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Abstract

Uncertain information on input parameters of reliability models is usually modeled
by considering these parameters as random, and described by marginal distributions
and a dependence structure of these variables. In numerous real-world applications,
while information is mainly provided by marginal distributions, typically from sam-
ples, little is really known on the dependence structure itself. Faced with this problem
of incomplete or missing information, risk studies are often conducted by consider-
ing independence of input variables, at the risk of including irrelevant situations.
This approach is especially used when reliability functions are considered as black-
box computational models. Such analyses remain weakened in absence of in-depth
model exploration, at the possible price of a strong risk misestimation. Considering
the frequent case where the reliability output is a quantile, this article provides a
methodology to improve risk assessment, by exploring a set of pessimistic dependen-
cies using a copula-based strategy. In dimension greater than two, a greedy algorithm
is provided to build input regular vine copulas reaching a minimum quantile to which
a reliability admissible limit value can be compared, by selecting pairwise components
of sensitive influence on the result. The strategy is tested over toy models and a real
industrial case-study. The results highlight that current approaches can provide non-
conservative results, and that a nontrivial dependence structure can be exhibited to
define a worst-case scenario.

1 Introduction

Many industrial companies, like energy producers or vehicle and aircraft manufacturers,
have to ensure a high level of safety for their facilities or products. In each case, the struc-
tural reliability of certain so-called critical components plays an essential role in overall
safety. For reasons related to the fact that these critical components are highly reliable,
and that real robustness tests can be very expensive or even hardly feasible, structural
reliability studies generally use simulation tools [16,36]. The physical phenomenon of in-
terest being reproduced by a numerical model η (roughly speaking, a computer code), such
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studies are based on the calculation of a reliability indicator based on the comparison of
y = η(x) and a safety margin, where x corresponds to a set of input parameters influencing
the risk. In the framework of this article, such models are considered as black box and
can be explored only by simulation means.

While the problems of checking the validity of η and selecting inputs x ∈ χ ⊆ Rd are
addressed by an increasing methodological corpus [4,13], a perennial issue is the modeling
of x. Differing from the specification of η itself, this input vector is known with uncer-
tainty, either because the number of experiments to estimate is limited, or because some
inputs reflect intrinsically variable phenomena [52]. In most cases, these epistemic and
aleatory uncertainties are jointly modeled by probability distributions [28]. Consecutively,
the reliability indicator is often defined as the probability that y be lower than a threshold
(failure probability), or a limit quantile for y. This article focuses on this last indica-
tor, which provides an upper or lower bound of the mean effect of the output variable
uncertainty.

Therefore the modeling of x stands on the assessment of a joint probability distribution
with support χ, divided between marginal and dependencies features. Though information
on each dimension of x can often be accessible experimentally or using physical or expert
knowledge [8], the dependence structure between the component of x remains generally
unknown. Typically, statistical data are only available per dimension, but not available
for two or more dimensions simultaneously. For this reason, most of robustness studies
are conducted by sampling within independent marginal distributions. Doing so, reliabil-
ity engineers try to capture input situations that minimize the reliability indicator. Such
situations are defined as so-called worst cases. However, the assumption of independence
between inputs has been severely criticized since the works by [25] and [55], who showed
that output failure probabilities of industrial systems can significantly vary and be under-
estimated if the input dependencies are neglected. More generally, [53,54] showed that tail
dependencies between inputs can have major expected effects on the uncertainty analysis
results.

Returning to a probabilist framework, and beyond structural reliability, the problem of
defining a worst-case scenario by selecting a joint input distribution, from incomplete in-
formation, is a topical issue encountered in many fields. In decision-making problems,
[49] proposed a general definition of the worst case distribution as the minimizer of an
excepted cost among a set of possible distributions. More recently, [3] extended this ap-
proach to account for incomplete dependence information. These theoretical works, that
propose selection rules over the infinite set of all possible joint distributions, remain hard
to apply in practice. Recent applied works made use of copulas [43] to model dependencies
between stochastic inputs [53,54], following other researchers confronted to similar prob-
lems in various fields: finance [12], structural safety [24], environmental sciences [50] or
medicine [5]. These studies mainly consider bivariate copulas, which makes theses analysis
effective only when two random variables are correlated. Cases where a greater number
of variables is involved were explored by [31], who used vine copulas to approach complex
multidimensional correlation problems in structural reliability. A vine copula is a graphi-
cal representation of the pair-copula construction (PCC), proposed by [33], which defines a
multidimensional dependence structure using conditional bivariate copulas. Various class
of vines exist (see [15] for a review), and among them the regular vines (R-vines) intro-
duced by [6,7] are known for their appealing computational properties, while inference on
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PCC is usually demanding [18,27].

R-vine parametric copulas seem promising to improve the search for a worst-case depen-
dence between stochastic inputs, while keeping the benefits of a small number of param-
eters, as favoring inference and conducting simple sensitivity analyses a posteriori. To
our knowledge, however, no practical methodology has been yet proposed to this end for
which the notion of worst case is defined by the minimization of an output quantile. This
is the subject of this article. More precisely, the aim of this research is to determine a
parametric copula over x, close to the worst case dependence structure, which is associ-
ated to a minimum value of the quantile of the distribution of y. Given a vine structure
defined by a parameter vector, the optimization problem involves to conduct empirical
quantile estimations for each value of this vector in a finite set of interest (chosen as a
grid). The proposed methodology stands on an encompassing greedy algorithm exploring
copula structures, which integrates several sub-algorithms of increasing complexity and
is based on some simplifying assumptions. These algorithms are made available in the
Python library dep-impact [9].

The article is therefore organized as follows. Section 2 introduces the framework and
studies the consistency of a statistical estimation of the minimum quantile, given an input
copula family and a growing sequence of grids. A preliminary study of the influence of
the dependence structure, specific to quantile minimization, is conducted in Section 3 as
a first application of this statistical optimization. The wider problem of selecting copulas
in high-dimensional settings using a sequence of quantile minimization is considered in
Section 4. While the choice of R-vines is defended, a sparsity hypothesis is made to
diminish the computational burden, according to which only a limited number of pairwise
dependencies is influent on the result. A greedy algorithm is proposed to carry out the
complete procedure of optimization and modeling. This heuristic is tested in Section 5
over toy examples, using simulation, and a real industrial case-study. The results highlight
that worst-case scenarios produced by this algorithm are often bivariate copulas reaching
the Fréchet-Hoeffding bounds [22,29] (describing perfect dependence between variables),
as it could be expected in monotonic frameworks, but that other nontrivial copulas can be
exhibited in alternative situations. Results and avenues for future research are extensively
discussed in the last section of this article. We also refer to Appendix A and B for
supplementary material on consistency proofs, on R-vine copulas and on R-vine iterative
construction.

2 Minimization of the quantile of the output distribution

This section introduces a general framework for the calculation of the minimum quantile
of the output distribution of a computational model, when the input distribution can be
taken from a large family of distributions, each one corresponding to a particular choice
of dependencies between the input variables.
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2.1 A general framework for the computation of the minimum quantile

To be general, let us consider a computer code which takes a vector x ∈ χ ⊆ Rd as an
input and produces a real quantity y in output. This code is represented by a deterministic
function η : Rd → R such that η(x) = y. The sets R and Rd are endowed with their Borel
sigma algebras and we assume that η is measurable. The general expression of the function
η is unknown but for some vector x ∈ Rd it is assumed that the quantity η(x) can always
be computed. In particular, the derivatives of η, when they exist, are never assumed to
be known. Let P1, . . . , Pd be a fixed family of d distributions, all supported on R. We
introduce the set D(P1, . . . , Pd) of all multivariate distributions P on Rd such that the
marginal distributions of P are all equal to the (Pj)j=1...d. Henceforth, we use the shorter
notation D for D(P1, . . . , Pd).

For some P ∈ D, let G be the cumulative distribution function of the model output. In
other terms dG is the push-forward measure of P by η. For α ∈ (0, 1), let G−1 be the
α-quantile of the output distribution:

G−1(α) := inf{y ∈ R : G(y) ≥ α}. (1)

For the rest of this document, we denote as output quantile the α-quantile of the output
distribution.

In many real situations, the function η corresponds to a known physical phenomenon.
The input variables x of the model are subject to uncertainties and are quantified by
the distribution P . The propagation of these uncertainties leads to the calculation of the
output quantile, which defines an overall risk. Due to the difficulties to gather information,
it is common to have this distribution incompletely defined and only known through its
marginal distributions. Therefore, the set D corresponds to all the possible distributions
that are only known through their marginal distributions (Pj)j=1...d. In a reliability study,
it is essential to avoid underestimating the risk. In such a situation, we might consider
a more pessimistic computation of the quantile. We define as the worst quantile, the
minimum value of the quantile by considering all the possible input distributions P ∈ D.
This conservative approach consists in minimizing G−1(α) over the family D such as

G−1?(α) := min
P∈D

G−1(α). (2)

Since the function η has no closed form in general, it is not possible to give a simple
expression of G−1(α) in function of the distribution P , and consequently the minimum
G−1?(α) does not have a simple expression too. In this paper we propose to study a simpler
problem than (2), by minimizing G−1(α) over a subset of D. This subset is a family of
distributions (Pθ)θ∈Θ associated to a parametric family of copula (Cθ)θ∈Θ, where Θ is a
compact set of Rp and p is the number of copula parameters.

