decreasing under those updates.
Note that this algorithm is also inconsistent regarding the underlying
statistical model. We leave to future work the design of alternative
phase-aware probabilistic models in which the beta-divergence (18)
naturally arises as the likelihood function.

Hj(-Hj@

(20)



SDR (dB) SIR (dB) SAR (dB)

Complex betaNMF |+ F*D}"* Ffl:D»,,,4 Lo ]
Complex ISNMF P77D:|»774 - - Lo g
Complex EUNMF |+ me»f\++ [ ST PR 4

e D - ] F---d F--l T F--4

Fig. 1. Source separation performance on the DSD100 test dataset. Each box-plot is made up of a central line indicating the median, box
edges indicating the 1°* and 3"¢ quartiles, whiskers indicating the minimum and maximum values, and crosses representing the outliers.

4. EXPERIMENTAL EVALUATION

4.1. Setup

We propose to asses the potential of complex SNMF for a har-
monic/percussive source separation task. As audio data, we use
music song excerpts from the DSD100 database [20]. Each excerpt
is 20 seconds long and is made up of J = 2 sources: a percussive
source (the drums track) and a harmonic source (the sum of the
other tracks). The database consists of two subsets of 50 songs
(learning and test sets). The signals are sampled at 44100 Hz and
the STFT is computed with a 92 ms Hann window and 75 % overlap.

We consider a supervised separation scenario. Each excerpt
is split into two signals of 10 seconds. The first segment is used
for learning the dictionaries W on the power spectrogram of each
isolated track, by means of a k-means clustering algorithm with
K = 50 basis per dictionary. The second segment is used for per-
forming the separation, so only the activation matrices H; and phase
parameters p; are computed. For a fair comparison, all the algo-
rithms use the same random initial matrices H; and 100 iterations,
and the complex NMFs are initialized with the mixture’s phase.

Source separation quality is measured with the signal-to-
distortion, signal-to-interference, and signal-to-artifact ratios (SDR,
SIR, and SAR) [21] expressed in dB.

The code of this experimental study is available online'.

4.2. Learning 3

We first consider the 50 songs that form the learning subset in order
to learn the optimal 5 parameter for complex SNMF. We use the
value k = 1 for the anisotropy parameter, which yielded good results
in previous experiments [12, 13]. Results are presented in Fig. 2, and
suggest that the value 5 = 0.5 leads to the best trade-off between
the different indicators. We also learn the optimal (3 for the classical
NMF presented in Section 2.1. Previous works have been conducted
on the optimal beta-divergence [14] for NMF, so we simply perform
here a basic learning for this specific task. Similarly to complex
BNME, we obtain the best results for 5 = 0.5.

4.3. Comparison with other methods

‘We now compare complex SNMF with other approaches. We test the
phase-unaware NMF, complex NMF with Euclidean distance (com-
plex EUNMEF) as presented in Section 2.3 and complex ISNMF as in-
troduced in [12]. NMF and complex SNMF use the value 8 = 0.5 in

"https://github.com/magronp/complex—beta-nmf
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Fig. 2. Influence of 5 on the source separation quality for the com-
plex SNMF algorithm on the DSD100 learning set.

conformity with the results of the previous experiment. Finally, even
though the complex NMF with KL divergence introduced in [11]
would have been an appropriate comparison reference, we were un-
fortunately not able to re-implement it in this framework.

We run the algorithms on the test set and present the results
in Fig 1. Firstly, we remark that the previous complex NMFs are
outperformed by NMF: even if it is phase-unaware, it uses a dis-
tortion metric that is optimally chosen for this task. We observe
that the proposed complex SNMF outperforms the other complex
NMFs for all indicators, which confirms the interest of extending
complex NMF to any beta-divergence. It performs slightly better
than NMF (an improvement of 0.1, 0.3 and 0.1 dB in median SDR,
SIR and SAR respectively), though the difference is not statistically
significant. However, it should be noted that the full potential of
complex NMFs relies on the possibility of incorporating phase con-
straints [18], which is not possible in the classical NMF model. This
complex SNMF technique is therefore a promising tool for phase-
aware source separation.

5. CONCLUSION

In this paper, we extended complex NMF to any beta-divergence.
This novel algorithm jointly estimates the magnitudes and phases
of the sources by using a distortion metric well adapted to audio.
We proposed to perform the factorization on the phase-corrected
posterior power of the sources, a phase-dependent and nonnegative
quantity. This technique outperformed previous complex NMF ap-
proaches in source separation experiments. Future work will focus
on obtaining convergence guarantees for complex SNMF by formu-
lating it in an end-to-end probabilistic framework rather than in a
heuristic fashion. Besides, we will incorporate phase constraints in
this framework in order to fully exploit its potential [12, 18, 22].
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