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ABSTRACT

This paper addresses the characterization of spatial arrangements of fringes in catalysts imaged by
High Resolution Transmission Electron Microscopy (HRTEM). It presents a statistical model-based
approach for analyzing these fringes. The proposed approach involves Fractional Brownian Field
(FBF) and 2-D Auto-Regressive (AR) modeling, as well as morphological analysis. The originality of
the approach consists in identifying the image background as an FBF, subtracting this background,
modeling the residual by 2-D AR so as to capture fringe information and, �nally, discriminating
catalysts from fringe characterizations obtained by morphological analysis. The overall analysis is
called ARFBF (Auto-Regressive Fractional Brownian Field) based morphology characterization.

Keywords: Texture Analysis, Fractional Brownian Field, Auto-Regressive Field, Mathematical
Morphology, HRTEM Imaging..

INTRODUCTION

Texture analysis plays a key role in almost

all imaging systems (radar, sonar, X-ray,

microscopy ...) and human visual perception.

Texture structure characterization has deserved a

considerable amount of works in order to describe

image patterns for feature recognition (see (Qazi

et al., 2011; Goncalves and Bruno, 2013), among

other references).

In recent literature, material texture

characterization at nanoscale using image analysis

has been considered with either qualitative

of quantitative methods. For instance, (Da

Costa et al., 2015) investigated carbon planes

with orientation description, (Pré et al., 2013)

considered activated carbon with mathematical

morphology approach, (Moreaud et al., 2012)

studied alumina platelets using morphological

random model-based approach, (Toth et al., 2013)

investigated soot with multi-resolution approach,

(Zhang et al., 2011) considered active phases

of unsupported hydrodesulphurization catalyst

and (Moreaud et al., 2008) investigated ceria

active phase using local frequency segmentation

approach and morphological analysis.

Figure 1. Molybdenum sul�de sheets (black
fringes) deposited on an alumina support (top
image) and its sub-images (signi�cant fringes
selected, in the second row). The initial image
consists of 1024× 1024 pixels. The numerical
resolution is 0.057 nm by pixel.
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Tan Z. et al.: ARFBF morphological image analysis

In this paper, we are interested in the
characterization of hydrotreating catalysts with
sulphide phases supported on alumina (see
(Toulhoat and Raybaud, 2013), (Celce et al.,
2008)) using statistical model-based approach.
Samples were observed by high resolution
transmission electron microscopy, using a JEOL
TEM 2100F operated at 200kV, whose point-to-
point resolution is 0.23 nm. The so-called CoMoS1

active phase consists of nanolayers of MoS2,
decorated at the edges with Co atoms. When their
basal plane is oriented parallel to the electron
beam axis, then they appear as black fringes. They
can be either isolated of stacked with a stacking
number up to 5 usually. If the catalyst presents
a high loading of active phase, nanolayers can
also form aggregates �lling the support porosity.
Length and stacking number of the nanolayers
depend on several parameters: nature of the
support, impregnation and sul�dation methods.
They directly impact the activity and selectivity
of the catalyst (see (Toulhoat and Raybaud, 2013)
and (Nikulshin et al., 2014)).

Active phases shown in Fig.1 can be seen
as pseudo-periodic �elds, a property which can
be captured by using a 2-D Auto-Regressive
model (2-D AR). Indeed, the 2-D AR random
�eld model has shown relevancy for describing a
wide class of pseudo-periodic textures (see (Alata
and Ramananjarasoa, 2005; Mao and Jain, 1992;
Haralick, 1979; Souza, 1982) for the relevancy
of this model in classi�cation, segmentation and
recognition of textural information). We thus
consider the AR model for characterizing the
active phases and propose using AR �eld power
spectrum in order to derive their features. The
spectrum of 2-D AR model can be calculated by
the Harmonic Mean (HM) method (see (Jackson
and Chien, 1979; Alata et al., 1998)).

The nanolayers are deposited on a crystalline
alumina support (Fig.1). Observations at high
resolution also produce fringes (corresponding to
atomic planes) and Moire fringes. Nevertheless,
their contrast and their periodicity di�er from
those of CoMoS nanolayers, preventing confusion.
Moreover, post-treated areas correspond to the
thinnest zones of the sample, where alumina
contribution is minored. This background is
considered here as a noisy �eld interacting with
the intrinsic AR model and it has to be removed
or attenuated signi�cantly so as to make AR
modeling e�cient. For this purpose, we propose
using a 2-D Fractional Brownian Field (FBF) for

modeling this undesirable interaction, prior to AR
modeling.

FBF is the spatial extension of the fractional
Brownian motion (fBm), a non-stationary process
derived by (Mandelbrot and Ness, 1968). Several
variants of FBF exist, among which the separable
and isotropic extensions. We consider hereafter
the isotropic FBF whose characterizations are
given in (Pesquet-Popescu and Véhel, 2002;
Huang and Li, 2005; Pesquet-Popescu and
Larzabal, 1997; Richard and Bierme, 2010; Atto
et al., 2014). Isotropic FBF is a one-parameter
model. Its parameter, called Hurst parameter,
is representative of stochastic regularity (texture
roughness, in practice). In this respect, it suits
for the description of the heterogeneous HRTEM
image background.