2.2 Copula-based approach

We introduce the real-values random vector X = (X1, . . . , Xd) ∈ Rd associated to the
distribution Pθ. Each component Xj , for j = 1, . . . , d, is a real-value random variable with
distribution Pj . A copula describes the dependence structure between a group of random
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Figure 1: Illustration of the link between the dependence parameter θ and the quantile function
G−1

θ . The joint CDF Fθ is obtained using (3) from a copula Cθ and marginal CDF’s (Fj)d
j=1. The

push-forward of Fθ through the model η leads to the CDF Gθ and quantile function G−1
θ of the

output distribution.

variables. Formally, a copula is a multidimensional continuous cumulative distribution
function (CDF) linking the margins of X to its joint distribution. Sklar’s Theorem [51]
states that every joint distribution Fθ associated to the measure Pθ can be written as

Fθ(x) = Cθ (F1(x1), . . . , Fd(xd)) , (3)

with some appropriate d-dimensional copula Cθ with parameter θ ∈ Θ and the marginal
CDF’s Fj(xj) = P[Xj ≤ xj ]. If all marginal distributions are continuous functions, then
there exists an unique copula satisfying

Cθ(u1, . . . , ud) = Fθ(F−1
1 (u1), . . . , F−1

d (ud))

where uj = Fj(xj). For Fθ absolutely continuous with strictly increasing marginal distri-
butions, one can derive (3) to obtain the joint density of X:

fθ(x) = cθ (F1(x1), . . . , Fd(xd))
d∏
j=1

fj(xj), (4)

where cθ denotes the copula density function of Cθ and fj(xj) are the marginal densities
of X. Numerous parametric copula families are available and are based on different de-
pendence structures. Most of these families have bidimensional dependencies, but some
can be extended to higher dimensions. However, these extensions have a lack of flexibility
and cannot describe all types of dependencies [43]. To overcome these difficulties, tools
like vine copulas [32] (described in Section 4) combine bivariate copulas, from different
families, to create a multidimensional copula.

Let Gθ and G−1
θ be respectively the CDF and quantile function of the push-forward dis-

tribution of Pθ by η (see Figure 1). For a given parametric family of copula (Cθ)θ∈Θ and
a given α ∈ (0, 1), the minimum output quantile for a given copula is defined by

G−1
C

?(α) := inf
θ∈Θ

G−1
θ (α) (5)

and if it exists, we consider a minimum

θ∗C ∈ argmin
θ∈Θ

G−1
θ (α). (6)

We call this quantity the minimum quantile parameter or worst dependence structure.

Note that there is no reason for G−1
θ (α) to be a convex function of θ. The use of gradient

descent algorithms is thus not straightforward in this context. Moreover, the gradient of
θ → G−1

θ is unknown and only zero-order optimization methods can be applied to solve
(6). For this reason, in the following of this section, we analyze the basic approach which
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consists in estimating θ∗C by approximating Θ with a finite regular grid ΘN of cardinality
N . Therefore, for a given parametric copula (Cθ)θ∈Θ and a given α ∈ (0, 1), we restrict
the problem (6) to

θ∗N ∈ argmin
θ∈ΘN

G−1
θ (α). (7)

2.3 Estimation with a grid search strategy

In the restricted problem (7), the greater N , the closer θ∗N to the minimum θ∗ of Θ; ob-
viously the convergence rate should depend on the regularity of the function η and on the
regularity of the quantile function θ 7→ G−1

θ (α). Because η has no closed form, the quan-
tile function G−1

θ (α) has no explicit expression. The minimizer θ∗N can be estimated by
coupling the simulation of independent and identically distributed (i.i.d) data (Y1, . . . , Yn),
defined as realizations of the model output random variable Y := η(X) with distribution
dGθ, with a minimization of the empirical quantile over ΘN .

For θ taking a value over the grid ΘN , the empirical CDF of Y is defined for any y ∈ R
by

Ĝθ(y) = 1
n

n∑
i=1

1Yi≤y. (8)

The corresponding empirical quantile function Ĝ−1
θ (α) is defined as in (1) by replacing

G with its empirical estimate. For a given α, the worst quantile on the fixed grid ΘN is
given by

min
θ∈ΘN

G−1
θ (α).

and can be estimated by replacing the quantile function with its empirical function:
min

θ∈ΘN

Ĝ−1
θ (α). (9)

Finally the estimation of the minimum quantile parameter over the grid ΘN is denoted
by

θ̂N = argmin
θ∈ΘN

Ĝ−1
θ (α). (10)

The construction of the grid ΘN can be difficult because Θ can be unbounded (e.g.
Θ = [1,∞] for a Gumbel copula). To tackle this issue, we chose to construct ΘN among a
normalized space using a concordance measure, which is bounded in [−1, 1] and does not
rely on the marginal distributions. We chose the commonly used Kendall rank correlation
coefficient (or Kendall’s tau) [34] as a concordance measure to create this transitory space.
This non-linear coefficient τ ∈ [−1, 1] is related to the copula function as follows:

τ = 4
∫ 1

−1

∫ 1

−1
Cθ(u1, u2)dC(u1, u2)− 1.

For many copula families, this relation is much more explicit (see for instance [23]). There-
fore, the finite grid is created among [−1, 1]p and each element of this grid is converted to
the copula parameter θ. Moreover, the use of concordance measures gives a normalized
expression of the strength of dependencies for all pairs of variables, independently of the
used copula families.

The consistency of estimators (9) and (10) is studied in next section, under general regu-
larity and geometric assumptions on η and the functional θ 7→ Pθ.
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2.4 Consistency of worst quantile-related estimators

In this section, we give consistency results of the estimators minθ∈ΘN
Ĝ−1

θ (α) and θ̂N ,
for a growing sequence of grids on the domain Θ. For easier reading, we skip some
definitions needed for our assumptions. Section A in Appendix provides a more complete
presentation, including the formal definition of the modulus of increase of the quantile
function.

Let α be a fixed value in (0, 1). To approximate Θ, we consider a sequence of finite discrete
grids (ΘN )N≥1 on Θ where N is the cardinal of ΘN and such that

sup
θ∈Θ, θ′∈ΘN

‖θ − θ′‖2 → 0 as N tends to infinity. (11)

We first introduce technical hypotheses required for the consistency result which are com-
mented further in the text.

Assumption A. For all θ ∈ Θ, the distribution Pθ admits a density fθ for the Lebesgue
measure and the copula Cθ admits a density cθ for the Lebesgue measure on [0, 1]d such
that

Θ× [0, 1]d −→ R

θ × (x1, . . . , xd) −→ cθ(x1, . . . , xd)

is a continuous function.

Assumption B. For all θ ∈ Θ, Gθ is a continuous function.

Assumption C. For all θ ∈ Θ, Gθ is strictly increasing and the modulus of increase of
Gθ at G−1

θ (α) is lower bounded by a positive function εΘ.

Assumption D. There exists an unique θ∗ ∈ Θ minimizing θ 7→ G−1
θ (α).

Let (Nn)n≥1 be a sequence of integers such that Nn . nβ for some β > 0. For every
n ≥ 1 we consider the grid ΘNn and for every θ ∈ ΘNn we compute the empirical quantile
Ĝ−1

θ (α) from a sample of n i.i.d variables Y1, . . . , Yn with Yi = η(Xi), where the X′is are
i.i.d. random vectors with distribution Pθ. We then introduce the extremum estimator

θ̂ := θ̂Nn . (12)

Theorem 1. Under Assumptions A, B and C, for all ε > 0 we have

P
(∣∣∣Ĝ−1

θ̂
(α)−G−1

C
?(α)

∣∣∣ > ε
)

n→∞−−−→ 0. (13)

Moreover, if Assumption D is also satisfied, then for all h > 0 we have

P[|θ̂ − θ∗C | > h] n→∞−−−→ 0

(proof given in Appendix A).

It would be possible to provide rates of convergence for this extremum quantile and for
θ? at the price of more technical proofs, by considering also the dimension metric of the
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G (G 1( ))
G (G 1( ) + )
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g (G 1( ) )
g (G 1( ))
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Figure 2: Pre-image (left) and image (right) of a modulus of increase of Gθ at the point G−1
θ (α)

for a deviation ±δ.

domain Θ and the modulus of increase of the function θ 7→ Gθ(α) (see for instance the
proofs of Theorems 1 and 2 in [11] for an illustration of such computations). It would
be also possible to derive similar results for alternative extremum quantities. One first
example, useful in many applications, would be to estimate some risk probability by
determining an extremum infθ∈ΘGθ(y) of the CDF for a fixed y.

This consistency result could also be extended for regular functional of Gθ or G−1
θ , such

that
inf

θ∈Θ

∫
y≥y0

Gθ(y)dy or inf
θ∈Θ

∫
α≥α0

G−1
θ (α)dy,

for some fixed values y0 and α0. Extending our results for such quantities is possible
essentially because the Dvoretsky-Kiefer-Wolfowitz (DKW) inequality [19], used in the
proof, gives an uniform control on the estimation of the CDF and the quantile function.

We now discuss the three first assumptions and provide some geometric and probabilistic
interpretations of them. Assumption A requires some regularity of the input distribution
with respect to θ. This is indeed necessary to locate the minimum of the quantile. As-
sumption B and C ensure that the output quantile function G−1

θ has a regular behavior in
a neighborhood of the computed quantile G−1

θ (α). Assumption B ensures that the output
distribution dGθ has no Dirac masses whereas Assumption C ensures that there is no area
of null mass inside the domain of dGθ.

