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Possible charge order structure of stoichiometric YbFe2O4 

We report a possible charge ordering model of triangular mixed valence material 

YbFe2O4. It was found that a crystal synthesized with high stoichiometry on iron 

vacancy shows new and simple extinction rule in the superlattice reflections. The 

Laue class of the diffraction signal is expressed as 2/m. With the consideration of 

the charge neutrality and the superlattice signal of (1/3 1/3 0), we derived 5 

possible charge ordering models of this material. 
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I. Introduction 

Recently, magneto-electric coupling in multiferroic materials has attracted much 

attention since it may develop some new applications in spintronic devices [1]. Though 

the origins of the magnetism and ferroelectricity have independent mechanisms, their 

correlated interaction has long been studied to overcome their incompatibility [2]. 

During such efforts much attention has been focused on some unconventional type of 

ferroelectricity, in which the primary origin of the electric dipole is not the ionic 

displacement [3]. The electric polarization of electronic ferroelectric is proposed as non-

centrosymmetric distribution of electrons, that is driven by the correlated interaction of 

electrons [4]. 

YbFe2O4 is a member of RFe2O4 (R = Y, Dy, Ho, Er, Tm, Yb, Lu, Sc and In) 

which is proposed as a prototype of the electronic ferroelectrics. The competing 

interaction of iron ions is considered to appear in doubly stacked triangular layers (so-

called W-layer) in the crystal cell. The interaction of the charge, spin and orbital for 3d 

electrons of Fe2+ and Fe3+ in the triangle lattice, realizes the possible charge ordering of 

Fe2+ and Fe3+, which does not have the inversion symmetry [5]. So geometrical 

frustration on the triangular lattice plays a key role in the ground state configuration of 



charges as well as spins. 

It has been discussed that the polar charge-ordering (CO) pattern realizes a 

macroscopic spontaneous ferroelectric polarization. The CO has been observed in 

diffraction and resonant X-ray scattering experiments [5-7]. Below 500 K two-

dimensional (2D) CO was found in diffuse streak line (1/3 1/3 L) in reciprocal space of 

hexagonal expression. Below 330 K the streak line shrinks to superlattice spots (1/3 1/3 

n + 1/2), where n is integer, indicating a three-dimensional (3D) charge ordering. The 

development of the 3D CO has been discussed in relation with the development of the 

macroscopic electric polarization [6-8].  

However, the existence of the macroscopic polarization has not been confirmed 

yet. Though researchers have agreed on the existence of the charge ordering below 

330K, a consensus about the ground state of the CO model have not reached. For 

example, it is suggested that the ground state of CO structure is non-polar C2/m in the 

W-layer in which the CO structure was derived from the bond valence sum (BVS) 

calculation [8]. But we consider that the BVS analysis might contains the effect of the 

mixed domain information, leading some inconsistency.  

Thus, the ground states of CO structure in RFe2O4 has not been established yet 

and still remains an open research problem [10-12]. It is known that physical property 

relate to CO structure strongly depends on the oxygen stoichiometry in RFe2O4 [9,13-

14]. The variation of the oxygen vacancies affects the population ratio of Fe2+ and Fe3+ 

in triangular lattice. Recently we found that the single crystal grown with a standard 

protocol contains significant amount of iron vacancies [15]. We also found that the 

crystal having less iron vacancy i.e., the stoichiometric sample, shows longer spin 

coherence and pure ferri-magnetism.  



 Interestingly, the coherence of spin corresponds to that of charges, since both 

ordering appears on the same iron ions. Thus it is considered that a material having long 

spin coherence may have long CO coherence. In this paper, we report that the iron 

stoichiometric single crystal of YbFe2O4 has simpler extinction rule of the superlattice 

reflections, compared to the previous reports. From observation of new extinction rule, 

we succeeded in deriving the unit cell of the iron charge superlattice. This is the first 

report of the charge unit cell which was directly derived from the observation. Also 

from the consideration of the charge neutrality and the superlattice signal of (1/3 1/3 0) 

in reciprocal space, we succeeded in deriving the charge ordering models in five 

possible patterns for the first time. 

II. Experiment  

 A single crystal of YbFe2O4 was grown using the floating zone (FZ) melting 

method from a seed rod, which was a mixture of Fe2O3 and Yb2O3. To suppress iron 

vacancy, we changed the mixture ratio of Fe2O3/Yb2O3 of the seed rod. (details are 

described in ref [15]) The chemical components were analyzed with X-ray fluorescence 

(XRF) (ORBIS EDAX) and thermogravimetric analysis (TGA) (SII TG/DTA7300) for 

crushed samples. In XRF measurement, Yb / Fe ratio was estimated from the integral 

intensity of the Fe-Kα and Yb-Lα fluorescence line. The fluorescence intensity had been 

calibrated with standard samples that were mixture of Fe2O3 and Yb2O3 powders. The 

error of the calibration line was less than 0.2%. In order to characterize oxygen 

stoichiometry, we carried out thermogravimetric analysis in air up to about 600℃, at 

which temperature the YbFe2O4 sample change to YbFe2O4.5. 