In the literature, several methods exist for
estimating the Hurst parameter of the 2-D FBF,
for instance, maximum likelihood estimates (see
(Tafti et al., 2009; Fieguth and Willsky, 1996)),
box-counting approach (see (Huang et al., 1994))
and log-periodogram methods (see (Geweke and
Porter-Hudak, 1983; Robinson, 1995)). Because
FBF admits one pole located at zero frequency
in the spectral domain (in�nite spectral value
at zero), these estimators lack robustness on
small sample sizes. In order to obtain a robust
Hurst parameter estimator, we consider the
extension to FBF (see (Tan et al., 2015)) of
the wavelet packet method of (Atto et al., 2010)
dedicated to fractional Brownian motion Hurst
parameter estimation. This extension, based on
2-D wavelet packet spectrum, is called Log-
Regression on Polar representation of Wavelet
Packet spectrum (Log-RPWP).

In this paper, we propose an ARFBF based
morphology analysis so as to capture HRTEM
fringe information. This method relies on:

1. the integration of 2-D FBF and 2-D AR by
using a convolution operator in order to de�ne
HRTEM ARFBF (Auto-Regressive Fractional
Brownian Field, see (Tan et al., 2015)) features
and

2. morphological analysis on the basis of the
HRTEM ARFBF features.

Summarizing, the originality of the approach
consists in identifying the image background as
an FBF, subtracting this background, modeling
the residual by a 2-D AR which is able to
characterize the pseudo-periodic structure of the

1CoMoS refers to catalysts consisting of nanolayers of MoS2, decorated at the edges with Co atoms.
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active phase deposited on the support of catalyst.
The contributions presented in this work involve:

� assessing, in comparison with the state of the
art (see (Tafti et al., 2009; Van De Ville et al.,
2005)), the performance of Log-RPWP Hurst
parameter estimation method introduced in
(Tan et al., 2015) on di�erent FBF generators,

� deriving an analysis framework by integrating
morphological analysis of the ARFBF
description,

� addressing HRTEM micrograph morphological
texture characterization by using this ARFBF
morphological framework,

� discriminating di�erent catalysts from
obtained characterizations. A comparison
is proposed with a Fourier-based spectrum
analysis in order to show the interest of using
model-based HM method.

In the next section, we present the 2-D ARFBF
model after some recalls about 2-D AR model and
FBF model, and after the new results about Hurst
parameter estimation. In section 3, 2-D ARFBF
morphological analysis of HRTEM is detailed and
experimental results about catalyst discrimination
are provided. In section 4, the conclusion of this
study is provided with some perspectives.

ARFBF MODEL

The 2-D ARFBF introduced in (Tan et al.,
2015) is de�ned as the convolution with respect
to deterministic spatial variables, of AR �eld A
and isotropic FBF BH. This 2-D ARFBF, hereafter
denoted Z(x,y), is de�ned as follows,

Z(x,y) = (A∗BH)(x,y). (1)

Particularly, Z behaves as an FBF when AR is a
white noise; Z is an AR when FBF is a white noise
(H= 0).

When an image is associated to an ARFBF
observation Z, this means that the image content
can be seen as an AR based �ltering of a fractional
Brownian texture. The model applies on spatial
texture level by describing the spatial covariance
structure, in contrast with pixel level models such
as marked point processes.

The following Section 2.1 presents the 2-D
AR framework used in the paper. Then, Section
2.2 presents the isotropic FBF, as well as an
estimation procedure for the parameter of this

model, in addition with a performance validation
stage (main contribution of the Section) through
a comparison with respect to the state of the art.

2-D AR MODEL

(a)

(b)

Figure 2. Quarter plan prediction supports
denoted (a) DQP1 (see Eq.(3)) and (b) DQP2
(see Eq.(4)) with �nite order (M1,M2) = (2,2)
and (x,y) ∈ Z2.

Let us de�ne a centered second-order
stationary �eld as A = {A(x,y)} ,(x,y) ∈ Z2. A
is a 2-D AR process if

A(x,y) = −
∑
m∈D

βmA(x−m1,y−m2)+E(x,y),

(2)
where D is the prediction support,m= (m1,m2)∈
D, E(x,y) is an independent and identically
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distributed process with zero mean and variance
σ2e, βm are 2-D transverse coe�cients.

Di�erent prediction supports can be de�ned
(Alata and Olivier, 2003). In this paper, we will use
two prediction supports with Quarter Plan (QP)
forms respectively denoted QP`, ` = 1,2 (Fig.2
shows an illustrative example of these QPs), with:

DQP1 = {0≤m1 ≤M1,0≤m2 ≤M2} \ (0,0), (3)

and

DQP2 = {−M1≤m1≤ 0,0≤m2≤M2}\(0,0). (4)

(M1,M2) is the 2-D AR order. Let us denote
the set of AR parameters associated with QP`,
` ∈ {1,2}, as

θ
QP`
M1,M2

= {σ2e,`, {βm,`,m ∈DQP`}}. (5)

At a �xed order, the parameters of θ
QP`
M1,M2

,

` ∈ {1,2}, are estimated thanks to minimization
in the least-squares sense of prediction errors, see
(Ranganath and Jain, 1985; Alata and Cariou,
2008a). This procedure involves Yule-Walker
equations and it is equivalent to the maximum
likelihood estimation, when the random variables
are Gaussian.