Figure 2 illustrates Assumption B with a possible configuration of the input distribution.
For θ ∈ Θ an δ > 0, we consider a small neighborhood [G−1

θ (α)−δ,G−1
θ (α)+δ] of G−1

θ (α),
and the pre-image of this neighborhood. The two right figures are the CDF Gθ (top) and
PDF gθ (bottom) of the output variable Y for a given θ. The figure at the left hand
represents the contours of the pre-image in the input space. The red plain line is the level
set η−1(G−1

θ (α)) and the dot blue line is the perturbed level set η−1(G−1
θ (α) ± δ)). The

blue area in the right figure corresponds to [G−1
θ (α)− δ,G−1

θ (α) + δ] and the pre-image of
this neighborhood is the blue area in the left figure. Assumption B requires that the mass
of the blue domain is lower bounded by a positive function εΘ(δ) that does not depend
on θ.
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It is possible to give sufficient conditions on the input distribution Fθ and on the geometry
of the code η to obtain Assumptions B and C. Using the definition of the modulus of
continuity from Equation (A.1) in Appendix, it comes

εGθ
(δ,G−1

θ (α)) = max
[∫
{G−1

θ
(α)≤g≤G−1

θ
(α)+δ}

fθ(x)dλ(x);
∫
{G−1

θ
(α)−δ≤g≤G−1

θ
(α)}

fθ(x)dλ(x)
]

≥
∫
{G−1

θ
(α)≤g≤G−1

θ
(α)+δ}

fθ(x)dλ(x)

Assume that the code η is a Lipschitz and differentiable function with no null derivatives
almost everywhere in the neighborhood of G−1

θ (α). Then, using the coarea formula (see
for instance [21], Section 3.4.4, Proposition 3), we find that

εGθ
(δ,G−1

θ (α)) ≥
∫ G−1

θ
(α)+δ

G−1
θ

(α)

[∫
η−1{u}

fθ

‖∇η‖
dHd−1

]
du,

where Hd−1 is the d − 1 dimensional Hausdorff measure (see for instance Chapter 2 in
[21]). If the copula and the code are such that there exists a constant I such that for any
θ ∈ Θ and any u in the support of dGθ∫

η−1{u}
fθ dHd−1 ≤ I,

then we find that
εGθ

(δ,G−1
θ (α)) ≥ δ I

‖∇η‖∞
.

Note that ‖∇η‖∞ < ∞ since η is assumed to be Lipschitz. We have proved that As-
sumption C is satisfied in this context. Finally, by rewriting again the co-area formula
for Gθ(y), we find that Assumption B is satisfied as soon as the set of stationary points
(‖∇η(x)‖ = 0) of all level set η−1{u} has null mass for the Hausdorff measure.

In conclusion, we see that for smooth copulas, Assumptions C and B mainly depend on
the regularity of the code, by requiring on one side that η does not oscillate to much and
on the other side that the set of stationary points does not have a positive mass on the
level sets of η.

3 A preliminary study of the copula influence on quantile
minimization

This section is dedicated to a preliminary exploration of the influence of copula structure
on the behavior of the worst quantile, illustrated with toy examples. Especially, while it
could be expected that G−1

θ (α) is a monotonic function with θ, and that the minimum
can be reached for a trivial copula (i.e., reaching the Fréchet-Hoeffding bounds). Our
experiments show that this behavior is not systematic.

3.1 About the copula choice

One of the most common approaches to model the dependence between random variables
is to assume linear correlations feeding a Gaussian copula. In this case, the problem is
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reduced by determining the correlation matrix of X that minimizes G−1
θ (α). However, the

positive semi-definite constraint on the correlation matrix makes the exploration difficult
and the minimization harder when the problem dimension increases. Moreover, such a
Gaussian assumption is very restrictive and is inappropriate for simulating heavy tail
dependencies [37]. Still in this elliptical configuration, the t-copulas [17] can be used
to counterpart these problems. Nevertheless, tail dependencies are symmetric and with
equal strengths for each pair of variables. Another alternative is to consider multivariate
Archimedean copulas [40] which are great tools to describe asymmetric tail dependencies.
However, only one parameter governs the strength of the dependence among all the pairs,
which is very restrictive and not flexible in high dimension. For a same correlation measure
between two random variables, multiple copulas can be fitted and lead to a different
distribution of Y .

It is clear that the copula choice of X has a strong impact on the distribution of Y (see
for instance [53]). Therefore, various copula types should be tested to determine the most
conservative configuration. In the following, we may consider a flexible approach setting
by modeling the input multivariate distribution using regular vine copulas (R-vines). The
necessary basics of R-vines are introduced in Section 4.1 and detailed in Appendix 1.

3.2 About the monotony of the quantile

For many simple case studies case studies, the worst quantile is reached for perfect depen-
dencies (Fréchet-Hoeffding bounds). More generally, when the function has a monotonic
behavior with respect to many variables, it is likely that the minimum output quantile is
reached at the boundary of Θ. This phenomenon is observed for various physical systems.

To illustrate this phenomenon, we consider a simplified academic model that simulates
the overflow of a river over a dike that protects industrial facilities. The river overflow S
is described by

S = Hd + Cb − Zv −H with H =

 Q

BKs

√
Zm−Zv

L

0.6

, (14)

such as, when S < 0, a flooding occurs. The involved parameters of (14) are physical
characteristics of the river and the dike (e.g., flow rate, height of the dike) which are
described by random variables with known marginal distributions. See [30] for more
information. For a given risk α, we aim at quantifying the associated overflow’s height
describe by the α-quantile of S. We extend this model by supposing that the friction
(Strickler-Manning) coefficient Ks and the maximal annual flow rate Q are dependent
with an unknown dependence structure. To show the influence of a possible correlation
between Ks and Q on the quantile of S, we describe their dependence structure with
multiple copula families.

The Figure 3 shows the variation of the estimated quantile of S (with a large sample size)
in function of the Kendall coefficient τ between Ks and Q for different copula families. We
observe different slopes of variation for the different copula families, with lower quantile
values for the copulas with heavy tail dependencies (i.e., Clayton, Joe). At independence
(τ = 0) and for the counter-monotonic configuration (τ = −1),the quantile values of these
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Figure 3: Variation of the quantile of the overflow distribution with the Kendall coefficient τ for
α = 95% and different copula families (Gaussian, Clayton, Gumbel and Joe).

families are obviously equivalent. This variation is slight and the quantile is still above
zero, but this shows how the dependencies can influence the results of a reliability problem.
This illustration shows that the minimum is reached at the boundary of the exploration
space, where the two variables are perfectly correlated.

We can take advantage of this observation to speed up the algorithms presented in the next
sections by exploring only the boundaries of Θ. However, assuming that the minimum
is reached on the boundary of Θ is a strong assumption that can be unsatisfied in some
applications. See Fallacy 3 of [20] for a highlight of this pitfall.

To illustrate this statement, we now give a counter example in the bidimensional setting.
We assume uniform marginal distributions for the input such that X1 ∼ U(−3, 1) and
X2 ∼ U(−1, 3), and we consider the model function

η(x1, x2) = 0.58x2
1x

2
2 − x1x2 − x1 − x2. (15)

The same experience as for Figure 3 is established and the results are shown in Figure
4. The slopes of the quantile estimations with the Kendall coefficient, for each copula
families, are quite different than the results of Figure 3. We observe that the quantile
is not monotonic with the Kendall coefficient and its minimum is not reached at the
boundary, but for τ ≈ 0.5. Moreover, the Gaussian copula is the family that minimizes
the most the quantile. It shows that copula with tail dependencies are not always the
most penalizing.

A second example, inspired from Example 6 of [20], also shows that the worst case depen-
dence structure in an additive problem is not necessary for perfectly correlated variables.
We consider a simple portfolio optimization problem with two random variables X1 and
X2 with generalized Pareto distributions such as F1(x) = F2(x) = x

1+x . We aim at maxi-
mizing the profit of the portfolio, which is equivalent as minimizing the following additive
model function

η(X1, X2) = −(X1 +X2). (16)
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Figure 4: Variation of the output quantile with the Kendall coefficient τ for α = 5% and different
copula families (Gaussian, Clayton, Gumbel and Joe).

We consider the median (α = 0.5) of the output as an efficiency measure. The Figure 5
shows the output median in function of the Kendall coefficient τ between X1 and X2. Just
like the previous example, we observe a non-monotonic slope of the median in function of
τ . The variation can be significant and the minimum is obtained at τ ≈ 0.53 for the heavy
tail copula families (i.e., Clayton and Joe). The phenomenon can be explained by the
marginal distributions of the random variables, which are close Pareto distributions. A
large correlation seems to diminish the influence of the tails, which gives a higher quantile
value. This explains why the minimum is obtained for a dependence structure other that
independence or the perfect dependence.

Therefore, these examples show that the worst quantile can be reached for other configu-
rations than the perfect dependencies.

4 Quantile minimization and choice of penalized correlation
structure

This section first provides a rationale for choosing the so-called R-vine structure as a
preferential copula structure for modeling the variety of correlations between inputs. Then,
the search for a minimum quantile is presented in two times. Subsection 4.2 proposes
an exhaustive grid-search algorithm for estimating this quantile when the R-vine copula
structure is fixed with a given pair-copula families and indexed by the parameter vector
θ. Subsection 4.3 extends this rigid framework by permitting the search of particular
sub-copula pairwise structures, such that the minimization be more significant. In each
situation, examples are provided to demonstrate the feasibility of the approach.
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Figure 5: Variation of the portfolio median with the Kendall coefficient τ for different copula
families.