The development of the charge ordering was observed with the reciprocal space 

observation by oscillation photography, using X-ray imaging plate (IP) camera with Cu-



Ka radiation (RIGAKU: RAPID-II Valimax-Cu). Four-axis diffractometor HUBAR-

512 with Mo-Ka and control software SPEC was used to measure the Bragg spots 

mapping. (003)h ,(009)h, (110)h and (101)h spots were used to calculate UB matrix. 

These X-ray diffractions were measured at room temperature (RT). 

III. Results  

Table 1. shows the chemical components of the samples measured by XRF and TGA. 

As shown in Table 1., we found that samples grown with the standard method (sample 

I) contain iron vacancies of more than 10%. The samples grown with excess iron have 

iron vacancies less than 3%. We estimated the oxygen concentration of all the samples 

from TGA and XRF data as shown in Table 1. The ratio of Fe2+ and Fe3+ was 

independent to Fe2O3/Yb2O3 ratio. We also carried out Mössbauer spectroscopy to 

confirm the TGA result.  

Figure 1. shows the reciprocal space picture near superlattice spots (1/3 1/3 L) taken 

with IP oscillation camera. The sample I has diffuse scattering along (1/3 1/3 L) where 

L is continuous. In sample II, superlattice spots (1/3 1/3 0.5+n) and incommensurate 

modulation (1/3+δ 1/3+δ n) for (δ~0.03) where n is integer were observed. Sample II 

result is consistent with previous reports [7-8]. On one hand, the most stoichiometric 

sample (sample III) which has long magnetic coherence length showed new extinction 

rule expressed as (1/3 1/3 1.5n) where n is integer. No incommensurate modulation was 

observed on this sample III. 

To measure the extinction rule of sample III, we observed the reciprocal space with 4-

circle diffractometor. Figure 2 (a-c) shows reciprocal mapping of (1/3 1/3 L), (1/3 -2/3 

L) and (2/3 -1/3 L) of this crystal respectively. The extinction rules of L were (1/3 1/3 

1.5n), (1/3 -2/3 0.5+1.5n) and (2/3 -1/3 1+1.5n). We also observed (-1/3 -1/3 L), (-1/3 



2/3 L) and (-2/3 1/3 L). These data are summarized in Figure 2(d). In the figure, the 

extinction rule found on this material is summarized in red, green and blue circle 

indicates L = 1.5n, 0.5 + 1.5n and 1 + 1.5n, respectively. As shown in the figure, a 

mirror symmetry was found in the reciprocal space of this crystal (in Red line). The 

observed symmetries are categorized 2/m in Laue class. The Laue classes correspond to 

the eleven centrosymmetric crystallographic point groups. Considering Friedel's pair, it 

is difficult to distinguish by diffraction between a centrosymmetric point group and 

non-centrosymmetric subgroups. 

IV. Discussion  

As described above, the space group and the ground state of the CO have not yet been 

established. As this stoichiometric crystal has long charge coherence, the simple 

extinction rule of superlattice spots demonstrated mono domain nature of charge 

ordering. So we analyzed this extinction rule to derive the CO model. It is known that 

the symmetry of high temperature phase is R-3m. From this, the CO phase should be a 

subgroup of R-3m. Laue class of 2/m consists of 22 space groups and three point groups 

(2, m, 2/m). In the 22 space groups C2, Cm and C2/m are selected since they are 

subgroup of R-3m and compatible with the wave structure of (1/3 1/3 0) in hexagonal 

structure. So we started to examine these three space group to derive the CO models. 

At first, we noticed the extinction rule of space group for C2, Cm and C2/m, they are h 

+ k = 2 n. Adapting this extinction rule to the observed one, the base vector in the 

reciprocal space are derived as   
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Here, the reciprocal lattice is denoted by base vectors as 𝑎ℎ
∗⃗⃗⃗⃗ , 𝑏ℎ

∗⃗⃗⃗⃗ , 𝑐ℎ
∗⃗⃗  ⃗ in hexagonal setting. 

Then we can obtain the lattice constants from the base vectors in reciprocal space as 

given  
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Where, 𝑎ℎ
 ⃗⃗⃗⃗ , 𝑏ℎ

 ⃗⃗⃗⃗ , 𝑐ℎ
 ⃗⃗  ⃗ is the unit cell vectors in hexagonal setting. 

The lattice constants derived uniquely were  a = 5.984Å,  b = 10.365Å, c = 16.702Å, 

α = γ ＝ 90, β = 96.80, which indicates a monoclinic unit cell. This is the unit cell of the 

charge ordered superlattice.  