In practice, the selection of an accurate
prediction support determines model performance.
Although a number of works focus on the order
(M1,M2) selection, see references (Alata and
Olivier, 2003; Akaike, 1974) among others, this
paper considers, from preliminary experimental
model validation, M1 =M2 = 10 as the order of
the prediction support.

The 2-D AR Power Spectral Density (PSD),
SAR(u,v), is then derived as the harmonic mean
of the two spectra associated with prediction
supports QP`, `= 1,2, (Jackson and Chien, 1979):

SAR(u,v) =
2SQP1(u,v)SQP2(u,v)

SQP1(u,v)+SQP2(u,v)
, (6)

where

SQP`(u,v) =
σ2e,`

|FQP`(u,v)|
2

(7)

and

FQP`(u,v)= 1+
∑

m=(m1,m2)∈DQP`

βm,`e
−i2πum1e−i2πvm2 .

The 2-D spectrum estimated from this method
is easy to compute and has good estimation
properties with respect to the other existing
methods, see (Alata and Cariou, 2008b) for details.

2-D FBF ISOTROPIC MODEL AND HURST
PARAMETER ESTIMATION

2-D FBF model

The 2-D isotropic FBF with Hurst parameter

H, 0 < H < 1, denoted here as BH(x,y), is de�ned

to be a non-stationary Gaussian zero-mean real-

valued �eld with auto-correlation function de�ned

as

RBH(t,s) =
σ2b
2
(‖t‖2H+‖s‖2H−‖t− s‖2H) (8)

where σ2b is a constant representing the variance

of a white Gaussian noise.

Although FBF is a non-stationary process, this

random process has stationary-increments and

stationary wavelet projections. The spectrum of

FBF can then be de�ned by association with

respect to the above stationary FBF instances

and is given by (see (Pesquet-Popescu and Véhel,

2002; Huang and Li, 2005; Richard and Bierme,

2010; Atto et al., 2014)):

SFBF(u,v) = ξ(H)
1

(u2+v2)H+1

= ξ(H)
1

‖(u,v)‖2H+2
, (9)

where ‖(u,v)‖=
√
u2+v2,

ξ(H) =
2−(2H+1)π2σ2b

sin(πH)Γ 2(1+H)

and Γ is the standard gamma function.
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Sample FBF Log-RPWP Log-RPHW ML-PHW

H Ĥ std Ĥ std Ĥ std
0.2 0.210 0.031 0.204 0.009 0.200 0.006

Generator #1 0.4 0.427 0.020 0.392 0.012 0.392 0.009
0.6 0.643 0.039 0.600 0.010 0.597 0.007
0.8 0.877 0.017 0.792 0.006 0.793 0.004

0.2 0.156 0.018 -0.029 0.004 -0.088 0.005
Generator #2 0.4 0.424 0.026 0.264 0.014 0.226 0.010

0.6 0.579 0.033 0.452 0.024 0.362 0.035
0.8 0.815 0.048 0.415 0.029 0.313 0.023

Table 1. Mean values and standard deviations for estimated Hurst parameters from Monte-Carlo
simulations with 10 FBF realizations.

Generator #1 Generator #2
H= 0.2

H= 0.5

H= 0.8

Figure 3. Examples of sample FBFs used for
Monte-Carlo simulations in Table 1.

For Hurst parameter estimation, we propose
the Log-RPWP method introduced in (Tan et al.,
2015). Log-RPWP Hurst parameter estimation
method consists of three steps.

� In the �rst step, the spectrum with polar
coordinates Sp is computed as,

Sp(r,θ) = T(ŜFBF(u,v)), (10)

where ŜFBF(u,v) is the wavelet packet spectrum
((Atto et al., 2013)), in Cartesian coordinates
(u,v), estimated from FBF samples and T is
the Cartesian-to-polar transform.

� In the second step, averages are done over the
angles:

Sp(ri) =
1

J

J∑
j=1

Sp(ri,θj), (11)

with 1≤ i≤N denoting the radial sampling
index.

� In the third step, H is estimated by:

ĤRPWP =
1

2C

∑
1≤i,k≤N
i<k

logSp(ri)− logSp(rk)

logrk− logri
−1

(12)
where C = N!

2(N−2)! is the number of all

possible combinations of indices (i,k) such that
0 < i < k≤N.

Performance assessment of Log-RPWP Hurst
parameter estimator
In this section, we compare the 2-D Log-

RPWP Hurst parameter estimation method to two
standard estimators: the �rst estimator performs
Log-Regression based on Poly-Harmonic Wavelets
(denoted hereafter as Log-RPHW) and the
second estimator performs Maximum Likelihood
(ML-PHW) on Poly-Harmonic Wavelets, both
estimators being proposed in (Tafti et al., 2009).

The experimental setup concerns FBF
sampling from random number generators. Two
generators are used for experimental tests: the
Generator #1 of (Van De Ville et al., 2005) is an
FBF synthesis via projections on PolyHarmonic
wavelets and the Generator #2 proposed by
(Kroese and Botev, 2013) is a direct spatial

5
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synthesis by imposing the covariance structure
of Eq. (8).