4.1 A rationale for R-vine copula structures

Representing multi-dimensional dependence structures in high dimensional settings is a
challenging problem. For the following definition, we simplify the expressions by omitting
the use of θ: f = fθ, F = Fθ and c = cθ. By recursive conditioning, the joint density can
be written as a product of conditioning distributions such as

f(x1, . . . , xd) = f1(x1) · f2|1(x2|x1) · f3|1,2(x3|x1, x2) · · · fd|1,2,...d−1(xd|x1, x2, . . . , xd−1).
(17)

For clarity reason, we now simplify the expression with f3|1,2 = f3|1,2(x3|x1, x2) and so on
for other orders. From (4), the conditioning densities of (17) can be rewritten as products
of conditioning copula and marginal densities. For example, in a case of three variables
and using (17), one possible decomposition of the the joint density can be written as

f(x1, x2, x3) = f1 · f2|1 · f3|1,2. (18)

Using (4), the reformulation of f3|1,2 leads to

f3|1,2 =
f1,3|2
f1|2

=
c1,3|2 · f1|2 · f3|2

f1|2
= c1,3|2 · f3|2 (19)

where c1,3|2 = c1,3|2(F1|2(x1|x2), F3|2(x3|x2)). By developing f3|1,2 in the same way, we find
that

f3|1,2 = c1,3|2 · c2,3 · f3. (20)

Thus, by replacing the expression of f3|1,2 in (18) and doing the same procedure for f2|1,
the joint density can be written as

f(x1, x2, x3) = f1 · f2 · f3 · c1,2 · c2,3 · c1,3|2. (21)

This final representation of the joint density based on pair-copulas has been developed in
[33] and is called the pair-copula construction (PCC). The resulting copula represented
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by the product of conditional copulas in (21) offers a very flexible way to construct high-
dimensional copulas. However, it is not unique; indeed, (17) has numerous decomposition
forms and it increases with the dimension.

To describe all such possible constructions in an efficient way, [6,7] introduced the vine
models. This graphical tool, based on a sequence of trees, gives a specific way to decompose
the multivariate probability distribution. Basically, a vine model is defined by

• a structure of trees which can be represented by a matrix [41],

• a copula family for each pair of the structure,

• a parameter for each pair-copula.

A R-vine is the general construction of a vine model, but particular cases exists such as
the D-vines and C-vines, described in Appendix B. Vine models were deeply studied in
terms of density estimation and model selection using maximum likelihood [2], sequential
estimation [18,35], truncation [1] and Bayesian techniques [26]. Their popularity and well-
known flexibility led us to use R-vines in this article, despite the fact that in our context
we are looking for a conservative form and not to select the most appropriate form with
given data, in absence of correlated observations.

4.2 Estimating a minimum quantile from a given R-vine

4.2.1 Grid-search algorithm

Let Ω = {(i, j) : 1 ≤ i, j ≤ d} be the set of all the possible pairs of X, in a d-dimensional
problem. The number of pairs p is associated to the size of Ω such as p = |Ω| =

(d
2
)

=
d(d − 1)/2. We define V as the vine structure and we consider fixed copula families for
each pair. In this article, we only consider single parameter pair-copulas, such that the
parameter θ is a p-dimensional parameter vector with a definition space Θ :=

∏
(i,j)∈Ω Θi,j

where Θi,j is the parameter space for the pair-copula of the pair (i, j). However, the
methodology can easily be extended to multi-parameter pair-copulas. Note that a pair-
copula can be conditioned to other variables, depending on its position in the vine structure
V. Thus, the input distribution dFθ(V) is defined by the vine structure V, the copula
families and the parameter θ. Also note that the copula parameter θ is associated to the
R-vine structure V (i.e., θ = θV), see Section 4.2.2. For the sake of clarity, we simplify
the notation to θ only.

The most direct approach to estimate the minimum quantile is the Exhaustive Grid-Search
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algorithm, described by the following pseudo-code.

Algorithm 1: Exhaustive Grid-Search algorithm to minimize the output quantile.
Data: A vine structure V, a fixed grid ΘN , a sample size n

1 for θ ∈ ΘN do
2 1. Simulate a sample {Xi}ni=1 according to dFθ(V);
3 2. Evaluate {Yi = η(Xi)}ni=1;
4 3. Compute Ĝ−1

θ (α): empirical quantile of {Yi}ni=1;
Result: min

θ∈ΘN

Ĝ−1
θ (α)

For a given vine structure V, copula families, a grid ΘN and a sample size n, three steps
are needed for each θ ∈ ΘN . The first step simulates an input sample {Xi}ni=1 according
to the distribution dFθ(V) for a given sample size n. The second evaluates the sample
through the model η. The third estimates the output quantile from the resulting sample
{Yi = η(Xi)}ni=1. The minimum quantile is took among the results of each loop.

4.2.2 Influence of the vine structure

Using R-vines, the dependence parameter θ is associated to the vine structure V. Due to
the hierarchy of the vine structure, some pair-copulas are conditioned to other variables
and thus for their parameters. As an illustration, let us consider two vine structures with
the two following copula densities, with the same simplified expressions as for (21):

cV1(x1, x2, x3, x4) = cθ1,3 · cθ1,2 · cθ2,4 · cθ2,3|1 · cθ1,4|2 · cθ3,4|1,2 (22)
cV2(x1, x2, x3, x4) = cθ1,3 · cθ3,4 · cθ2,4 · cθ1,4|3 · cθ2,3|4 · cθ1,2|3,4 . (23)

The difference between these densities is the conditioning of some pairs, the depen-
dence parameters of theses vines are θV1 = [θ1,2, θ1,3, θ1,4|2, θ2,3|1, θ2,4, θ3,4|1,2] and θV2 =
[θ1,2|3,4, θ1,3, θ1,4|3, θ2,3|4, θ2,4, θ3,4]. Applying the same grid for these two vines may give
different results due to the conditioning order from the vine structure. For example, if
the pair X3-X4 is very influential on minimizing the output quantile, it would be more
difficult to find a minimum with V1 than V2 due to the conditioning of the pair with X1
and X2 in V1. However, if the grid is thin enough, the minimum from these two vines
should be equivalent.

To counter this difficulty, one possible option consists in randomly permuting the indexes
of the variables and repeating the algorithm several times to visit different vines structures.

4.2.3 Computational cost

For one given R-vine structure and one fixed copula family at each pair, the overall cost of
the method is equal to nN . However, as explained in § 2.4, the finite grid ΘN , should be
thin enough to reasonably explore Θ. Therefore, N should increase with the number of
dimensions d and more specifically with the number of pairs p =

(d
2
)
. A natural form for

N would be to write it as N = γp, where γ ∈ R+. Thus, the overall cost of the exhaustive
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grid-search would be equal to nγ(d2). The cost is in O(γd2) which makes the method hardly
scalable when the dimension d increases.

4.3 Iterative search for a penalizing R-vine structure: a greedy heuristic
based on pairwise copula

4.3.1 Going further in quantile minimization

With Algorithm 1, the previous subsection proposes an exhaustive grid-search strategy
to determine a R-vine copula Cθ̃ such that the associated output quantile G−1

θ̃
(α) be the

smallest (and also the most conservative in a structural reliability context). This ap-
proach remains however limited in practice since Cθ̃ for fixed pair-copula families (e.g.,
Archimedean or max-stable copulas) and V which is a member of the set Fd of all the
possible d−dimensional R-vine structure. Intuitively, a more reliable approach to quantile
minimization should be based on mixing this estimation method with a selection among
all members of the finite set Fd, as well for the copula families. It is indeed likely that
searching within an associative class of copulas like Archimedean ones, allowing model-
ing dependence in arbitrarily high dimensions, be a too rigid choice for estimating the
minimum G−1

θ̃
(α).

A minimum quantile can probably be found using a R-vine structure defined by conditional
pairwise sub-copulas (according to (21)) that are not part of the same rigid structure.
However, a brute force exploration of Fd would be conducted at an exponential cost
increasing with d [42]. If we also consider the large computational cost of an exhaustive
grid-search for a large number of dependent variables (as explained in § 4.2), this approach
is not feasible in practice for high dimensions.

For this reason, it is proposed to extend Algorithm 1 by a greedy heuristic that dynamically
selects the most influential correlations between variables while limiting the search to
pairwise correlations. Doing so, minimizing the output quantile can be conducted in
a reasonable computational time. Therefore the selected d−dimensional vine structure
would be filled with independent pair-copulas except for the pairs that are influential on
the minimization.

This working limitation, interpreted as a sparsity constraint, is based on the following
assumption: it is hypothesized that only few pairs of variables have real influences on
the minimization. It is close in spirit to the main assumption of global sensitivity analysis
applied to computer models, according to which only a limited number of random variables
has a major impact on the output [30,48].

4.3.2 General principle

The method basically relies on an iterative algorithm exploring pairwise correlations be-
tween the uniform random variables Uj = F−1

j (Xj) and progressively building a non-trivial
R-vine structure, adding one pair of variable to the structure at each iteration. Starting
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at step k = 0 from the simple independent copula

Cθ(0)(u1, . . . , ud) =
d∏
j=1

uj ,

the algorithm finally stops at a given step k = K while proposing a new copula Cθ(K)

associated to a R-vine structure VK mostly composed of independent pair-copulas.

At each iteration k, we denote by Ωk the selected pairs which are considered non-trivial
(non-independent) due to their influence on the quantile minimization. Let Ω−k = Ω\Ωk

be the candidate pairs, which were not the remaining pairs, which influence on the mini-
mization is still to be tested and are still considered independent. We also consider B as
a set of candidate copula families. The pseudo-code of Algorithm 2 shows in detail how
this iterative exploration and building is conducted. More algorithms in Appendix B.2
described how to construct a vine structure with a given list of indexed pairs of variable.

4.3.3 Example

Consider the four-dimensional (d = 4) situation such as X = (X1, . . . , X4) where, for to
the sake of simplicity, all marginal distributions of X are assumed to be uniform on [0, 1].
We consider a simple additive model described by

η(X) = 30X1 + 10X3 + 100X4. (24)

For an additive model and uniform margins, the output quantile is monotonic with the
dependence parameters (see Section 3.2) which locates the minimum quantile at the edge
of Θ. Thus, Step 1.b. of Algorithm 2 is simplified by considering only Fréchet-Hoeffding
copulas in the exploration.