   Next, we check the symmetry operation. C2 has 2-fold rotation in 0 y 0, and Cm has 

mirror in x, 0, z. And C2/m has both symmetry operations. From these restriction, 2 type 

of the unit cell are derived as shown in Figure 3. One unit cell has its center at the center 

of U-layer. Another cell locates it at the center of W-layer. 

   Then we consider the possible CO models by setting Fe2+ and Fe3+ on the Fe-site in 

these unit cells. In order to build the charge order model, we considered three conditions 

as follows, 1) the asymmetric minimum unit in C2, Cm and C2/m symmetry has 6, 8 

and 4 iron positions, respectively. 2) And the charge neutrality requires to put equal 

amount of Fe2+ and Fe3+ into the sites. 3) The arrangement of Fe2+ and Fe3+ need to 

form the wave structure of (1/3 1/3 0) in reciprocal space. Considering these conditions 

24 possible CO models were derived. (Cm has 4 patterns, C2 has 18 patterns and C2/m 

has 2 patterns) 

In these 24 CO models, there are some identical patterns. Finally, 5 independent CO 



models were derived as shown in Figure 4. We mention that the electric polarization is 

found in all but one model, as demonstrated in Table.2. The A-C models have a local 

electric polarization in the W-layer. Only model A has a macroscopic electric 

polarization along c-axis in hexagonal system. The model B has a macroscopic electric 

polarization along [1 1 0]h. The model C is anti-ferroelectric and does not have a 

macroscopic electric polarization. On one hand, models D, E have no local electric 

polarization in W-layer. The model D has a macroscopic electric polarization along [1 1 

0]h. The model E has no electric polarization. The E is identical to the model proposed 

by Groot et al. [8]. 

Thus, the simple extinction rule of the superlattice spots found in the iron stoichiometric 

sample leads to 5 possible models for the ground state of the charge ordering. This 

result shows the importance of chemical stoichiometry, especially for the iron ion. This 

is the first report on the CO model of RFe2O4, which is derived from the direct 

observation of superlattice extinction rule. It is considered that the complex extinction 

rule as reported in previous reports, like (1/3 1/3 0.5+n) where n is integer, might be 

come from the mixed state of CO domain. In order to narrow down these 5 CO models 

to one exact model, some experimental approaches are possible. One is the direct 

observation of electric polarization. If the CO structure belong to space group Cm or 

C2, this material is ferroelectric, which can be distinguished with P-E hysteresis loop or 

pyro-electric current observation. Another possible approach is the direct observation of 

the CO model with the combined method of diffraction experiment and Mössbauer 

spectroscopy, which possibly can distinguish the structure factor and the contribution of 

each iron ions. Now we are starting a trial experiment of the Mössbauer diffraction 

using synchrotron light source at BL11XU in Spring-8 (2015B3511).  



V. Summary 

We derived five possible CO models of triangular iron charge order material YbFe2O4. 

A crystal having mono domain state of charge ordering was synthesized with 

suppressing the iron vacancy. A highly stoichiometric sample has a new and simple 

extinction rule of the superlattice signal as (1/3 1/3 1.5n), where n is integer, and the 

signal has Laue class of 2/m. Considering the reflection condition, we derived lattice 

constants and 5 possible CO models deductively for the first time. 
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Table 1. Chemical stoichiometry of samples. 

Sample Fe2O3/Yb2O3 ratio Fe/Yb ratio by XRF Average of Fe valence 

I 2.00 1.79±0.02 2.541 

II 2.05 1.85±0.02 2.584 

III 2.20 1.95±0.02 2.523 

 

  



Table 2. Electric polarization and space group of CO models. 

CO model Space group Direction of polarization Local polarization in W-layer 

A Cm [ 1 -1 2 ]h ◯ 
B C2 [ 1 1 0 ]h ◯ 
C C2/m None ◯ 
D C2 [ 1 1 0 ]h ☓ 

E C2/m None ☓ 

 

  



Figure 1. The reciprocal lattice mapping of each samples by X-ray oscillation 

photography. Sample I shows diffused line. Sample II shows conventional reflection 

described as (1/3 1/3 0.5+n). Sample III has a new simpler extinction rule described as 

(1/3 1/3 1.5n) 

 

  



Figure 2. The extinction rule of sample III in reciprocal space. Fig (a-c) is line scans for 

(1/3 1/3 L), (1/3 -2/3 L) and (2/3 -1/3 L), respectively, detected with a four-circle 

diffractometer. (d) Summary of the observed extinction rules depicted on a*-b* plane. 

Red, green and blue circle indicate L component of (1/3 1/3 L) scan for L= 1.5n, 0.5 + 

1.5n and 1 + 1.5n, respectively. A mirror symmetry in reciprocal space is indicated in 

Red line. 

 

  



Figure 3. The derived monoclinic unit cells. (a) Unit cell center is located at the center 

of Yb layer (so-called U-layer). (b) Unit cell center is located at the center of W-layer. 

 

  



Figure 4. The CO models we derived. The blue block vector represents a local electric 

polarization. 

 