Tab.1 gives, for FBF Generators #1 and
#2 (see sample FBFs given by Fig.3), the best
relevant Hurst parameter estimations for all Log-
RPWP, Log-RPHW and ML-PHW, when the
maximal wavelet decomposition level is limited to
7 (sample realizations are with sizes 512× 512).
Hurst parameter estimation was realized from
Monte-Carlo simulations on 10 FBF realizations
and H ∈ {0.2,0.4,0.6,0.8}.

One can observe from Tab.1 that accuracy of
Log-RPHW and ML-PHW methods are limited
to the Polyharmonic FBF: this is due to that
the latter is synthesized by using the same
wavelets as those involved in Log-RPHW and ML-
PHW estimation routines. However, Log-RPHW
and ML-PHW methods fail to estimate Hurst
parameter of Generator #2's FBF, which uses no
a priori on a speci�c wavelet generating function.

In contrast to Log-RPHW and ML-PHW,
the Log-RPWP method gives relevant results
whatever the generator used to derive FBF
samples, as it can be seen in Tab.1. In the following
experimental tests on real word data, we thus
focus on Log-RPWP estimator which guarantees
robustness of the Hurst parameter estimation.

ARFBF MODELING PROCEDURE FOR
HRTEM IMAGE

From Eq.(1), the spectrum associated with the
non-stationary ARFBF model is

SARFBF(u,v) = SAR(u,v)SFBF(u,v)

and reduces to (Eq. (6) & (9)):

SARFBF(u,v)=
2SQP1(u,v)SQP2(u,v)

SQP1(u,v)+SQP2(u,v)

ξ(H)

‖(u,v)‖2H+2
,

(13)
where SQP1 and SQP2 are de�ned by Eq.(7).

From Eq.(13), the spectrum of ARFBF has one
singular frequency at the zero frequency point. Let
us denote one HRTEM image as I. The modeling
procedure of the of I by using an ARFBF involves
the following spectral processing:

Figure 4. ARFBF modeling of HRTEM image.
In the �rst row, the original image I1 and its
PSD S1; in the second row, the image I2 (after
WHFR pre-processing) and its PSD S2; in the
third row, the image I3 (after removing the
FBF contribution from the image I2) and its
PSD S3. Finally, the last row presents the PSD
calculated with the parameters estimated by AR
modeling in Cartesian coordinate (left) and in
polar coordinate (right - lines are associated
with radii and columns to angles).

� First step, calculate the spectrum SI of I from
the periodogram or by using the wavelet packet
method of (Atto et al., 2013);

� Second step, estimate, by using the Log-RPWP
method presented in Section 2.1, the parameter

6
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H from SI and thus SFBF is derived.

� Third step, remove the contribution of the
FBF in I. The spectrum of the residual part
is denoted as:

Sresidual(u,v) =
SI(u,v)

SFBF(u,v)
.

� Final step, model the residual part by the 2-
D AR and calculate its PSD SAR from the
AR estimated parameters (SAR is a smoothed
version of Sresidual in general).

MORPHOLOGY BASED ARFBF
ANALYSIS AND APPLICATION TO
HRTEM

ARFBF MODELING OF HRTEM IMAGE
Fig.4 shows an HRTEM image of fringes (Row

1 - Left). Such an image shows high frequency
disturbances (thin and almost horizontal lines)
induced by the alumina support of the catalyst and
a pre-processing step is required in order to remove
these disturbances. Once the pre-processing is
performed2, we obtain in the second row of Fig.4,
a pre-processed HRTEM image I2 which is free
of very high frequencies (Row 2- Left). We then
remove the FBF contribution from the image
I2 and derive the image I3 shown in `Row 3 -
Left' of Fig.4. Fig.4 also shows, in the second
(right) column, the spectral information3 S1,S2,S3
associated with images I1, I2, I3 respectively.

Finally, we estimate from I3 the AR parameters
associated to the two QPs (see Section 2.1) and
derive the corresponding spectral information. In
the last row of Fig.4, the 2-D AR PSD (see Eq.
6) is shown in Cartesian coordinates (S∗(u,v),
Row 4 - Left, origin at the center) and in polar
coordinates (S∗(r,θ), Row 4 - Right, origin at the
top left). These are the spectral fringe features
derived from ARFBF analysis. When considering
a large amount of HRTEM images, we observe that
any spectrum S∗(u,v),S∗(r,θ) can contain one or
several main bump(s) whose forms are associated
to the active phase inside the HRTEM image.

One can notice that spectra S1 and S2 both
contain a peak at the center (zero frequency)

whereas this peak has been removed (it is not
related to the active phase we wish to model) in
spectrum S3, due to FBF subtraction. Moreover,
the consequence of FBF subtraction enhances
fringe spectral features (ring around the center of
the spectrum). This justi�es the combination of
AR and FBF models proposed in this paper.

We now address in the next section,
morphological analysis of the bumps (lobes)
involved in the fringe spectral rings.