In this illustration we consider α = 0.1 and we select n = 300, 000 large enough in order
to have a great quantile estimation and the algorithm stops at K = 3. Figure 6 shows, for
each iteration k, the p− k vine structures that have been created by the algorithm. The
red nodes and edges are the candidate pairs (i, j) ∈ Ω−k and the blue nodes and edges
are the selected pairs Ωk. At iteration k = 0, the selected pair is (1, 4) with an estimated
minimum quantile of −52.18. At iteration k = 1, the second selected pair is (3, 4) with
an estimated minimum quantile of −56.03. At iteration k = 2, the third selected pair is
(2, 4) with an estimated minimum quantile of −56.23.

We observe that X4 appears in all the selected pairs. This is not surprising since X4 is
the most influential variable with the largest coefficient in (24). The algorithm considers
D-vines by default, but this is important for the first iterations since most of the pairs are
independent. When it is possible, the algorithm creates a vine such as the selected pairs
and the candidate pair are in the first trees. For example, the fourth vine at iteration
k = 2 with the candidate pair (2, 4) shows a R-vine structure that respects the ranking
of the listed pairs. However, the third vine at iteration k = 2 for the candidate pair (1, 3)
along with the selected pairs {(1, 4), (3, 4) could respect the ranking and set all the pairs
in the first tree altogether. Thus, using Algorithm 3 in Appendix, a valid vine structure
is determined by placing the candidate pair (1, 3) in the next tree.
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Algorithm 2: Minimization of the output quantile and estimation of θ(K) over an in-
creasing family of R-vine structures.

1 Initialization:
2 Iteration: k = 0;
3 Selected pairs: Ω0 = ∅;
4 Selected families: B0 = ∅;
5 while k ≤ K do
6 Copula parameter space of the selected pairs: Θk =

∏
(i,j)∈Ωk Θi,j ;

7 1. Explore the set of candidate pairs Ω−k;
8 for (i, j) ∈ Ω−k do
9 a. Create a vine structure V(i,j) using the procedure of Section B.2 applied to the list

Ωk ∪ (i, j);
10 b. Explore the set of candidate families B;
11 for B ∈ B do
12 Apply Algorithm 1 with the pair-copula families B ∪Bk;

(i) Define a (k + 1)−dimensional grid ∆i,j of Θk ×Θi,j with cardinality Nk;

(ii) Select the minimum over the grid ∆i,j :

θ̂B = argmin
θB∈∆i,j

{
Ĝ−1

θB
(α)
}
.

13 c. Select the minimum among B

Bi,j = argmin
B∈B

{
Ĝ−1

θ̂B
(α)
}

θ̂i,j = θ̂Bi,j

14 2. Select the minimum among Ω−k

(i, j)(k) = argmin
(i,j)∈Ω−k

{
Ĝ−1

θ̂i,j
(α)
}
,

V(k) = V(i,j)(k) ,

θ̂(k) = θ̂(i,j)(k)

B(k) = B(i,j)(k)

15 3. Check the stopping condition;
16 if Ĝ−1

θ̂(k)(α) ≥ Ĝ−1
θ̂(k−1)(α) then

17 K = k − 1;
18 else
19 Extend the list of selected pairs: Ωk = Ωk ∪ (i, j)(k) and families: Bk = Bk ∪ B(k) ;
20 if k < K and computational budget not reached then
21 New iteration: k = k + 1;
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Figure 6: Illustration of the vine structures created during the 3 iterations of the algorithm for
the example of Section 4.3.3. The candidate and selected pairs are respectively represented in red
and blue. The quantile associated to the selected pair of each iteration is written in blue.

4.3.4 Computational cost

The number of model evaluations is influenced by several characteristics from the proba-
bilistic model and from the algorithm. Let |B| be the number of family candidates. The
total number of runs is

N = |B|n2

K∑
k=0

Nk × (d(d− 1)− 2k). (25)

The sum corresponds to the necessary iterations to determine the influential pairs. The
maximum possible cost is if all the pairs are equivalently influential (i.e., K = p = d(d−
1)/2), which would be extremely high. The term nNk is the cost from the grid-search
quantile minimization at step 2. of the algorithm. The greater Nk is and the better the
exploration of Θk ∪Θi,j . Because the dimension of Θk increases at each iteration k, it is
normal that Nk should also increases with k (e.g. Nk = γβk, where γ and β are constants).
Also, the greater n is and the better the quantile estimations. The second term is the cost
from the input dimension d which influences the number of candidate pairs Ω−k at each
iteration k.

Extensions can be implemented to reduce the computational cost such as removing from
Ω, the pairs that are not sufficiently improving the minimization.

5 Applications

The previously proposed methodology is applied to a toy example and a real industrial
case-study. It is worth to mention that these experiments (and future ones) can be con-
ducted again using the Python library dep-impact [9], in which are encoded all the pro-
cedures of estimation and optimization presented here.
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5.1 Numerical example

We pursue and extend the portfolio example considered in Section 3.2 and illustrated on
Figure 5. The numerical model η is now defined by the weighted sum

Y = η(X) = −βXT = −
d∑
j=1

βjXj , (26)

where the β = (β1, . . . , βd) is a vector of constant weights. The margins of the random
vector X follow the same generalized Pareto distribution with scale σ and shape parameter
ξ. Note that the bivariate example in Section 3.2 considered β = 1 and the distribution
parameters as σ = 1 and ξ = 1. In the following examples, we aim at minimizing the
median (α = 0.5) of the output distribution. We chose to fix the marginal distribution’s
parameters at σ = 10 and ξ = 0.75, and we set the constant vector β to a base-10
increasing sequence such that β = (101/d, 102/d, . . . , 10). This choice of weights aims to
give more influence to the latest components of X on Y . Thus, some pairs of variables
should be more important in the minimization of the output quantile, as required by the
sparsity constraint. We also took n large enough to estimate the output quantile with
high precision (i.e. n = 300, 000).

For all these experiments the results from the different methods can be compared.

• Method 1: the grid-search approach with an optimized LHS sampling [39] inside Θ
and a random vine structure,

• Method 2: the iterative algorithm with an increasing grid-size of Nk = 25∗(k + 1)2.

The Method 1 is established with the same computational budget as Method 2.

5.1.1 Dimension 3

In a three dimensional problem, only three pairs of variables (p = 3) are involved in the
dependence structure. The sampling size of Θ in Method 1 is set to 400, which is great
enough to explore a three dimensional space. The results are displayed on Figure 7: the
estimated quantiles from Method 1 (blue dots) with a convex hull (blue dot line) and
the quantile at independence (dark point) are provided. It also highlights the minimum
estimated quantiles from Methods 1 and 2 which are respectively represented in blue and
red points. We also show in green point, the minimum quantile by considering only the
Fréchet-Hoeffding bounds. For each minimum, the 95 % bootstrap confidence intervals is
displayed in dot lines.

This low dimensional problem confirms the non-monotonic form of the quantile with the
dependence parameter, in particular for the variation of the quantile in function of τ2,3.
As expected, the pair X2-X3 is more influential on the output quantile due to the large
weights on X2 and X3. The minimum values obtained by each method are still lower that
the results given by an independent configuration. The minimum using Fréchet-Hoeffding
bounds is also provided to show that the minimum is not at the boundary of Θ. Method
1 and 2 have very similar minimum results.
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Figure 7: Matrix plot of the output median in function of the Kendall coefficient of each pair.
The blue dots represents the estimated quantiles of Method 1. The black point is the quantile
at independence and the minimum of Method 1 and 2 are the red and blue points, which are
equivalent here. The green point is the the minimum with only Fréchet-Hoeffding bounds. The 95
% bootstrap confidence intervals are displayed in dot lines.
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Figure 8: Minimum quantile results with the iteration k of the iterative procedure. The quantile
at independence is shown in dark line. The minimum quantiles from Method 1 is show in blue lines.
The other lines and dots colors are the results from Method 2. For each iteration, the small dots
are the estimated quantiles of all candidates and the point is the minimum. The 95 % bootstrap
confidence intervals are also displayed for the independence and each minimums.

5.1.2 Dimension 10

To illustrate the advantages of the iterative procedure, we now consider d = 10. In this
example, we chose to only consider a Gaussian family for the set of pair-copula family
candidates. The sampling size for the exploration of Θ in Method 1 is set to 6, 000.
Experimental results are summarized over Figure 8, by displaying the minimum quantiles
in function of the iteration k of Method 2. The quantile at independence is shown in dark
line, the minimum estimated quantile from Method 1 is shown in blue line and the other
lines are the minimum quantiles at each iteration of the algorithm, all with their 95%
bootstrap confidence interval. We display at each iteration the minimum quantiles of each
candidate pair in small dots.

The minimum result from Method 1 is even higher than the quantile at independence.
This is due to the very large number of pairs (p = 45) that makes the exploration of
Θ extremely difficult. On the other hand, Method 2 (iterative algorithm) is definitely
better and significantly decreases the quantile value even at the first iteration (for only
one dependent pair). The results are slightly improved with the iterations. We observe
at the last iteration that the results from the candidate pairs are slightly higher than
the minimum from the previous iteration. It is due to the choice of Nk which does not
increases enough with the iterations to correctly explore Θk, which also increases with the
iterations.

5.1.3 Using multiple pair-copula family candidates

To show the importance of testing multiple copula families, we consider d = 6 and three
tests of Method 2 (iterative procedure). The Figure 9 shows the minimum from the
iterative results using three sets of family candidates: a set of Gaussian and Clayton in
red (B1 = {G,C}), Gaussian only in green (B2 = {G}), and Clayton only in yellow
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Figure 9: Quantile minimization for different set of family candidates B. The dark line shows
the quantile at independence. The minimum at each iteration for the family candidates sets B1,
B2 and B3 respectively in red, green and yellow.

(B3 = {C}). We also display below the iteration number, the selected family for B1.