MORPHOLOGICAL ANALYSIS OF HRTEM
IMAGE
The nanolayer morphology, size and

organization on the support of active phases can
be observed directly by HRTEM imaging. The
analysis of these fringes is generally composed
of several steps: noise reduction, contrast
enhancement, segmentation and morphological
analysis such as length and tortuosity
measurements (see (Yehliu et al., 2011)). We
propose hereafter a completely di�erent approach
with characterization in the frequency domain to
obtain information about regularity of spacing or
regularity of curvature of layers of fringes. Another
advantage of the frequency domain is to separate
the information associated with �superimposed�
fringes with di�erent main orientations which
produces di�erent bumps. However, analysis in
this domain is an intricate work because of high
frequency disturbances due to acquisition noise,
and low frequency disturbances due to the e�ect of
the catalyst support in HRTEM image acquisition.
Our approach uses wavelet �ltering, suppression
of catalyst support contribution by means of an
FBF modeling, and an AR model to smooth the
residue image corresponding to fringe information.
The processed spectral images (see last row of of
Fig.4 for instance) show some lobes corresponding
to the fringes. A morphological characterization of
these lobes will allows us to: 1) obtain information
about inter fringe distance and regularity of fringe
spacing, (2) observe fringe distance variations and
regularity of a fringe curvature by looking at the
tangential length of the lobe characterizing the
fringe under consideration.

In the following, we propose a morphological
analysis of these lobes which are present in the
polar representation of the PSD calculated from

2We consider Wavelet based High Frequency Removal, WHFR, by forcing wavelet details to zero and reconstructing an

image from wavelet approximations, see (Nason and Silverman, 1995).
3PSD estimated using periodogram which is based on the square modulus of discrete Fourier transform. The origin is

at the center of the images which exhibit central symmetry.
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AR estimated parameters (image S∗(r,θ) in Fig.4).
First, we search the point P1[r

∗,θ∗] denoting
maximum value of S∗ and we calculate an adaptive
threshold α1 as follows:

P1 = argmax
r,θ
S∗(r,θ), (14)

and
α1 = λ1S

∗(P1), (15)

with λ1 ∈ [0;1].

In our application, we chose λ1 = 0.8 after
validation tests. Segmentation with α1 can lead
to several connected components. This issue
can be easily handled by using a morphological
reconstruction (see (Serra, 1988)) with P1 as a
marker. A �rst lobe is obtained on a binary image
Q1:

Q1 = γ
S∗∗
rec (P1), (16)

and

S∗∗(r,θ) =

{
1, if S∗(r,θ)> α1,
0, otherwise.

(17)

If a second lobe is located on S∗, it can be obtained
using a similar procedure. The contribution of the
�rst lobe is removed on S∗ using morphological
dilation with a disc of radius R on Q1:

S∗1(r,θ) =

{
S∗(r,θ), if δR(Q1) 6= 0,
0, otherwise.

(18)

From available HRTEM data (see samples given
in Fig.1 for illustration), R= 2 is e�cient. Then a
new threshold α2 is calculated and a binary image
Q2 is obtained by:

α2 = λ2S
∗(P1), (19)

with λ2 ∈ [0;λ1],

P2 = argmax
r,θ
S∗1(r,θ), (20)

Q2 = γ
S∗∗
1
rec (P2), (21)

and

S∗∗1 (r,θ) =

{
1, if S∗1(r,θ)> α2,
0, otherwise.

(22)

In our application, we chose λ2 = 0.6 (selection
from validation tests). In contrast with Q1, Q2
value is not necessarily non-zero (if there is
no remaining signi�cant second lobe). We limit
the study to the detection of two lobes in this

experimental setup, with the knowledge that
observation of more than two layers of overlapping
fringes is rare in our application.

For each lobe on images Qi, i = 1 or 2, denoting
a layer of fringes, an average spatial distance
between atomic layers is estimated by the distance
value G,

G=
Te

r∗
, (23)

associated to the maximum of the lobe
Pi = [r∗,θ∗], i= 1 or 2, Te is the sampling period

(here, Te = 0.057).

Figure 5. The spectral lobe detected can be
considered as an ellipse embedded in a bounding
box (rmin, rmax,θmin,θmax).

Lobe on binary image Qi, i = 1 or 2, can
be considered as an ellipse embedded in a
bounding box (rmin, rmax,θmin,θmax) (see Fig.5).
The extension of the lobe allows us to describe
the changes in the distance between atomic layers
(regularity of spacing) and in the curvature
of atomic layers (regularity of curvature). The
regularity of spacing and regularity of curvature
can be estimated by distance variation 4G (see
Eq.(24)) and tangential length Lθ (see Eq.(27))
respectively. 4G and Lθ are de�ned by:

4G = |Gmax−Gmin| (24)

with

Gmax =
Te

rmin
(25)

Gmin =
Te

rmax
(26)

8
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where Te = 0.057, and

Lθ = |θmax−θmin|. (27)

In the next section, we present our statistical
analysis for the discrimination of catalyst active
phases.

STATISTICAL ANALYSIS FOR CATALYST
DISCRIMINATION
Based on the geometric features described

previously, a comparison between two catalysts
is presented. The point-to point resolution of the
TEM is 0.23nm. The pixel size of the images is
0.057 nm, at an image resolution of 1024× 1024.
For catalyst 1 (Cat1), 78 sub-images containing
active phases are taken from 21 HRTEM images.
For catalyst 2 (Cat2), 88 sub-images containing
active phases are taken from 19 HRTEM images.
For each sample, we calculate geometric features
G, 4G and Lθ on detected lobes.

Cat 1 is a CoMoS catalyst supported on
alumina. It presents a high loading of active phase,
corresponding to a Mo density of 7 at/nm2. Cat 2
is a CoMoS catalyst supported on silica. It presents
a low loading of active phase, with a Mo density
of 1 at/nm2. The mean length and stacking of
slabs were measured by HRTEM on a minimum
of 200 slabs, using an in-house image processing
application (Celse et al., 2008): the image is
pre-processed in order to stretch contrast, then
a region growing algorithm and active contour
techniques are used to obtain slab contours. Cat1
presents a mean slab length of 3.89 nm and a mean
stacking number of 2.73; Cat 2 presents a mean
slab length of 2.49 nm and a mean stacking number
of 2.09.

Statistical distributions of G, 4G and Lθ
The distributions of the features are studied

by using a Kernel smoothing function fw which
is de�ned as follows ((Rosenblatt, 1956; Parzen,
1962)):

fw(x) =
1

nw

n∑
i=1

K(
x−xi
w

), (28)

where n is the sample size, {xi}i=1,...,n are the set
of considered samples, x ∈ R, K(·) is the kernel
smoothing function and w is the bandwidth.

Tab.2 gives certain statistic information of
distance G (measured in nm), distance variation
4G (measured in nm) and tangential lengths
Lθ (measured in degree) in terms of means,

variances, third and fourth standardized moments
(known as skewness and kurtosis) of the detected
lobes on Cat1 and Cat2 images. Catalyst (n)
represents the number of samples in Cat1 and
Cat2 respectively.

For these catalysts, the inter-distance between
two neighboring white/black fringes G is known
to be close to 0.615 nm (see (Geantet and Sorbier,
2012)). In Tab.2, G has almost same value for Cat1
and Cat2 (0.611 nm vs 0.593 nm), it con�rms G
as a physical characterization. For 4G and Lθ
of Cat1 and Lθ of Cat2, the positive skewness
values in Tab.2 indicates that the tail on the
right side is longer or fatter than that of the
left side. When the skewness values are bigger,
this phenomenon will be clearer (see Fig.6). In
contrast, for the other cases, the tail on the left
side is longer or fatter than that of the right side
(see Fig.6) because of negative skewness values.
The kurtosis measures provided "tailedness"
information of the distribution of variables G, 4G
or Lθ. All kurtosis being larger than 3, one can
conclude that G (for both of Cat1 and Cat2) and
4G (just for Cat1) distributions are far from being
Gaussian. In addition, when kurtosis are large, this
implies that several outliers can be present in the
corresponding variables. These observations are
con�rmed by Fig.6 which shows the statistical
distributions of G, 4G or Lθ for both catalysts.

Kolmogorov-Smirnov test for catalyst
discrimination
In this section, we propose Kolmogorov-

Smirnov (KS) test for comparing Cat1 and Cat2
ARFBF morphology characterizations. The KS
measure is given by (see (Peacock, 1983) for
details)

K =maxx(|f̂1(x)− f̂2(x)|), (29)

where f̂1, f̂2 are the empirical cumulative
distribution functions of catalyst datasets indexed
by `1' and `2'. Function f̂ is hereafter the kernel
distribution for one of the three features: G, ∆G
and Lθ. A threshold, based on asymptotic of K,
is used to derive a decision between alternative
hypotheses: null hypothesis (H= 0) is that the two
samples are drawn from the same catalyst orH= 1
means that the test rejects the null hypothesis at
5% signi�cance level.

First, Tab.4 highlights that Kolmogorov-
Smirnov test makes a clear discrimination between
the two catalysts e�ective when considering

9
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Catalyst
(n) Cat1 (93) Cat2 (109)

Stat G 4G Lθ G 4G Lθ
Mean 0.62 0.124 12.323 0.598 0.097 9.988

Variance 0.003 0.002 27.682 0.003 0.002 26.653

Skewness -0.991 1.222 1.116 -1.135 1.721 1.425

Kurtosis 7.21 4.784 4.572 4.434 9.681 5.913

Table 2. Using AR-based method for PSD estimation in polar coordinates (see Fig.4 & 5), statistics
of distance (see Eq.(23)), distance variation (see Eq.(24)) and tangential length (see Eq.(27))
features of the detected lobe of catalyst image databases (Cat1 and Cat2).

Catalyst
(n) Cat1 (93) Cat2 (109)

Stat G 4G Lθ G 4G Lθ
Mean 0.63 0.067 13.296 0.61 0.056 12.776

Variance 0.002 0.0006 10.982 0.003 0.0005 13.879

Skewness -0.56 2.155 1.000 -1.254 1.745 0.634

Kurtosis 5.987 9.525 4.036 4.898 8.786 3.636

Table 3. Using interpolated periodogram in polar coordinates (see Fig.7): statistics of distance
(see Eq.(23)), distance variation (see Eq.(24)) and tangential length (see Eq.(27)) features of the
detected lobe of catalyst image databases (Cat1 and Cat2).

Figure 6. Kernel distributions of distance (left), distance variation (center) and tangential length
(right) of the detected lobe S∗LobeD of Cat1 (− in blue) and Cat2 (− in red). First row: using
PSD estimated in polar coordinates with HM method based on the AR model. Second row: Using
interpolated periodogram in polar coordinates.

parameters 4G and Lθ. Second, when performing

Kolmogorov-Smirnov tests on sub-classes of

catalysts Cat1 and Cat2 (2 sub-classes per

catalyst due to the limited number of available

samples), then the test still performs a relevant
discrimination, as it can be seen in Tab.6.