At iteration k = 0, the algorithm with the set B1 has selected the Gaussian copula as the
selected pair and the result is as expected equivalent as for the set B2. At next iteration,
a Clayton copula has been selected for algorithm with the set B1, which slightly improves
the minimization compared to the others. The improvement start at iteration k = 2 where
the Algorithm with the set B1 minimizes more the output quantile than the other sets
with only one copula family. At the last iteration, the algorithm with set B1 selected a mix
between Gaussian an Clayton families. This diversity seems to lead to better results than
using only one family for every pairs. Testing multiple families is an interesting feature
of the algorithm and is something that cannot be feasible for the grid-search approach.
However, the cost for B1 is twice larger than for the other methods.

5.2 Industrial Application

5.2.1 Context

We consider an industrial component belonging to a production unit. This component
must maintain its integrity even in case of an accidental situation. For this reason, it is
subject to a justification procedure by regulation authorities, in order to demonstrate its
ability to withstand severe operating conditions. This undesirable event consists in the
concomitance of three different factors:

• the potential existence of small and undetectable manufacturing defects ;

• the exposition of the structure to an ageing phenomenon harming the material which
progressively diminishes its mechanical resistance throughout its lifespan ;

• the occurrence of an accidental event generating severe constraints on the structure.
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If combined, these three factors might lead to the initiation of a crack within the structure.
Since no failure was observed until now, a structural reliability study should be conducted
to check the safety of the structure. To do so a thermal-mechanical code η : Rd → R+

was used, which calculates the ratio between the resistance and the stress acting on the
component during a simulated accident. The numerical model depends on parameters
affected by uncertainties quantified throughout numerous mechanical tests. Nevertheless,
these experiments are mostly established individually and only few experiments involves
simultaneously two parameters.

5.2.2 Probabilistic model

For this problem, we introduce d = 6 random variables with predefined marginal distri-
butions (Pj)j=1...d. The dependence structure is however unknown. From the 15 pairs
of variables, only the dependencies of two pairs are known: one is independent and the
other follows a Gumbel copula with parameter 2.27. Therefore, we consider p = 13 pairs
of variables with unknown dependencies.

Given expert feedbacks, we restricted the exploration space Θ by defining bounds for each
pair of variables (i, j) ∈ Ω such that

Tci,j (τ−i,j) ≤ θi,j ≤ Tci,j (τ
+
i,j),

where τ−i,j and τ+
i,j are respectively the upper and lower kendall’s correlation coefficient

bounds for the dependence of the pair (i, j) and Tci,j is the transformation from Kendall’s
tau value to the copula parameter for the associated copula ci,j . This choice enables to
explore only realistic dependence structures. For these experiments we only considered
Gaussian copulas.

5.2.3 Results

We consider the quantile at α = 0.01 as a quantity of interest. A first experiment is
established with the incomplete probability structure: only the two pairs with a known
dependence structure and all others at independence. Two other experiments are estab-
lished: an exhaustive grid-search approach with a given vine structure and an iterative
procedure with a maximum budget equivalent to the grid-search. A grid-size of 1000 is
chosen with n = 20, 000.

The results are displayed in Figure 10. and has the same description as Figure 8. The
quantile for the incomplete probability structure is approximately at 1.8. The grid-search
and the iterative approaches found dependence structures leading to output quantile val-
ues close to 1.2 and 1.1 respectively. The minimum quantile from the iterative procedure
is slightly lower than the grid-search approach. The problem dimension is not big enough
to create make a significant difference between the methods. However, the resulting de-
pendence structure from the iterative method is greatly simplified with only four pairs of
variables, in addition to the already known pair.

This result highlights the risk of having an incomplete dependence structure in a reliability
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Figure 10: Minimization of the output quantile using a grid-search and the iterative procedure
for α = 1%. The description is the same as in Figure 8.

problem. In this application, the critical limit (safety margin) of the considered indus-
trial component is 1. With the incomplete distribution of X, the output quantile is very
high compared to the critical limit and states a high reliability of the component. Unfortu-
nately, if we consider worst-case dependence structures, the output quantile is significantly
minimized and becomes closer to the critical limit. Thus, if the true dependence structure
is close to the obtained worst case dependence structure, the risk of over estimating the
output quantile can be important.

6 Conclusion and discussion

Incomplete information on inputs is an issue frequently encountered in structural reli-
ability. Because safety analyses are mostly based on propagating random uncertainties
through black-box computer models, the selection of a conservative dependence struc-
ture between input components appears as a requirement to define probabilistic worst
cases. This article takes a first step towards such a methodology, by proposing a greedy,
heuristic algorithm that explores a set of possible dependencies, taking advantage of the
pair-copula construction (PCC) of multivariate probability distributions. Results of exper-
iments conducted on toy and a real models illustrate the good behavior of the procedure:
in situations where the monotonicity of the considered risk indicator (the output quan-
tile) with respect to the inputs is postulated, a minimum value for the risk indicator is
obtained using Fréchet-Hoeffding bounds. Nonetheless, it is possible to exhibit situations
where the algorithm detect other and more conservative dependence structures. This first
step required a number of hypotheses and approximations that pave the way for future
research. Besides, some perspectives arise from additional technical results.

It would be interesting to improve the statistical estimation of the minimum quantile, given
a dependence structure, by checking the hypotheses underlying the convergence results of
Theorem 1. Checking and relaxing these hypotheses should be conducted in relation
with expert knowledge on the computer model η and, possibly, a numerical exploration
of its regularity properties. The grid search estimation strategy promoted in Section
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2.3 arises from the lack of information about the convexity and the gradient of θ →
G−1

θ (α). However, the method remains basic and stochastic recursive algorithms, such as
the Robbins-Munro algorithm [47], can be proposed and tested as possibly more powerful
(faster) alternatives.

A significant issue, is the computational cost of the exploration of possible dependence
structures. Reducing this cost while increasing the completeness of this exploration should
be a main concern of future works. Guiding the exploration in the space of conditional
bivariate copulas using enriching criteria and possible expert knowledge can facilitate the
minimization. The Algorithm 2 can also be improved using nonparametric bootstrap. This
would quantify the estimation quality of the selected minimum quantile of each iteration.
Note however that a seducing feature of an iterative procedure is the a priori possibility
of its adaptation to situations where the computational model η is time-consuming. In
such cases, it is likely that Bayesian global optimization methods based on replacing the
computer model by a surrogate model (e.g., a kriging-based meta-model) [45] should be
explored, keeping in mind that nontrivial conservative correlations – losses of quantile
monotonicity– can be due to edge effects (e.g., discontinuities) characterizing the compu-
tational model itself.

We noticed in our experiments on real case-studies that expert knowledge remains difficult
to incorporate otherwise that using association and concordance measures, mainly since
we are lacking of representation tools (e.g., visual) of the properties of multivariate laws
that provide intelligible diagnostics. A first step towards the efficient incorporation of
expert knowledge could be to automatize the visualization of the obtained vine structures,
to simplify judgements about their realism.

Finally, another approach to consider could be to address the optimization problem (2)
within the more general framework of optimal transport theory, and to take advantage of
the many ongoing works in this area. Indeed, the problem (2) can be seen as a multi-
marginal optimal transport problem (see [46] for an overview). When d = 2, it corresponds
respectively to the classical optimal transport problems of Monge and Kantorovich [57].
However, the multimarginal theory is not as well understood as for the bimarginal case,
and developing efficient algorithms for solving this problem remains also a challenging
issue [46].
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A Proof of the consistency result

The consistency of the estimator θ̂ requires some regularity of the function θ 7→ Gθ. This
regularity can be also expressed in term of modulus of increase of the function θ 7→ G−1

θ (α),
on which some useful definitions and connections with the modulus of continuity are
reminded.
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A.1 Modulus of increase of a cumulative distribution function

Let us recall that a modulus of continuity is any real-extended valued function ω : [0,∞) 7→
[0,∞) such that limδ→0 ω(x) = ω(0) = 0. The function f : R 7→ R admits ω as modulus of
continuity if for any (x, x′) ∈ R2,

|f(x)− f(x′)| ≤ ω(|x− x′|).

Similarly, for some x ∈ R, the function f admits ω as a local modulus of continuity if for
any x′ ∈ R2,

|f(x)− f(x′)| ≤ ω(|x− x′|).
To control the deviation of the empirical quantile in the proof of Proposition 1 further, we
consider the modulus of continuity of the quantile functions G−1 : [0, 1]→ R where G is a
distribution function on R. The quantile function being an increasing function, the exact
local modulus of continuity of the quantile function G−1 at α ∈ (0, 1) can be defined as

ωG−1(ε, α) := max
(
G−1(α+ ε)−G−1(α), G−1(α)−G−1(α− ε)

)
.

In the proof of Proposition 1, we note that the continuity of a quantile function G−1 can
be connected to the increase of the distribution function G (see also for instance Section
A in [10]). Using the fact that the distribution function is increasing, we introduce the
local modulus of increase of the distribution function εG at y = G−1(α) ∈ R as:

εG(δ, y) := min (G(y + δ)−G(y), G(y)−G(y − δ)) .

A.2 Proofs

The estimator θ̂ defined in (12) is an extremum-estimator (see for instance Section 2.1
of [44]). The main ingredient to prove the consistency of this estimator is the uniform
convergence in probability of the families of the empirical quantiles (Ĝ−1

θ (α))θ∈ΘKn
over

the family of grids ΘKn .

Proposition 1. Let ΘKn be defined as in Theorem 1. Let assume that B and C are both
satisfied. Then, for all ε > 0,

P[ sup
θ∈ΘKn

|Ĝ−1
θ (α)−G−1

θ (α)| > ε] n→∞−−−→ 0.

Proof of Proposition 1. We first make the connection between the local continuity of the
quantile function G−1

θ and the local increase of the distribution function Gθ. According
to Assumption C, we have that for any ε ∈ (0,max((1−α), α)), for any δ > 0 and for any
θ ∈ Θ,

(∗) :
{
G−1

θ (α+ ε)−G−1
θ (α) < δ

G−1
θ (α)−G−1

θ (α− ε) < δ
=⇒


Gθ

(
G−1

θ (α+ ε)
)
< Gθ

(
G−1

θ (α) + δ
)

Gθ

(
G−1

θ (α)− δ
)
< Gθ

(
G−1

θ (α− ε)
) .

Next, using basic properties of quantile functions (see for instance point ii of Lemma 21.1
in [56] ) together with Assumption B, we find that

Gθ

(
G−1

θ (α+ ε)
)

= α+ ε = Gθ

(
G−1

θ (α)
)

+ ε
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and
Gθ

(
G−1

θ (α− ε)
)

= α− ε = Gθ

(
G−1

θ (α)
)
− ε.

Thus,

(∗) =⇒


Gθ

(
G−1

θ (α) + δ
)
−Gθ

(
G−1

θ (α)
)
> ε

Gθ

(
G−1

θ (α)
)
−Gθ

(
G−1

θ (α)− δ
)
> ε

.

We have shown that any ε ∈ (0,max((1− α), α)), for any δ > 0 and for any θ ∈ Θ,

ωG−1
θ

(ε, α) > δ =⇒ εGθ
(δ,G−1

θ (α)) < ε. (27)

We now prove the proposition. For any n ≥ 1 and any ε > 0, we have

P

(
sup

θ∈ΘKn

|Ĝ−1
θ (α)−G−1

θ (α)| > ε

)
= P

 ⋃
θ∈ΘKn

{|Ĝ−1
θ (α)−G−1

θ (α)| > ε}


≤

∑
θ∈ΘKn

Pθ

(
|Ĝ−1

θ (α)−G−1
θ (α)| > ε

)
. (28)

Let ξ1, . . . , ξn be n i.i.d. uniform random variables. The uniform empirical distribution
function is defined by

U(t) = 1
n

n∑
i=1

1ξi≤t for 0 ≤ t ≤ 1.

The inverse uniform empirical distribution function is the function

U−1
n (u) = inf{t |Gn(t) > u} for 0 ≤ u ≤ 1.

The empirical distribution function Ĝθ can be rewritten as (see for instance [56]):

Ĝθ(y) L= Un(Gθ(y))

and as well for the quantile function,

Ĝ−1
θ (α) L= G−1

θ (U−1
n (α)).

From Inequality (28), we obtain∑
θ∈ΘKn

Pθ

(
|Ĝ−1

θ (α)−G−1
θ (α)| > ε

)
=

∑
θ∈ΘKn

Pθ

(
|G−1

θ (U−1
n (α))−G−1

θ (α)| > ε
)

(29)

By definition of the local modulus of continuity ωG−1
θ

of the quantile function G−1
θ at α,

we have
|G−1

θ (U−1
n (α))−G−1

θ (α)| ≤ ωG−1
θ

(|U−1
n (α)− α|, α). (30)

Therefore, by replacing (30) in (29) and using (27), we obtain∑
θ∈ΘKn

Pθ

(∣∣∣G−1
θ (U−1

n (α))−G−1
θ (α)

∣∣∣ > ε
)
≤

∑
θ∈ΘKn

Pθ

(
ωG−1

θ
(|U−1

n (α)− α|, α) > ε
)

≤
∑

θ∈ΘKn

Pθ

(
εGθ

(ε,G−1
θ (α)) < |U−1

n (α)− α|
)
.
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Assumption C then yields

P

(
sup

θ∈ΘKn

|Ĝ−1
θ (α)−G−1

θ (α)| > ε

)
≤ KnP

(
|U−1
n (α)− α| > εΘ(ε)

)
. (31)

The DKW inequality [19] gives an upper bound of the probability of an uniform empirical
process {|Un(α) − α|}. As well for an uniform empirical quantile process {|U−1

n (α) − α|}
(see for example Section 1.4.1 of [14]), such as ∀λ > 0:

P( sup
α∈[0,1]

|U−1
n (α)− α|) ≥ λ) ≤ C exp(−2nλ2).

Moreover, [38] proved that one can take C = 2. Therefore, Equation (31) can be bounded
using the DKW and

P

(
sup

θ∈ΘKn

|Ĝ−1
θ (α)−G−1

θ (α)| > ε

)
≤ 2Kn exp

[
−2nε2Θ(ε)

]
n→∞−−−→ 0

since KN . nβ.

A second requirement to get the consistency of the extremum estimator is the regularity
of θ 7→ G−1

θ (α). This is shown in the next proposition.

Proposition 2. Under Assumptions A, B and C, the function

Θ −→ Im(η)
θ −→ G−1

θ (α)

is continuous in θ over Θ.

Proof of Proposition 2. According to Assumption A, for any θ ∈ Θ, the distribution Pθ

admits a density function fθ with respect to the Lebesgue measure on Rd such that

fθ(x1, . . . , xd) = cθ (F1(x1, . . . , xd)) f1(x1) . . . fd(xd),

where fj is the marginal density function of Xj , for j = 1, . . . , d and the Lebesgue measure
on R. Moreover, for any x ∈ Rd, the function θ → fθ(x) is continuous in θ over Θ.

The domain Θ × [0, 1]p is a compact set and according to Assumption A, there exists a
constant c̄ such that ∀(θ,u) ∈ Θ× [0, 1]d, cθ(u) ≤ c̄. Consequently, we have

|fθ(x1, . . . , xd)| ≤ c̄
d∏
i=1

fi(xi). (32)

For θ ∈ Θ and for any h > 0, we denote yh = G−1
θ+h(α). According to Assumption B we

have α = Gθ+h(yh) and thus,

G−1
θ (α)−G−1

θ+h(α) = G−1
θ (α)− yh

= G−1
θ (Gθ+h(yh))−G−1

θ (Gθ(yh)) (33)
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Now, using Assumption C, we have that Gθ is strictly increasing in the neighborhood of
G−1

θ (α) and thus G−1
θ is continuous in the neighborhood of α. Note that

|Gθ+h(yh)−Gθ(yh)| =
∣∣∣∣∫

Rd
1η(x)≤yhdFθ+h(x)−

∫
Rd

1η(x)≤yhdFθ(x)
∣∣∣∣

=
∣∣∣∣∫

Rd
[fθ+h(x)− fθ(x)] 1η(x)≤yhdλ(x)

∣∣∣∣
≤
∫

Rd
|fθ+h(x)− fθ(x)|dλ(x)

We then apply a standard dominated convergence theorem using (32) to get that

Gθ+h(yh)−Gθ(yh) h→0−−−→ 0.

This, with (33) and with the continuity of θ 7→ Gθ, shows that

G−1
θ (α)−G−1

θ+h(α) h→0−−−→ 0.

We are now in position to prove Theorem 1.

Proof of Theorem 1. Under Assumptions B and C, Proposition 1 directly gives that for
any ε > 0,

P

(∣∣∣∣ inf
θ∈ΘKn

Ĝ−1
θ (α)− inf

θ∈ΘKn

G−1
θ (α)

∣∣∣∣ > ε

)
n→∞−−−→ 0

which means that
P

(∣∣∣∣Ĝ−1
θ̂

(α)− inf
θ∈ΘKn

G−1
θ (α)

∣∣∣∣ > ε

)
n→∞−−−→ 0. (34)

If Assumption A is also satisfied, Proposition 2 together with (11) give that infθ∈ΘKn
G−1

θ (α)
tends to infθ∈ΘG−1

θ (α) as n tends to infinity. Thus

inf
θ∈ΘKn

G−1
θ (α) n→∞−−−→ G−1

C
?(α) = G−1

θ∗C
(α) (35)

We then derive (13) from (34) and (35).

We now assume that Assumption D is also satisfied. Let θ∗ be the unique minimizer of
θ 7→ G−1

θ (α). Let h > 0 such that B(θ∗, h)c := {θ ∈ Θ : ‖θ − θ?‖2 ≥ ε} is not empty.
According to Proposition 2 and using the fact that Θ is compact, we have

sup
θ∈B(θ∗,h)c

|G−1
θ (α)−G−1

θ∗ (α)| > 0. (36)

Consequently, for any ∀h > 0 small enough, there exists ε > 0 such that

|G−1
θ (α)−G−1

θ∗ (α)| ≤ ε =⇒ |θ − θ∗| < h (37)

Let h > 0 and take ε such that (37) is satisfied for h. According to Proposition 1,
Ĝ−1
θ̂

(α)−G−1
θ̂

(α) tends to zero in probability as n tends to infinity. This, with (13), shows
that

P
(∣∣∣G−1

θ̂
(α)−G−1

θ∗ (α)
∣∣∣ > ε

)
n→∞−−−→ 0.

We conclude using (37).
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B Vine copulas

B.1 Definition

A vine model describes a d-dimensional pair-copula construction (PCC) and is a sequence
of linked trees where the nodes and edges correspond to the d(d − 1)/2 pair-copulas.
According to Definition 1 from [6], a vine structure is composed of d−1 trees T1, . . . , Td−1
with several conditions.

Definition 1 (R-vine). The sequence V = (T1, . . . , Td−1) is an R-vine on n elements if

1. T1 is a tree with nodes N1 = {1, . . . , d} and a set of edges denoted E1.

2. For i = 2, . . . , d− 1, Ti is a tree with nodes Ni = Ei−1 and edges set Ei.

3. For i =, . . . , d − 1 and {a, b} ∈ Ei with a = {a1, a2} and b = {b1, b2} it must hold
that #(a ∩ b) = 1 (proximity condition).