The motivation of using the PSD estimated
from an AR model (see Eq. 6 & 13) is also

10
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G 4G Lθ
Statistic Catk \Cat` Cat1 Cat2 Cat1 Cat2 Cat1 Cat2

H Cat1 0 0 0 1 0 1
Cat2 0 0 1 0 1 0

103K Cat1 0 191 0 316 0 259
Cat2 191 0 316 0 259 0

Table 4. Kolmogorov-Smirnov test for the discrimination of Cat1 and Cat2 based on features
computed using PSD estimated with AR-based method in polar coordinates. Null hypothesis is

rejected at the level α = 0.05 if K > Ks with Ks ≈ 1.36
√
N1+N2
N1×N2 . With N1 = 78 (number of samples

of Cat1) and N2 = 88 (number of samples of Cat2), Ks ≈ 0.212.

G 4G Lθ
Statistic Catk \Cat` Cat1 Cat2 Cat1 Cat2 Cat1 Cat2

H Cat1 0 0 0 1 0 0
Cat2 0 0 1 0 0 0

103K Cat1 0 204 0 295 0 127
Cat2 204 0 295 0 127 0

Table 5. Kolmogorov-Smirnov test for the discrimination of Cat1 and Cat2 based on features using
interpolated periodogram in polar coordinates. Null hypothesis is rejected at the level α = 0.05 if

K > Ks with Ks ≈ 1.36
√
N1+N2
N1×N2 . With N1 = 78 (number of samples of Cat1) and N2 = 88 (number

of samples of Cat2), Ks ≈ 0.212.

G 4G Lθ

Stat Catmk \Catn` Cat11 Cat21 Cat12 Cat22 Cat11 Cat21 Cat12 Cat22 Cat11 Cat21 Cat12 Cat22

Cat11 0 0 0 0 0 0 1 1 0 0 1 1

H Cat21 0 0 1 0 0 0 1 1 0 0 0 0

Cat12 0 1 0 0 1 1 0 0 1 0 0 0

Cat22 0 0 0 0 1 1 0 0 1 0 0 0

Cat11 0 256 235 114 0 128 295 383 0 179 372 326

103K Cat21 256 0 366 265 128 0 306 374 179 0 206 195

Cat12 235 366 0 182 295 306 0 113 372 206 0 91

Cat22 113 265 182 0 383 374 113 0 326 195 91 0

Table 6. Kolmogorov-Smirnov test for the discrimination of sub-classes Catm1 and Catn2 of Cat1
and Cat2 respectively, m,n ∈ {1,2}, based on features computed using PSD estimated with AR-
based method in polar coordinates. Null hypothesis is rejected at the level α = 0.05 if K > Ks with
Ks ≈ 1.36

√
N1+N2
N1×N2 : for Cat

1
1 (N1 = 39) and Cat

2
1 (N2 = 39), Ks ≈ 0.308; for Cat11 (N1 = 39) and Cat12

(N2 = 44), Ks ≈ 0.299; for Cat11 (N1 = 39) and Cat22 (N2 = 44), Ks ≈ 0.299; for Cat12 (N1 = 44) and
Cat22 (N2 = 44), Ks ≈ 0.29.

evaluated by providing a comparison with a direct
use of the PSD. Figure 7 provides the periodogram
(proportional to the square of the modulus of
the Discrete Fourier Transform, DFT) obtained
by using zero-padding method for the same input
image as in �gure 4 - [third row]. This periodogram
lacks smoothness and 2D Gaussian �lters with
standard deviations σ= 3,6 have been used for its
regularization (see Fig.7, second and third rows).

The three proposed informative parameters are
then computed from this periodogram in polar
coordinates via spline interpolation (see Fig. 7).
For the morphological analysis, di�erent values of
the threshold λ1 (see Eq. 15) are used: 0.6, 0.7,
0.8 and 0.9. The best discrimination results have
been obtained for σ = 3 and λ1 = 0.8. For these
values, statistics of the informative parameters (see
Tab.3), kernel distributions (see Fig. 6 second row)
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G 4G Lθ

Stat Catmk \Catn` Cat11 Cat21 Cat12 Cat22 Cat11 Cat21 Cat12 Cat22 Cat11 Cat21 Cat12 Cat22

Cat11 0 0 0 0 0 0 0 1 0 1 0 0

H Cat21 0 0 0 1 0 0 1 1 1 0 0 1

Cat12 0 0 0 0 0 1 0 1 0 0 0 0

Cat22 0 1 0 0 1 1 1 0 0 1 0 0

Cat11 0 197 185 218 0 286 187 402 0 322 167 105

103K Cat21 197 0 199 300 286 0 314 458 322 0 224 342

Cat12 185 199 0 126 187 314 0 300 167 224 0 118

Cat22 218 300 126 0 402 458 300 0 105 342 118 0

Table 7.Kolmogorov-Smirnov test for the discrimination of sub-classes Catm1 and Catn2 of Cat1 and
Cat2 respectively, m,n ∈ {1,2}, based on features computed using interpolated periodogram in polar

coordinates. Null hypothesis is rejected at the level α = 0.05 if K > Ks with Ks ≈ 1.36
√
N1+N2
N1×N2 : for

Cat11 (N1 = 39) and Cat
2
1 (N2 = 39), Ks ≈ 0.308; for Cat11 (N1 = 39) and Cat12 (N2 = 44), Ks ≈ 0.299;

for Cat11 (N1= 39) and Cat
2
2 (N2= 44), Ks≈ 0.299; for Cat12 (N1= 44) and Cat22 (N2= 44), Ks≈ 0.29.

and Kolmogorov-Smirnov tests (see Tab.5 & 7) are
performed.

The main conclusion remains the same (the
two catalysts can be discriminated) but only with
the distribution of the distance variation: the
tangential length is no longer discriminant with
the direct approach whereas the results obtained
for some sub-populations show discriminations
between catalysts for both the distance variation
and the tangential length (see Tab.7).

HRTEM observations of the two catalysts show
important di�erences in the organization of the
active phase on the support: Cat1, containing
high amounts of active phase, presents as well
stacks and aggregates of CoMoS slabs, in which
slabs appear curved whereas Cat 2 presents
isolated slabs of stacks of slabs, with a rather
straight morphology. This di�erence is not clearly
expressed by traditional measures of the length
and stacking numbers. Lθ is higher in Cat 1 (the
CoMoS/alumina catalyst with high Mo loading) as
it can be observed in Tab.2 and Fig.6, �rst row. It
is in coherence with the observation of aggregated
slabs. Lθ translates the curvature of the slabs and
can be a proper descriptor of the aggregation of
the slabs. The discrimination of the catalysts using
the distribution of Lθ is obtained using AR-based
method for PSD estimation and not the Fourier-
based method (see Tab.4 & 5).

Thus, ARFBF morphology characterization
proposed in the paper seems to be a promising
feature-based description to separate the two sets
of HRTEM images representing active phases of
the two catalysts.

Figure 7. PSD estimated using the square of
the modulus of the Discrete Fourier Transform.
1st row: left, periodogram with size 512× 512
obtained using zero-padding method (PSD1);
right, interpolated PSD1 in polar coordinates.
2nd row: left, PSD1 smoothed by a Gaussian
�lter with σ = 3 (PSD2); right, interpolated
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PSD2 in polar coordinates. 3rd row: left,
PSD1 smoothed by a Gaussian �lter with σ =
6 (PSD3); right, interpolated PSD3 in polar
coordinates.

CONCLUSION

In this paper, we have proposed an ARFBF
based morphological description of HRTEM
image morphological textures corresponding to
the observation of material micro-structures at
nanometer scale. This morphological description
is based on 2-D parametric spectrum estimation.

We described the di�erent components of
the ARFBF model and we explained parameter
estimation methods that lead to 2-D spectrum
estimation. For the estimation of FBF Hurst
parameter, we made a comparative study of
di�erent methods in order to select a robust one
with respect to di�erent sampling generators.

The obtained Hurst and AR features provide
a description of heterogeneous HRTEM image as
a stochastic �eld, where the active phase fringes
are associated with AR parameters and geometric
fringe features have been derived by morphology
analysis of the spectral fringe information.

The analysis proposed allows to discriminate
between two catalyst classes and opens some
prospects on automatic monitoring of active
phases associated with di�erent materials, as well
as material at nanoscale.

It would be interesting to investigate further,
the relationship between the catalytic performance
and the value of Lθ parameter.
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LIST OF SYMBOLS

� A: 2-D Auto-Regressive (AR) �eld.

� QPl: prediction domains for A and associated
with quarter plans, l= 1,2.

� D⊂Z2: prediction support for A. For instance,

· DQP1 = {0≤m1 ≤M1,0≤m2 ≤M2}\(0,0);

· DQP2 = {−M1 ≤ m1 ≤ 0,0 ≤ m2 ≤
M2}\(0,0).

� (M1,M2): order of the 2-D AR model (M1 =
M2 = 10 are used for experimental results).

� θ
QPl
M1,M2

set of parameters with the form

{σ2e,l, {βm,l,m ∈DQPl}} of the AR model.

� BH: isotropic fractional Brownian �eld with
Hurst parameter H, 0 < H < 1.

� RH: auto-correlation function of BH.

� Z: ARFBF, spatial deterministic convolution
of �eld A and �eld BH.

� S: power spectral density (PSD).

� ŜB(u,v): wavelet packet spectrum in Cartesian
coordinates (u,v).

� Sp(r,θ): PSD in polar coordinate.

� S∗(r,θ): PSD calculated from AR estimated
parameters in polar coordinate.

� S∗1(r,θ): PSD after remove the contribution of
the �rst lobe on S∗.

� P1, P2: frequencies providing maximum values
of S∗, S∗1respectively.

� α1, α2: thresholds for S
∗, S∗1 respectively.

� λ1 ∈ [0,1], λ2 ∈ [0,λ1]: α1 = λ1S
∗(P1) and α2 =

λ2S
∗(P1).

� S∗∗, S∗∗1 : binary images from S∗, S∗1 when using
thresholds α1, α2, respectively.

� Q1, Q2: binary images obtained by using
morphological reconstructions with markers
P1, P2, respectively.

� R: radius of disk in morphological dilation.

� Te: sampling period.

� G: distance value.

� ∆G: distance variation (regularity of spacing).

� Lθ: tangential length (regularity of curvature).

� Γ : standard gamma special function.

� T : Cartesian-to-polar transform.
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