Each tree Ti is composed of d−i+1 nodes which are linked by d−i edges for i = 1, . . . , d−1.
A node in a tree Ti must be an edge in the tree Ti−1, for i = 2, . . . , d − 1. Two nodes
in a tree Ti can be joined if their respective edges in tree Ti−1 share a common node, for
i = 2, . . . , d− 1. The proximity condition, suggests that two nodes connected by an edge
should share one variable from the conditioned set. The conditioning set and conditioned
set are defined in Definition 2 along with the complete union. The complete union of an
edge e is a set of all unique variables contained in e.

Definition 2 (Complete union, conditioning and conditioned sets of an edge). Let Ae be
the complete union of an edge e = {a, b} ∈ Ek in a tree Tk of a regular vine V,

Ae = {v ∈ N1|∃ei ∈ Ei, i = 1, . . . , k − 1, such that v ∈ ei ∈ · · · ∈ ek−1 ∈ e}.

The conditioning set associated with edge e = {a, b} is D(e) := Aa∩Ab and the conditioned
sets associated with edge e are i(e) := Aa\D(e) and j(e) := Ab\D(e). Here, A\B := A∩Bc

and Bc is the complement of B.

The conditioned and conditioning sets of an edge e = {a, b} are respectively the symmetric
difference and the intersection of the complete unions of a and b. The conditioned and
conditioning sets of all edges of V are collected in a set called constraint set. Each element
of this set is composed of a pair of indices corresponding to the conditioned set and a set
containing indices corresponding to the conditioning set, as shown in Definition 3.

Definition 3 (Constraint set). The constrain set for V is a set:

CV = {({i(e), j(e)}, De)|e ∈ Ei, e = {a, b}, i = 1, . . . , d− 1}
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Figure 11: R-vine structure for d = 5.

The pair-copula in the first tree characterize pairwise unconditional dependencies, while
the pair-copula in higher order trees model the conditional dependency between two vari-
ables given a set of variables. The number of conditioning variables grows with the tree
order. Note that a PCC where all trees have a path-like structure define the D-vine sub-
class while the star-like structures correspond to C-vine subclass. All other vine structures
are called regular vines (R-vines) [6].

We illustrate the concept of a vine model with a d = 5 dimensional example. For clarity
reasons, we use the same simplifications as in Section 4.2 which consider for instance
f1 = f1(x1), f2 = f2(x2) and so on for higher order and conditioning. One possible PCC
can be written for this 5-dimensional configuration:

f(x1, x2, x3, x4, x5) = f1 · f2 · f3 · f4 · f5 (margins)

(unconditional pairs)× c12 · c35 · c34 · c24

(1st conditional pair)× c14|3 · c23|4 · c45|3

(2nd conditional pair)× c15|34 · c25|34

(3rd conditional pair)× c12|345. (38)

The vine structure associated to (38) is illustrated in Figure 11. This graphical model
considerably simplify the understanding and we observe that this model is a R-vine because
there is no specific constraints on the trees.

A re-labeling of the variables can lead to a large number of different PCC. [42] calculated
the number of possible vine structures with the dimension d and shows that it becomes
extremely large for high dimension problems. We illustrate below, using the same d = 5 di-

mensional example, two other PCC densities:

fD = f1 · f2 · f3 · f4 · f5

× c12 · c23 · c34 · c45

× c13|2 · c24|3 · c35|4

× c14|23 · c25|34

× c15|234 (39)
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(a) D-vine structure for d = 5. (b) C-vine structure for d = 5.

Figure 12: D-vine and C-vine structure for d = 5.

fC = f1 · f2 · f3 · f4 · f5

× c12 · c13 · c14 · c15

× c23|1 · c24|1 · c25|1

× c34|12 · c35|12

× c45|123 (40)

where (39) and (40) respectively correspond

to D-vine and C-vine structures and are represented in Figures 12a and 12b. As we can
see in these examples, the D-vine have a constraint on each tree that gives a path-like
arrangement of the nodes. The C-vine on the other hand only has one node connected to
all others for each tree.

An efficient way to store the information of a vine structure is proposed in [41] and is
called a R-vine array. The approach uses the specification of a lower triangular matrix
where the entries belong to 1, . . . , d. Such matrix representation allows to directly derive
the tree structure (or equivalently the associated PCC distribution). For more details, see
[41].

B.2 Generating R-vine from an indexed list of pairs

The iterative procedure proposed in Section 4.3, described by Algorithm 2, minimizes
the output quantile by iteratively determining the pairs of variables that influences the
most the quantile minimization. At each iteration of the algorithm (step 1.a), a new vine
structure is created by considering the list of influential pairs. The specificity of this vine
creation is to consider the ranking of the list by placing the most influential pairs in the
first trees of the R-vine. Thus, we describe in this section how to generate vine structure
with the constraint of a given list of indexed pairs to fill in the structure.
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Figure 13: Example: first tree of a non valid vine structure for d = 5 that does lead to a single
connected tree.

B.2.1 The algorithm

We consider the same notation as in Algorithm 2. Creating a vine structure from a given
indexed list of pairs Ωk is not straightforward. The difficulties come from respecting the
ranking of Ωk and the respect of the R-vine conditions. Indeed, the pairs cannot be append
in the structure easily. The vine structure must respect these conditions, which can be
sometime very restrictive. The procedure we proposed is detailed by the pseudo-code of
Algorithm 3 and can be greatly simplified in these few key steps:

1. fill V with the list Ωk,

2. fill V with a permutation of Ω−k,

3. if V is not a R-vine, then permute Ωk and restart at step 1.

In step 1 and 2, the filling procedure, detailed in Algorithm 4, successively adds the pairs
of a list in the trees of a vine structure. Adding a pair (i, j) in a tree Tl associates (i, j)
with the conditioned set and determine a possible conditioning set D from the previous
tree such as a possible edge is i, j|D.

In step 2, because the ordering of Ω−k is not important in the filling of V, the permutation
of Ω−k aims at finding a ranking such as V leads to a R-vine.

In step 3, when the previous step did not succeeded and the resulting V is not a R-vine
structure, then the ranking of Ωk is not possible and must be changed. The permutation
of some elements of Ωk must be done such as the ranking of the most influential pairs
remains as close as possible to the initial one.

B.2.2 Example

For illustration, let’s create a d = 5 dimensional vine structure with the given list of pairs
Ωk = ((1, 2), (1, 3), (2, 3), (4, 5), (2, 4), (1, 5)) using Algorithm 3. Using the original list Ωk,
the Fill function may fail at line 7 of Algorithm 3, and more precisely, at line 15 of
Algorithm 4. Indeed, the first tree of V does not validate the R-vine conditions. The tree
is illustrated in Figure 13 and as we can see, the nodes are not all connected into one
single tree. Therefore, we permuted the list Ωk by exchanging the pairs (2, 4) and (4, 5),
as shown in Figure 14. This permutation now leads to a vine structure that respects the
new ranked list Ωk = ((1, 2), (1, 3), (2, 3), (2, 4), (4, 5), (1, 5)) .
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Algorithm 3: Generating a vine structure from a given list of indexed pairs Ωk

Data: Ωk, d
Result: A vine structure V.

1 Ωinit
k = Ωk;

2 k = 1;
3 do

/* initialize V with a first empty tree */

4 N1 = (1, . . . , d);
5 E1 = ();
6 V = ((N1, E1));

/* filling V with the list of selected pairs Ωk */

7 V = Fill(V, Ωk, d); // See Algorithm 4

/* determining a permutation of Ω−k that fills V */

8 for Ωπ
−k ∈ π(Ω−k) do

/* filling V with the candidate pairs Ωπ−k */

9 Vπ = Fill(V, Ωπ
−k, d); // See Algorithm 4

10 if Vπ is a R-vine then
/* a permutation worked → we quit the loop */

11 break

12 V = Vπ;
13 if V is not a R-vine then

/* filling did not work → permute initial list Ωinitk */

14 Get Ωk by inverting pairs of (Ωinit
k ;

15 k = k + 1;
16 while V is not a R-vine;

  1312 23L[1]

L[2] 24

45

15

Figure 14: Example: exchange of elements of Ωk in order to lead to a valid vine structure.
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Algorithm 4: Filling a vine structure with a given list
1 function Fill(V, Ωk, d):

/* V: an incomplete vine structure , */
/* Ωk:, a list of indexed pairs */

/* d: the input dimension. */

2 l = |V|; // number of existing trees

3 (T1, . . . , Tl) = V;
4 k = |Tl|; // number of existing nodes in last tree

/* loop over the list of pairs */

5 for (i, j) ∈ Ωk do
6 D = ∅;
7 if l >= 2 then

/* conditioning set is only computed from T2 */

8 D = FindConditioningSet((i, j), Nl−1); // See Algorithm 5

9 if D = ∅ then
/* no conditioning set found → not possible */

10 return False

11 El = El ∪ i, j|D; // add new edge in El

12 Tl = (Nl, El); // update current tree

13 V = (T1, . . . , Tl);
14 if k ≥ d− l then

/* if tree Tl is complete */

15 if V does not fulfill the R-vine conditions then
/* the vine structure V is not valid */

16 return False
17 k = 1;
18 l = l + 1;
19 Nl = El−1; // nodes of next tree are the edges of previous tree

20 else
21 k = k + 1;

22 return V

Algorithm 5: Gets the conditioning set of a given conditioned set
1 function FindConditioningSet((i, j), N−):

/* (i, j): the conditioned set, */

/* N−: list of nodes from the previous tree. */

2 D = ∅;
3 for a, b ∈ N−, with a 6= b do
4 if i ∈ a and j ∈ b then
5 if j /∈ Aa and i /∈ Ab then

/* See Definition 2 */

6 D = Aa ∩Ab;
7 break;

8 return D
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